
Broadcast Authentication Protocol with Time Synchronization and Quadratic
Residues Chain

Bogdan Groza

Politehnica University of Timisoara, Romania
Faculty of Automatics and Computers

bogdan.groza@aut.upt.ro

Abstract

Assuring information authenticity is an important

issue in the field of information security. A new
broadcast authentication protocol is proposed. The
protocol is based on time synchronization and uses
chains constructed with the squaring function. The
proposed solution is efficient for transmissions over
long periods of time since the chains have an
unbounded length. The protocol assures information
authenticity at the reduced cost of almost one modular
multiplication for each broadcasted packet. Time
synchronization issues are discussed and the security
of the protocol is equivalent to factoring since the
squaring function is used. A failure mode analysis of
the protocol is done; this is also an aspect of novelty
and applies to other protocols based on time
synchronization as well.

1. Introduction and related work

It is commonly acknowledged that authentication is
one of the most important security objectives. One-way
chains are arrays generated by the successive
composition of a one-way function which can be
efficiently used for assuring authentication. The first
use of one-way chains is due to Lamport for assuring
entity authentication [7], the S-Key system proposed
by Haller is based on the same mechanism [6],
however this systems is not secure [8].

More recently one-way chains proved to be useful
in assuring information authenticity [2], [9], [10], [11],
[12]. Usually information authenticity is assured by
Message Authentication Codes (MAC), however MAC
codes introduce a disadvantage since secret shared
keys are required. The use of elements from a one-way
chain as keys for MAC codes proved to be a good
solution in order to remove this disadvantage. The
most successful proposal for assuring information
authenticity by using one-way chains is the Timed
Efficient Stream Loss-tolerant Authentication

(TESLA) protocol and its several variants proposed by
Perrig et. al. [11], [12]. All variants of this scheme rely
on loose time synchronization, which means that the
receivers must have an upper bound on the time from
the side of the sender. The principle is to use a key
which is an element of one-way chain in order to
compute a MAC and to disclose this key only in some
forthcoming packet, the security condition which must
be met to make this authentication secure is the
following: a packet arrives safely if the receiver can
unambiguously decide based on its synchronized time
that the sender did not yet send the key disclosure
packet. In brief the TESLA protocol offers authenticity
at reduced costs without involving any shared secret
between senders and receivers. For this advantage the
protocol was suited even in constrained environments
such as sensor networks. Different proposals of
authentication protocols in which elements of a one-
way chain are used as keys for MAC codes are in [2],
[4], [5] - here an authentic confirmation is used instead
of time synchronization. Also the CSA protocol from
[2] has a timed variant T-CSA which is also based on
time synchronization similar with the TESLA protocol.
Probably the first authentication protocol based on a
related principle is the Guy Fawkes protocol from [1].

In this paper we propose a new broadcast
authentication protocol which is based on time
synchronization and uses quadratic residue chains. The
same loose time synchronization as in the case of the
TESLA protocol is assumed but our proposal differs at
the communication participants and at the construction
of the chain. The advantage of this proposal is that it
requires minimal interaction between senders and
receivers, being efficient especially when there are
many receivers, and that it can be used for broadcast
over long periods of time since the squaring function is
used which allows one-way chains of unbounded
length. Also a new aspect is discussed: the presence of
the failure modes.

Section 2 holds our proposal; details on time
synchronization and cryptographic construction are

given. In section 3 we analyze the introduced protocol
both in terms of failure modes and security. Section 4
holds the conclusion of our paper.

