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Abstract 

 
Assuring information authenticity is an important 

issue in the field of information security. A new 
broadcast authentication protocol is proposed. The 
protocol is based on time synchronization and uses 
chains constructed with the squaring function. The 
proposed solution is efficient for transmissions over 
long periods of time since the chains have an 
unbounded length. The protocol assures information 
authenticity at the reduced cost of almost one modular 
multiplication for each broadcasted packet. Time 
synchronization issues are discussed and the security 
of the protocol is equivalent to factoring since the 
squaring function is used. A failure mode analysis of 
the protocol is done; this is also an aspect of novelty 
and applies to other protocols based on time 
synchronization as well. 
 

1. Introduction and related work 
 

It is commonly acknowledged that authentication is 
one of the most important security objectives. One-way 
chains are arrays generated by the successive 
composition of a one-way function which can be 
efficiently used for assuring authentication. The first 
use of one-way chains is due to Lamport for assuring 
entity authentication [7], the S-Key system proposed 
by Haller is based on the same mechanism [6], 
however this systems is not secure [8].  

More recently one-way chains proved to be useful 
in assuring information authenticity [2], [9], [10], [11], 
[12]. Usually information authenticity is assured by 
Message Authentication Codes (MAC), however MAC 
codes introduce a disadvantage since secret shared 
keys are required. The use of elements from a one-way 
chain as keys for MAC codes proved to be a good 
solution in order to remove this disadvantage. The 
most successful proposal for assuring information 
authenticity by using one-way chains is the Timed 
Efficient Stream Loss-tolerant Authentication 

(TESLA) protocol and its several variants proposed by 
Perrig et. al. [11], [12]. All variants of this scheme rely 
on loose time synchronization, which means that the 
receivers must have an upper bound on the time from 
the side of the sender. The principle is to use a key 
which is an element of one-way chain in order to 
compute a MAC and to disclose this key only in some 
forthcoming packet, the security condition which must 
be met to make this authentication secure is the 
following: a packet arrives safely if the receiver can 
unambiguously decide based on its synchronized time 
that the sender did not yet send the key disclosure 
packet. In brief the TESLA protocol offers authenticity 
at reduced costs without involving any shared secret 
between senders and receivers. For this advantage the 
protocol was suited even in constrained environments 
such as sensor networks. Different proposals of 
authentication protocols in which elements of a one-
way chain are used as keys for MAC codes are in [2], 
[4], [5] - here an authentic confirmation is used instead 
of time synchronization. Also the CSA protocol from 
[2] has a timed variant T-CSA which is also based on 
time synchronization similar with the TESLA protocol. 
Probably the first authentication protocol based on a 
related principle is the Guy Fawkes protocol from [1]. 

In this paper we propose a new broadcast 
authentication protocol which is based on time 
synchronization and uses quadratic residue chains. The 
same loose time synchronization as in the case of the 
TESLA protocol is assumed but our proposal differs at 
the communication participants and at the construction 
of the chain. The advantage of this proposal is that it 
requires minimal interaction between senders and 
receivers, being efficient especially when there are 
many receivers, and that it can be used for broadcast 
over long periods of time since the squaring function is 
used which allows one-way chains of unbounded 
length. Also a new aspect is discussed: the presence of 
the failure modes.  

Section 2 holds our proposal; details on time 
synchronization and cryptographic construction are 



given. In section 3 we analyze the introduced protocol 
both in terms of failure modes and security. Section 4 
holds the conclusion of our paper. 
 
2. The proposed protocol 
 
2.1. Communication Participants 
 

The addressed scenario assumes the existence of 
the following participants:  a registration server and a 
number of senders and receivers (this possible setting 
has also been pointed out in [12]). Each sender 
establishes its initialization information on the 
registration server and then at some time later starts 
broadcasting authentic information. Additionally, if 
there is some clock drift between the sender and the 
registration server, the sender can synchronize again its 
time with the registration server (however this is not 
the main intention of our proposal). Each receiver 
obtains the initialization information of a particular 
sender from the registration server and then it can 
check the authenticity of the information that is 
broadcasted by that sender; we underline that except 
for receiving information that can be checked for 
authenticity there is no other interaction between 
senders and receivers. Again, to prevent clock drifts 
between receivers and the registration server; the 
receivers can synchronize their time with the 
registration server. As in the case of the TESLA 
protocol [11] only loose time synchronization is 
required which means that only an upper bound for the 
time value at the registration server is needed. The 
registration server does not have access to any private 
or secret information of senders or receivers; therefore 
it is not an unconditionally trusted entity. All that we 
request from the registration server is to be 
functionally secure, which means to behave honest. Its 
role is to provide time synchronization, to store 
sender’s initialization information and to distribute it to 
receivers. We assume that this scenario can take place 
over a long period of time; for example a sender stores 
its initialization information on the registration server 
and then starts broadcasting for five years, in all this 
period there is no need for any other interaction 
between the sender and the registration server except 
for the case when the sender needs to synchronize its 
time with the registration server. 
 
2.2. Registration of a sender on the registration 
server 

 
The objective of sender S  is to establish its 

initialization information on the registration server 
RS . This information consists in a packet 

( )0 ,, , , , ,RS
init broadcast id S RS SigS

P t S n k ε δ=  signed by S . Here 
RS
broadcastt  is the minimum time value at RS  at which S  

starts broadcasting, below it is shown how to compute 
this value, idS  is an identifier for the sender (for 
example it may be some number or an IP address), n  
is the public modulus and 0k  is the initialization key, 
δ  denotes the key disclosure period, ,S RSε  is the time 
synchronization error computed as shown below and 

SSig  denotes that the information is signed by S  (as a 
general condition we assume that all the participants of 
this scenario can verify the signature of each other). 

The registration procedure involves the following 
steps: 

 
1. S RS→ : SNonce  

2. RS S→ : ( ), , RS
RS S reg SigRS

Nonce Nonce t  

3. S RS→ : ( )0 ,, , , , , ,RS
RS broadcast id S RS SigS

Nonce t S n k ε δ  

 
Here SNonce  is a nonce used by S  in order to 

ensure that the response from RS  is not a replay of 
some old response and RSNonce  is a nonce used by 
RS  to ensure that the registration information sent by 
S  is also new, RSSig  denotes that the information is 
signed by RS . The time delay between steps 1 and 2 is 
the synchronization error ,S RSε  between S  and RS , 

i.e. ,
S S

S RS reg startt tε = − . We request for the 
synchronization error ,S RSε   to be much smaller than 
the disclosure period δ , i.e. ,S RSε δ , this is a 
natural requirement; a detailed explanation is in section 
2.4. The registration procedure is also suggested in 
figure 1. 

Now S  can estimate for any time value St  the 
minimum and maximum time value at RS  as follows: 

( ),S RS S S RS S
reg regMinTV t t t t= + −    (1) 

( ),
,

S RS S S RS S
reg reg S RSMaxTV t t t t ε= + − +  (2) 

Let S
broadcastt  be the time at which sender S  starts 

broadcasting authentic information, now the minimum 
time value at RS  when the time value at S  is S

broadcastt  
can be easily computed as 

( ),RS S RS S
broadcast broadcastt MinTV t= . We will also define the 

disclosure time for the thi  key as: 
( ) ( )1S S

broadcastDisT i t i δ= + − ⋅   (3) 



Because of the synchronization error ,S RSε , by using 
relations (1) and (2) when the time value at S  is 

( )SDisT i  the time value at the registration server is 
somewhere in the interval  

( )( ) ( )( ), ,,S RS S S RS SMinTV DisT i MaxTV DisT i 
 

; since 

this is the time at which the thi  key is released we will 
call this interval the disclosure interval for the thi  key. 
What is important is that as long as the loose time 
synchronization is preserved between S  and RS  the 

thi  key is not released sooner than: 

( ) ( )( ),RS S RS SMDT i MinTV DisT i=  

( ) ( )1RS RS
broadcastMDT i t i δ⇔ = + − ⋅  (4) 

We will call this time value the Minimal Disclosure 
Time (MDT) for the thi  key, MDT is of particular 
interest since as will be shown in the forthcoming 
sections the proposed protocol guarantees that packet 

iP   which contains a MAC computed with the 1thi +  
key can not be forged sooner than ( )1RSMDT i + . 