2. The proposed protocol

2.1. Communication Participants

The addressed scenario assumes the existence of
the following participants: a registration server and a
number of senders and receivers (this possible setting
has also been pointed out in [12]). Each sender
establishes its initialization information on the
registration server and then at some time later starts
broadcasting authentic information. Additionally, if
there is some clock drift between the sender and the
registration server, the sender can synchronize again its
time with the registration server (however this is not
the main intention of our proposal). Each receiver
obtains the initialization information of a particular
sender from the registration server and then it can
check the authenticity of the information that is
broadcasted by that sender; we underline that except
for receiving information that can be checked for
authenticity there is no other interaction between
senders and receivers. Again, to prevent clock drifts
between receivers and the registration server; the
receivers can synchronize their time with the
registration server. As in the case of the TESLA
protocol [11] only loose time synchronization is
required which means that only an upper bound for the
time value at the registration server is needed. The
registration server does not have access to any private
or secret information of senders or receivers; therefore
it is not an unconditionally trusted entity. All that we
request from the registration server is to be
functionally secure, which means to behave honest. Its
role is to provide time synchronization, to store
sender’s initialization information and to distribute it to
receivers. We assume that this scenario can take place
over a long period of time; for example a sender stores
its initialization information on the registration server
and then starts broadcasting for five years, in all this
period there is no need for any other interaction
between the sender and the registration server except
for the case when the sender needs to synchronize its
time with the registration server.

2.2. Registration of a sender on the registration
server

The objective of sender S is to establish its

initialization information on the registration server
RS . This information consists in a packet

()0 ,, , , , ,RS
init broadcast id S RS SigS

P t S n k ε δ= signed by S . Here
RS
broadcastt is the minimum time value at RS at which S

starts broadcasting, below it is shown how to compute
this value, idS is an identifier for the sender (for
example it may be some number or an IP address), n
is the public modulus and 0k is the initialization key,
δ denotes the key disclosure period, ,S RSε is the time
synchronization error computed as shown below and

SSig denotes that the information is signed by S (as a
general condition we assume that all the participants of
this scenario can verify the signature of each other).

The registration procedure involves the following
steps:

1. S RS→ : SNonce

2. RS S→ : (), , RS
RS S reg SigRS

Nonce Nonce t

3. S RS→ : ()0 ,, , , , , ,RS
RS broadcast id S RS SigS

Nonce t S n k ε δ

Here SNonce is a nonce used by S in order to

ensure that the response from RS is not a replay of
some old response and RSNonce is a nonce used by
RS to ensure that the registration information sent by
S is also new, RSSig denotes that the information is
signed by RS . The time delay between steps 1 and 2 is
the synchronization error ,S RSε between S and RS ,

i.e. ,
S S

S RS reg startt tε = − . We request for the
synchronization error ,S RSε to be much smaller than
the disclosure period δ , i.e. ,S RSε δ , this is a
natural requirement; a detailed explanation is in section
2.4. The registration procedure is also suggested in
figure 1.

Now S can estimate for any time value St the
minimum and maximum time value at RS as follows:

(),S RS S S RS S
reg regMinTV t t t t= + − (1)

(),
,

S RS S S RS S
reg reg S RSMaxTV t t t t ε= + − + (2)

Let S
broadcastt be the time at which sender S starts

broadcasting authentic information, now the minimum
time value at RS when the time value at S is S

broadcastt
can be easily computed as

(),RS S RS S
broadcast broadcastt MinTV t= . We will also define the

disclosure time for the thi key as:
() ()1S S

broadcastDisT i t i δ= + − ⋅ (3)

Because of the synchronization error ,S RSε , by using
relations (1) and (2) when the time value at S is

()SDisT i the time value at the registration server is
somewhere in the interval

()() ()(), ,,S RS S S RS SMinTV DisT i MaxTV DisT i 
 

; since

this is the time at which the thi key is released we will
call this interval the disclosure interval for the thi key.
What is important is that as long as the loose time
synchronization is preserved between S and RS the

thi key is not released sooner than:

() ()(),RS S RS SMDT i MinTV DisT i=

() ()1RS RS
broadcastMDT i t i δ⇔ = + − ⋅ (4)

We will call this time value the Minimal Disclosure
Time (MDT) for the thi key, MDT is of particular
interest since as will be shown in the forthcoming
sections the proposed protocol guarantees that packet

iP which contains a MAC computed with the 1thi +
key can not be forged sooner than ()1RSMDT i + .