S
startt

S
regt

S
broadcastt

RS
regt

( )0 ,, , , , , ,RS
RS broadcast id S RS SigS

Nonce t S n k ε δ

S RS

SNonce

( ), ,RS
reg RS S SigRS

t Nonce Nonce,S RSε

,S RSε

RS
broadcastt

,
RS
broadcast S RSt ε+  

Figure 1. Registration procedure 
 

2.3. Synchronization of a receiver with the 
registration server 

 
The objective of the synchronization of a receiver 

R  with the registration server RS  is to obtain the 
initialization information of a particular sender S  and 
to achieve loose time synchronization with the 
registration server, i.e. establish an upper bound on the 
time value at RS . This will make possible for R  to 
check the authenticity of the information that is 
broadcasted by S . 

The synchronization procedure involves the 
following steps: 

 
1. R RS→ : ,id RS Nonce  

2. RS R→ : ( ), ,RS
R sync init SigRS

Nonce t P  

 
Here RNonce  is a nonce used by R  in order to 

ensure that the response from RS  is not a replay of 
some old response and idS  is the identifier of the 
particular sender from which R  wants to receive 
authentic information. The time delay between steps 1 
and 2 is the synchronization error ,R RSε  between R  

and RS , i.e. ,
R R

R RS sync startt tε = − . We will assume that 

, ,R RS S RSε ε δ+ <<  and if this condition does not hold 
the synchronization procedure must be repeated; an 
explanation for this is given in section 2.4. This 
procedure is also suggested in figure 2. 

R
startt

( ), ,RS
R sync init SigRS

Nonce t P

R RS

,id RS Nonce

,R RSε

R
synct

RS
synct

 
Figure 2. Synchronization procedure 

 
After this synchronization R  can also estimate at 

any time Rt  the minimum and maximum value for the 
time value at RS : 

( ),R RS R R RS R
sync syncMinTV t t t t= + −   (5) 

( ),
,

R RS R R RS R
sync sync R RSMaxTV t t t t ε= + − +  (6) 

Now R  can use the maximum time value at RS  in 
order to decide if packet iP  received at time R

it  which 
contains a MAC computed with the 1thi +  key is 
secure, i.e. the key used for the computation of the 
MAC was not already released. This can be verified by 
checking that: 

( ) ( ), 1R RS R RS
iMaxTV t MDT i< +  (7) 

To prevent significant clock drifts the 
synchronization procedure can be periodically repeated 
by R . 

 
2.4. The influence of the synchronization error 
on security 
 

Because of the synchronization error ,S RSε  between 
the sender and the registration server, key ik  is 
disclosed in the worst case when the time value at the 
registration server is ( )( ),S RS SMaxTV DisT i . In this 



case a receiver having synchronization error ,R RSε  with 
the registration server knows that the time value at the 
registration sever is at most 

( )( ),
,

S RS S
R RSMaxTV DisT i ε+ . Also we must take into 

account the network delay for a particular receiver R , 
i.e. the time needed for a packet to travel through the 
network from  S  to R . Of course this time may vary 
for different packets but for our purpose it is sufficient 
to have an average value. Let this delay be R∆ , now in 
order for the security condition to be verified when the 
packet arrives, we need: 

( )( ) ( ),
, 1S RS S RS

R RS RMaxTV DisT i MDT iε+ + ∆ < +

, ,S RS R RS Rε ε δ⇒ + + ∆ <    (8) 
And therefore relation (8) needs to be satisfied in 

order for the receiver to obtain authentic packets at a 
delay R∆  and synchronization errors ,S RSε , ,R RSε ; this 
is why we have requested for the synchronization 
errors to be much smaller than the key disclosure 
period. If δ  is chosen by the sender too small to 
satisfy (8) then the receiver will get only packets that 
must be dropped since the security condition (7) does 
not hold. In order to overcome this, an improvement 
that was proposed by Perrig et. al. in the case of the 
TESLA protocol [12] can be also used here: the key 
which is used to compute the MAC from packet iP  can 
be disclosed only in some later packet iP τ+  instead of 
packet 1iP+ , see [12] for details. 