S
startt

S
regt

S
broadcastt

RS
regt

()0 ,, , , , , ,RS
RS broadcast id S RS SigS

Nonce t S n k ε δ

S RS

SNonce

(), ,RS
reg RS S SigRS

t Nonce Nonce,S RSε

,S RSε

RS
broadcastt

,
RS
broadcast S RSt ε+

Figure 1. Registration procedure

2.3. Synchronization of a receiver with the
registration server

The objective of the synchronization of a receiver

R with the registration server RS is to obtain the
initialization information of a particular sender S and
to achieve loose time synchronization with the
registration server, i.e. establish an upper bound on the
time value at RS . This will make possible for R to
check the authenticity of the information that is
broadcasted by S .

The synchronization procedure involves the
following steps:

1. R RS→ : ,id RS Nonce

2. RS R→ : (), ,RS
R sync init SigRS

Nonce t P

Here RNonce is a nonce used by R in order to

ensure that the response from RS is not a replay of
some old response and idS is the identifier of the
particular sender from which R wants to receive
authentic information. The time delay between steps 1
and 2 is the synchronization error ,R RSε between R

and RS , i.e. ,
R R

R RS sync startt tε = − . We will assume that

, ,R RS S RSε ε δ+ << and if this condition does not hold
the synchronization procedure must be repeated; an
explanation for this is given in section 2.4. This
procedure is also suggested in figure 2.

R
startt

(), ,RS
R sync init SigRS

Nonce t P

R RS

,id RS Nonce

,R RSε

R
synct

RS
synct

Figure 2. Synchronization procedure

After this synchronization R can also estimate at

any time Rt the minimum and maximum value for the
time value at RS :

(),R RS R R RS R
sync syncMinTV t t t t= + − (5)

(),
,

R RS R R RS R
sync sync R RSMaxTV t t t t ε= + − + (6)

Now R can use the maximum time value at RS in
order to decide if packet iP received at time R

it which
contains a MAC computed with the 1thi + key is
secure, i.e. the key used for the computation of the
MAC was not already released. This can be verified by
checking that:

() (), 1R RS R RS
iMaxTV t MDT i< + (7)

To prevent significant clock drifts the
synchronization procedure can be periodically repeated
by R .

2.4. The influence of the synchronization error
on security

Because of the synchronization error ,S RSε between
the sender and the registration server, key ik is
disclosed in the worst case when the time value at the
registration server is ()(),S RS SMaxTV DisT i . In this

case a receiver having synchronization error ,R RSε with
the registration server knows that the time value at the
registration sever is at most

()(),
,

S RS S
R RSMaxTV DisT i ε+ . Also we must take into

account the network delay for a particular receiver R ,
i.e. the time needed for a packet to travel through the
network from S to R . Of course this time may vary
for different packets but for our purpose it is sufficient
to have an average value. Let this delay be R∆ , now in
order for the security condition to be verified when the
packet arrives, we need:

()() (),
, 1S RS S RS

R RS RMaxTV DisT i MDT iε+ + ∆ < +

, ,S RS R RS Rε ε δ⇒ + + ∆ < (8)
And therefore relation (8) needs to be satisfied in

order for the receiver to obtain authentic packets at a
delay R∆ and synchronization errors ,S RSε , ,R RSε ; this
is why we have requested for the synchronization
errors to be much smaller than the key disclosure
period. If δ is chosen by the sender too small to
satisfy (8) then the receiver will get only packets that
must be dropped since the security condition (7) does
not hold. In order to overcome this, an improvement
that was proposed by Perrig et. al. in the case of the
TESLA protocol [12] can be also used here: the key
which is used to compute the MAC from packet iP can
be disclosed only in some later packet iP τ+ instead of
packet 1iP+ , see [12] for details.