 
2.5. Synchronization between a sender and the 
registration server 
 

Assuring that clock drifts between the sender and 
the registration server are negligible is critical for the 
security of the communication. In order for the security 
of the scheme to hold, the sender must ensure that at 
any time St  the time value at the registration server 
side is between the minimum and maximum values 
given in (1), (2), this is required in order to disclose the 
keys in the correct disclosure intervals. If the sender 
suspects that clock drifts between its clock and the 
registration server clock are not negligible then there 
are two possible solutions to overcome this. The first 
solution is for the sender to repeat the registration 
procedure and to commit new initialization information 
on the registration server (this means to restart the 
entire protocol), however this solution is inefficient for 
receivers that have already obtained the registration 
information of the sender. The second solution is for 
the sender to re-synchronize its time with the 
registration server. At time St  the sender can estimate 

that the time value at the registration server is between 

( ),S RS SMinTV t  and ( ),S RS SMaxTV t  by using (1), (2). 
In order to achieve a new synchronization the sender 
has to follow the synchronization procedure described 
in section 2.3. Now the sender plays the role of a 
receiver and after completing the synchronization 
procedure it can estimate that the time value at the 
registration server is between ( ),R RS RMinTV t  and 

( ),R RS RMaxTV t  by using (5), (6). We suppose that 

, ,R RS S RSε ε≤ , this is needed in order for the new 
synchronization to be more accurate than the previous 
one. Now the sender can compute a time adjustment 

( ) ( ), ,R RS R S RS SMinTV t MinTV tξ = −  (here S Rt t=  
since the sender plays the role of the receiver) and use 
this adjustment by broadcasting packets at time 

( )1S
broadcastt i δ ξ+ − ⋅ +  instead of ( )1S

broadcastt i δ+ − ⋅ . The 
case of , ,R RS S RSε ε>  should be avoided since in some 
situations the sender cannot be certain that its 
estimation is or not wrong compared to the new 
estimation (after following receiver’s registration 
procedure); also, the best thing that the sender can do is 
to ensure that packets are not released too soon by 
applying the same adjustment methodology, however 
in some situations packets may be released too late 
causing receivers to drop them. 
 
2.6. Construction of the key chain 
 

The discrete power function, i.e. ( ) modf x x nε=  
is commonly used in public key cryptography, some of 
the most prominent public key encryption schemes are 
based on this function, for example RSA [13]. 

Recently the squaring function, i.e. ( ) 2 modf x x n= , 
was proposed for creating time-lock puzzles [14] (a 
cryptographic puzzle that can be solved only after a 
predetermined amount of time). The construction from 
[14] is based on the property of the squaring function 
that exponents can be reduced modulo the order of the 
group and therefore ( ) 2 modf x x n

ηη = =  
( )2 mod modnx n

η φ= . The same property can be exploited 
in our construction for creating one-way chains of 
unbounded length. Since the value of  

( ) ( )2 mod modnf x x n
η φη =  can be easily computed by 

first computing ( )2 mode nη φ=  and then computing 

0 0 modek x n=  a one-way chain of unbounded length 
can be computed in this way (the computational 



complexity for computing a one-way chain based on a 
hash function depends linearly on the length of the 
chain while by the use of this function it depends only 
logarithmically on the length of the chain – because of 
the repeated square and multiply algorithm). Therefore 
for the proposed protocol we will define each session 
key as follows: 

( )2 mod
0 mod , 0,..

i n
ik x n i

η φ η
−

= =    (9) 
Here n  is a large composite integer which is 

infeasible to factor and ( )nφ  is the Euler totient 
function which can be computed only if the 
factorization of n  is known and 0x  is a random value 
chosen by the sender. By using this function the one-
way chain becomes a chain of quadratic residues in 

nZ . More, the elements of the one-way chain can be 
computed in a time memory trade as suggested in [5] 
and the computational time is significantly reduced to 
almost one modular multiplication. The time-memory 
trade is based on the fact that it is possible to compute 
the value of ( )if xη −  in only one modular 

multiplication if the value of  ( )1if xη − −  is known; 

indeed ( ) ( ) ( )1 1i i if x f x f xη η η− − − − −= ⋅ . Because of 
this, the chain of η  elements can be split into smaller 
chains of  λ  elements. Instead of performing one 
modular exponentiation for every element of the chain 
a smaller chain of λ  elements can be computed with 
only one modular exponentiation followed by 1λ −  
modular multiplications. 