2.5. Synchronization between a sender and the
registration server

Assuring that clock drifts between the sender and
the registration server are negligible is critical for the
security of the communication. In order for the security
of the scheme to hold, the sender must ensure that at
any time St the time value at the registration server
side is between the minimum and maximum values
given in (1), (2), this is required in order to disclose the
keys in the correct disclosure intervals. If the sender
suspects that clock drifts between its clock and the
registration server clock are not negligible then there
are two possible solutions to overcome this. The first
solution is for the sender to repeat the registration
procedure and to commit new initialization information
on the registration server (this means to restart the
entire protocol), however this solution is inefficient for
receivers that have already obtained the registration
information of the sender. The second solution is for
the sender to re-synchronize its time with the
registration server. At time St the sender can estimate

that the time value at the registration server is between

(),S RS SMinTV t and (),S RS SMaxTV t by using (1), (2).
In order to achieve a new synchronization the sender
has to follow the synchronization procedure described
in section 2.3. Now the sender plays the role of a
receiver and after completing the synchronization
procedure it can estimate that the time value at the
registration server is between (),R RS RMinTV t and

(),R RS RMaxTV t by using (5), (6). We suppose that

, ,R RS S RSε ε≤ , this is needed in order for the new
synchronization to be more accurate than the previous
one. Now the sender can compute a time adjustment

() (), ,R RS R S RS SMinTV t MinTV tξ = − (here S Rt t=
since the sender plays the role of the receiver) and use
this adjustment by broadcasting packets at time

()1S
broadcastt i δ ξ+ − ⋅ + instead of ()1S

broadcastt i δ+ − ⋅ . The
case of , ,R RS S RSε ε> should be avoided since in some
situations the sender cannot be certain that its
estimation is or not wrong compared to the new
estimation (after following receiver’s registration
procedure); also, the best thing that the sender can do is
to ensure that packets are not released too soon by
applying the same adjustment methodology, however
in some situations packets may be released too late
causing receivers to drop them.

2.6. Construction of the key chain

The discrete power function, i.e. () modf x x nε=
is commonly used in public key cryptography, some of
the most prominent public key encryption schemes are
based on this function, for example RSA [13].

Recently the squaring function, i.e. () 2 modf x x n= ,
was proposed for creating time-lock puzzles [14] (a
cryptographic puzzle that can be solved only after a
predetermined amount of time). The construction from
[14] is based on the property of the squaring function
that exponents can be reduced modulo the order of the
group and therefore () 2 modf x x n

ηη = =
()2 mod modnx n

η φ= . The same property can be exploited
in our construction for creating one-way chains of
unbounded length. Since the value of

() ()2 mod modnf x x n
η φη = can be easily computed by

first computing ()2 mode nη φ= and then computing

0 0 modek x n= a one-way chain of unbounded length
can be computed in this way (the computational

complexity for computing a one-way chain based on a
hash function depends linearly on the length of the
chain while by the use of this function it depends only
logarithmically on the length of the chain – because of
the repeated square and multiply algorithm). Therefore
for the proposed protocol we will define each session
key as follows:

()2 mod
0 mod , 0,..

i n
ik x n i

η φ η
−

= = (9)
Here n is a large composite integer which is

infeasible to factor and ()nφ is the Euler totient
function which can be computed only if the
factorization of n is known and 0x is a random value
chosen by the sender. By using this function the one-
way chain becomes a chain of quadratic residues in

nZ . More, the elements of the one-way chain can be
computed in a time memory trade as suggested in [5]
and the computational time is significantly reduced to
almost one modular multiplication. The time-memory
trade is based on the fact that it is possible to compute
the value of ()if xη − in only one modular

multiplication if the value of ()1if xη − − is known;

indeed () () ()1 1i i if x f x f xη η η− − − − −= ⋅ . Because of
this, the chain of η elements can be split into smaller
chains of λ elements. Instead of performing one
modular exponentiation for every element of the chain
a smaller chain of λ elements can be computed with
only one modular exponentiation followed by 1λ −
modular multiplications.

High order of 2 in ()nZφ is indeed necessary for the

security of the protocol, as pointed out in [13] one may
choose carefully a modulus for this purpose, but still
random values should give the desired values with
overwhelming probability. So the use of random values
should be safe in practice.

Although this function is more computational
intensive than a hash functions and its output is larger
it has the advantage that the chains can have extreme
lengths without influencing the computational time and
therefore the chain can be used for a long period of
broadcast.

2.7. The verification of some key from the
initialization key

Each new key ik must be checked for authenticity
by the receiver, this can be easily done if the receiver
already has the a previous authentic key lk by
checking that ()i l

i lk f k−= . If a significant amount of
time has passed from the moment when the sender has

start broadcasting and a recent authentic key is not
available for the receiver (in the worst case the receiver
has only the initialization key received from the
registration server, i.e. 0k), since each key has to be
computed from the previous one with one modular
multiplication, the verification of the current session
key may require a significant number of modular
multiplications. We want now to establish how fast the
receiver can synchronize its key with the sender, i.e.
verifying the session key for the current time interval
based on the initialization key 0k . If the receiver starts
computations at time RS

startt (we suppose that it has
received key ik of the current time interval and
without loosing generality we take the time value at
RS as reference) then at some later time RSt the
number of verified keys is:

() /RS RS
keys start mulv t t t= − (10)

Here mult is the computational time required for a
modular multiplication on the receiver side. In order to
synchronize its key with the current session key we
need that the number of verified keys to be equal to the
number of keys released by the sender which is:

 () /RS RS
keys broadcastr t t δ= − (11)

By putting relations (10) and (11) together we get
the following:
 keys keysv r= RS RS RSmul

start broadcast
mul mul

tt t t
t t

δ
δ δ

⇒ = ⋅ − ⋅
− −

 (12)

Therefore the time after which the current session
key is verified is:

RS RS
recovery startt t∆ = − ()RS RSmul

start broadcast
mul

t t t
tδ

= ⋅ −
−

 (13)

This further simplifies if we consider that the
broadcast starts at 0RS

broadcastt = and then RS
startt is in fact

the time elapsed after broadcast starts, under these
circumstances relation (13) becomes:

RSmul
recovery start

mul

t
t

tδ
∆ = ⋅

−
 (14)

For example after 2 years of broadcast at a
disclosure period 10δ = seconds and 674 10mult −= ×
seconds by using (14) the receiver needs recovery∆ ≈
467 seconds ≈ 8 minutes. After this computation the
receiver will need to recover every new session key
with only one modular multiplication, i.e.

674 10mult −= × seconds. This is not a great amount of
time after 2 years of broadcast in order to synchronize
the key chain of the receiver with that of the sender.
However, if this could be a problem, as an
improvement on this, the sender can refresh from time
to time its initialization information from the

registration server by renewing the initialization key
0k with some recently disclosed key ik , the

registration procedure from section 2.2 can be used for
this purpose by replacing 0k with ik and RS

broadcastt with

()RSMDT i , new receivers may use the new
initialization packet while the old initialization packet
is still correct. From both (13) and (14) it can be easily
seen that as δ increases the recovery time decreases.