High order of 2 in ( )nZφ  is indeed necessary for the 

security of the protocol, as pointed out in [13] one may 
choose carefully a modulus for this purpose, but still 
random values should give the desired values with 
overwhelming probability. So the use of random values 
should be safe in practice. 

Although this function is more computational 
intensive than a hash functions and its output is larger 
it has the advantage that the chains can have extreme 
lengths without influencing the computational time and 
therefore the chain can be used for a long period of  
broadcast. 
 
2.7. The verification of some key from the 
initialization key  
 

Each new key ik  must be checked for authenticity 
by the receiver, this can be easily done if the receiver 
already has the a previous authentic key lk  by 
checking that ( )i l

i lk f k−= . If a significant amount of 
time has passed from the moment when the sender has 

start broadcasting and a recent authentic key is not 
available for the receiver (in the worst case the receiver 
has only the initialization key received from the 
registration server, i.e. 0k ), since each key has to be 
computed from the previous one with one modular 
multiplication, the verification of the current session 
key may require a significant number of modular 
multiplications. We want now to establish how fast the 
receiver can synchronize its key with the sender, i.e. 
verifying the session key for the current time interval 
based on the initialization key 0k . If the receiver starts 
computations at time RS

startt  (we suppose that it has 
received key ik  of the current time interval and 
without loosing generality we take the time value at 
RS  as reference) then at some later time RSt  the 
number of verified keys is:  

( ) /RS RS
keys start mulv t t t= −    (10)  

Here mult  is the computational time required for a 
modular multiplication on the receiver side. In order to 
synchronize its key with the current session key we 
need that the number of verified keys to be equal to the 
number of keys released by the sender which is: 

 ( ) /RS RS
keys broadcastr t t δ= −   (11) 

By putting relations (10) and (11) together we get 
the following: 
 keys keysv r= RS RS RSmul

start broadcast
mul mul

tt t t
t t

δ
δ δ

⇒ = ⋅ − ⋅
− −

 (12) 

Therefore the time after which the current session 
key is verified is: 

RS RS
recovery startt t∆ = − ( )RS RSmul

start broadcast
mul

t t t
tδ

= ⋅ −
−

 (13) 

This further simplifies if we consider that the 
broadcast starts at 0RS

broadcastt =  and then RS
startt  is in fact 

the time elapsed after broadcast starts, under these 
circumstances relation (13) becomes: 

RSmul
recovery start

mul

t
t

tδ
∆ = ⋅

−
   (14) 

For example after 2 years of broadcast at a 
disclosure period 10δ = seconds and 674 10mult −= ×  
seconds by using (14) the receiver needs  recovery∆  ≈  
467 seconds ≈  8 minutes. After this computation the 
receiver will need to recover every new session key 
with only one modular multiplication, i.e. 

674 10mult −= ×  seconds. This is not a great amount of 
time after 2 years of broadcast in order to synchronize 
the key chain of the receiver with that of the sender. 
However, if this could be a problem, as an 
improvement on this, the sender can refresh from time 
to time its initialization information from the 



registration server by renewing the initialization key 
0k  with some recently disclosed key ik , the 

registration procedure from section 2.2 can be used for 
this purpose by replacing 0k  with ik  and RS

broadcastt  with 

( )RSMDT i , new receivers may use the new 
initialization packet while the old initialization packet 
is still correct. From both (13) and (14) it can be easily 
seen that as δ  increases the recovery time decreases. 
 