2.8. Protocol description

The description of the protocol now easily follows

from the previously described procedures.
The following initialization stage is required for

both senders and receivers:

Sender: Establish the number of communication
sessions η , the value of η can be computed as

/Tη δ= where T represents the duration of the entire
transmission and δ represents the duration of the
disclosure interval. For example for 5 years of
broadcast with a key disclosed every 10 seconds we
have 1 65 365 24 60 60 10 15768000 16 10η −= ⋅ ⋅ ⋅ ⋅ ⋅ = × .
Choose two large primes p , q , such that it is
infeasible to factor p q⋅ and a random value x . Then
compute n p q= ⋅ , () () ()1 1n p qφ = − ⋅ − ,

()2 mod
0 0 modnk x n

η φ= (this can be done efficiently by
first computing ()2 mode nη φ= and then computing

0 0 modek x n=). Use the registration protocol to
establish the initialization packet

()0 ,, , , , ,RS
init broadcast id S RS SigS

P t S n k ε δ= on the registration

server. Set the time adjustment 0ξ = (see section 2.5
for details on the value of ξ).
Receiver: Use the time synchronization procedure
from section 2.3 in order to obtain an upper bound on
the time from the registration server’s side and the
initialization packet for a particular sender.

The communication stage is now described for
both senders and receivers:

Sender: At time ()1S

broadcastt i δ ξ+ − ⋅ + broadcast the

packet () (){ }1
, , , , 1,

ii i i iKD kP i M MAC M k i η
+

= = . Here

iM denotes the broadcasted message and ik denotes

the session key which is ()2 mod mod
i n

i Ak x nφ= (this
computation can be easily performed in a time-memory

tradeoff at the reduced cost of almost one modular
multiplication, see [5] for details). As a potential
improvement we also note that a sender may broadcast
more than one packet authenticated with key 1ik + until

this key expires, i.e. ()1RSMDT i + . For example it can
broadcast packets with the structure

() (){ }1, ,, , , , , , 1,
ii i j i j iKD kP i j M MAC M j k j r
+

= = , here

r is the number of messages authenticated with the
same key. ()1iKD k + is a key derivation process used
to derive the key of the MAC from the next session
key.
Receiver: If packet iP is received on time, which
means that the security condition (7) holds, then store
the message and the MAC otherwise drop them. Verify
the authenticity of each session key by checking that

()i l
i lk f k−= , here lk is the last authentic key that was

received; in the worst case if no previous authentic key
is available then use the key from the initialization
packet, i.e. 0k . If the key is authentic then use it to
verify the authenticity of the previously received
packets.

2.9. Implementation aspects

Of course the proposed protocol can be also
implemented with any other one way function, for
example a hash function. We considered that the use of
the squaring function is more suited for the addressed
scenario (a long term broadcast protocol) since chains
of unbounded length can be computed with this
function.

Implementing the discrete squaring function is not
difficult; there are many libraries which allow working
with large integers, a good example is Java BigInteger
class [15]. The disadvantage in using the squaring
function f is that this function is more computational
intensive and the size of the keys is also larger. In
order to set a more accurate point of view in tables 1
and 2 some practical results on the time requirements
of the squaring function and some hash function are
given.

We conclude that although this function is more
intensive than a hash function it is not unaffordable; a
key of 1024 bits at requirements of microseconds for
computing a key should be no great concern for many
environments. It is obvious that this function can be
successfully used in the proposed broadcast
authentication protocol and the same property of the

function that is used in [14] is also useful for the
proposed scenario.

Table 1. Time required for modular
multiplication and exponentiation (time is
expressed in seconds, exponentiation is done
for 1024 bit module and exponent)

 Table 2. Hash functions and MAC (time is
expressed in seconds)

3. Failure modes and security analysis

Security tends to have a black and white image; a

cryptographic protocol can or cannot be broken.
However, in real life, applications may fail in more
than one way, i.e. have more than one failure mode [3,
page 116]. Usually a distinction is made between two
kinds of failures: fail danger failure where the system
moves into a dangerous condition which harms other
systems and fail safe failure where the system moves to
a safe condition without harming other systems. The
proposed protocol, as well as other protocols based on
time synchronization (such as the TESLA protocol)
may fail because of clock drifts between the sender and
the registration server. However there are two distinct
situations which correspond to a fail safe failure or a
fail danger failure. In the first situation the clock of the
sender goes slower than that of the registration server,
this corresponds to a fail safe failure since the secrets
are disclosed too late when the receiver assumes that
the authentication key was already released and
therefore packets are dropped. In the second situation
the clock of the sender goes faster than that of the
registration server, this corresponds to a fail danger
failure since the keys are released earlier and packets
can be forged by an adversary. A further analysis of the
failure modes is now done. The analysis is done for a
sender and a receiver with synchronization errors

,S RSε , ,R RSε , a network delay R∆ (the time needed for
the packet to travel from the sender to the receiver) and
by RS

iRT we denote the time value at RS when S
releases packet iP . Assuming potential clock drifts

between the sender and the registration server, we can
now distinguish between five distinct intervals
according to the time value at the registration server
and the time value at the sender when the keys are
released:

a) Functional Interval. This corresponds to the
case when the keys are released in the correct time
interval: RS

iRT () (), ,
,,S RS S RS

S RSMDT i MDT i ε ∈ +  .
b) Potential Communication Failure. This is the

case when the keys are released outside the functional
interval causing potential packet drops from the
receivers (a receiver with network delay smaller than

R∆ receives packets at correct time, however the keys
are not released at the correct time): RS

iRT ∈

() ()(), ,
, ,, 1S RS S RS

S RS R R RSMDT i MDT iε ε+ + − ∆ − .
c) Communication Failure. Packets are released

too late and are certainly dropped by the receivers with
network delay higher than R∆ : RS

iRT ∈

()),
,1 ,S RS

R R RSMDT i ε + − ∆ − +∞ .
d) Potential Security Failure. Packets are

released too soon, an attacker can forge packets but if
the receiver has a network delay R∆ or higher the
attacker can not forge packets on time (forged packets
will be dropped by the receiver since they arrive too
late): RS

iRT ∈ () ()(), ,
, ,S RS S RS

R R RSMDT i MDT iε− ∆ − .
e) Security Failure. Packets are released too son,

an attacker can forge packets for any receiver with a
network delay R∆ or smaller: RS

iRT ∈

() (), ,
,,S RS S S RS

broadcast R R RSMinTV t MDT i ε − ∆ −  .

It is important to note that situations b) and c)
correspond to a fail safe failure while situations d) and
e) correspond to a fail danger failure. Now it can be
easily seen that the sender needs to keep its clock
inside the functional interval. This is reinforced by the
synchronization procedure described in section 2.5,
also in the case when , ,S RS R RSε ε< the sender can
prevent a fail danger failure but however it can enter
into a fail safe failure.

Assuming that there are no significant clock drifts
between the participants (i.e. situation a), which
implies that the keys are released in the correct time
interval) in order to break the protocol the only thing
that an attacker could do is to compute a packet

() (){ }, , ,
atti att att iKD kP i M MAC M k= where attk is the key

forged by the attacker and ()att if k k= . Assuming that
this packet arrives on time it will prove to be authentic
when packet 1iP+ containing key attk is received. If

CPU 1024 bit
module

1536 bit
module

2048 bit
module

Exponentiati
on

Intel Centrino
1.6 Ghz

74x10-6s 168x10-6 s 281x10-6s 50x10-3s

Athlon 64
2800+ 1.8 Ghz

62x10-6s 129x10-6s 223x10-6s 42x10-3s

Athlon 64
3800+ 2.4 Ghz

46x10-6s 96x10-6s 167x10-6s 32x10-3s

CPU SHA1 SHA256 SHA512 MAC
(SHA1)

Intel Centrino
1.6 Ghz

2.8x10-6s 8.5x10-6s 27x10-6s 10x10-6s

Athlon 64
2800+ 1.8 Ghz

2.4x10-6s 7.1x10-6s 25x10-6s 9.4x10-6s

Athlon 64
3800+ 2.4 Ghz

1.8x10-6s 5.3x10-6s 18.7x10-6s 6.9x10-6s

()att if k k= then attk is the square root of ik and since
the modulus is the product of two prime numbers then
there are exactly four square roots of ik . When the
sender releases the key 1ik + then 1 modi attk k n+ ≠ ± with
probability ½ and therefore with probability ½ the
attacker can factor the modulus (it is commonly known
that computing modular square roots is equivalent to
factoring). This means that if an attacker manages to
forge the scheme by computing the key attk then it can
solve the integer factorization problem, since this is
infeasible to solve the security of the protocol holds.

4. Conclusions

A new broadcast authentication protocol was

proposed. The solution is based on time
synchronization and uses the squaring function for
computing the one-way chains; this leads to the
potential use for a broadcast over a long period of time
since the length of the chain is unbounded. An analysis
of the time synchronization issues was done and the
security of the protocol is proved to be equivalent to
factoring. Also an analysis of the failure mode was
presented; this is an interesting aspect that applies to
other protocols based on time synchronization too.
This solution may be useful in assuring the authenticity
of information broadcasted over public networks such
as the Internet for long time periods. As future work
we are interested in potential applications of the
proposed solution.

Acknowledgements: This work was partially
supported by national research grant MEDC-CNCSIS
TD-122/2007.

5. References

[1] R. Anderson, F. Bergadano, B. Crispo, J.H. Lee, C.
Manifavas, R. Needham, “A New Family of Authentication
Protocols”, ACM OSR, 1998.

[2] F. Bergadano, D. Cavagnino, B. Crispo, “Individual
Authentication in Multiparty Communications”. Computer &
Security, Elsevier Science, vol. 21 n. 8, 2002, pp.719-735.

[3] Bentley, J. P., An Introduction to Reliability and Quality
Engineering, Addison Wesley, ISBN 0201331322, 216
pages, 1998.

[4] B. Groza, “Using one-way chains to provide message
authentication without shared secrets”, Second International
Workshop on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing, SecPerU 2006, IEEE, 2006.

[5] B. Groza, T.-L. Dragomir, D. Petrica, “Using the discrete
squaring function in the delayed message authentication
protocol”, International Conference on Internet Surveillance
and Protection, ICISP’06, IEEE, 2006.

[6] N. Haller, C. Metz, P. Nesser, M. Straw, “A One-Time
Password System”, RFC 2289, Bellcore, Kaman Sciences
Corporation, Nesser and Nesser Consulting, 1998.

[7] L. Lamport, “Password Authentication with Insecure
Communication”, Communication of the ACM, 24, 770-772,
1981.

[8] C. J. Mitchell, “Remote user authentication using public
information”, 9th IMA International Conference on
Cryptography and Coding, LNCS 2898, 2003, pp.360-369.

[9] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar,
“SPINS: Security Protocols for Sensor Network”,
Proceedings of Seventh Annual International Conference on
Mobile Computing and Networks MOBICOM, 2001.

[10] A. Perrig, , “The BiBa one-time signature and broadcast
authentication protocol”, Proc. of ACM Conference on
Computer and Communications Security, 2001, pp.28-37.

[11] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “The
TESLA Broadcast Authentication Protocol”, In CryptoBytes,
5:2, Summer/Fall, pp. 2-13, 2002.

[12] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “Efficient
Authentication and Signing of Multicast Streams Over Lossy
Channels”, IEEE Symposium on Security and Privacy, 2000.

[13] R. Rivest, A. Shamir, L. Adleman, „A method for
obtaining digital signatures and public-key cryptosystems”,
Communications of the ACM, 1978.

[14] L Rivest, A. Shamir, D.A. Wagner, “Time-lock puzzles
and timed-release Crypto”, available at http:// theory.
lcs.mit.edu/~rivest/publications.html.

[15] Java.sun.com: The Source for Java Developers, http://
java.sun.com/.