2.8. Protocol description 

 
The description of the protocol now easily follows 

from the previously described procedures. 
The following initialization stage is required for 

both senders and receivers: 
 

Sender: Establish the number of communication 
sessions η , the value of η  can be computed as 

/Tη δ=  where T  represents the duration of the entire 
transmission and δ  represents the duration of the 
disclosure interval. For example for 5 years of 
broadcast with a key disclosed every 10 seconds we 
have 1 65 365 24 60 60 10 15768000 16 10η −= ⋅ ⋅ ⋅ ⋅ ⋅ = × . 
Choose two large primes p , q , such that it is 
infeasible to factor p q⋅  and  a random value x . Then 
compute n p q= ⋅ , ( ) ( ) ( )1 1n p qφ = − ⋅ − , 

( )2 mod
0 0 modnk x n

η φ=  (this can be done efficiently by 
first computing ( )2 mode nη φ=  and then computing 

0 0 modek x n= ). Use the registration protocol to 
establish the initialization packet 

( )0 ,, , , , ,RS
init broadcast id S RS SigS

P t S n k ε δ=  on the registration 

server. Set the time adjustment 0ξ =  (see section 2.5 
for details on the value of ξ ). 
Receiver: Use the time synchronization procedure 
from section 2.3 in order to obtain an upper bound on 
the time from the registration server’s side and the 
initialization packet for a particular sender.  
 

The communication stage is now described for 
both senders and receivers: 

 
Sender: At time ( )1S

broadcastt i δ ξ+ − ⋅ +  broadcast the 

packet ( ) ( ){ }1
, , , , 1,

ii i i iKD kP i M MAC M k i η
+

= = . Here 

iM  denotes the broadcasted message and ik  denotes 

the session key which is ( )2 mod mod
i n

i Ak x nφ=  (this 
computation can be easily performed in a time-memory 

tradeoff at the reduced cost of almost one modular 
multiplication, see [5] for details). As a potential 
improvement we also note that a sender may broadcast 
more than one packet authenticated with key 1ik +  until 

this key expires, i.e. ( )1RSMDT i + . For example it can 
broadcast packets with the structure 

( ) ( ){ }1, ,, , , , , , 1,
ii i j i j iKD kP i j M MAC M j k j r
+

= = , here 

r  is the number of messages authenticated with the 
same key. ( )1iKD k +  is a key derivation process used 
to derive the key of the MAC from the next session 
key. 
Receiver: If packet iP  is received on time, which 
means that the security condition (7) holds, then store 
the message and the MAC otherwise drop them. Verify 
the authenticity of each session key by checking that 

( )i l
i lk f k−= , here lk  is the last authentic key that was 

received; in the worst case if no previous authentic key 
is available then use the key from the initialization 
packet, i.e. 0k . If the key is authentic then use it to 
verify the authenticity of the previously received 
packets. 
 
 
2.9. Implementation aspects 
 

Of course the proposed protocol can be also 
implemented with any other one way function, for 
example a hash function. We considered that the use of 
the squaring function is more suited for the addressed 
scenario (a long term broadcast protocol) since chains 
of unbounded length can be computed with this 
function.  

Implementing the discrete squaring function is not 
difficult; there are many libraries which allow working 
with large integers, a good example is Java BigInteger 
class [15]. The disadvantage in using the squaring 
function f  is that this function is more computational 
intensive and the size of the keys is also larger. In 
order to set a more accurate point of view in tables 1 
and 2 some practical results on the time requirements 
of the squaring function and some hash function are 
given. 

We conclude that although this function is more 
intensive than a hash function it is not unaffordable; a 
key of 1024 bits at requirements of microseconds for 
computing a key should be no great concern for many 
environments. It is obvious that this function can be 
successfully used in the proposed broadcast 
authentication protocol and the same property of the 



function that is used in [14] is also useful for the 
proposed scenario. 

Table 1. Time required for modular 
multiplication and exponentiation (time is 
expressed in seconds, exponentiation is done  
for 1024 bit module and exponent) 

 

 Table 2. Hash functions and MAC (time is 
expressed in seconds) 

 
3. Failure modes and security analysis 

 
Security tends to have a black and white image; a 

cryptographic protocol can or cannot be broken. 
However, in real life, applications may fail in more 
than one way, i.e. have more than one failure mode [3, 
page 116]. Usually a distinction is made between two 
kinds of failures: fail danger failure where the system 
moves into a dangerous condition which harms other 
systems and fail safe failure where the system moves to 
a safe condition without harming other systems. The 
proposed protocol, as well as other protocols based on 
time synchronization (such as the TESLA protocol) 
may fail because of clock drifts between the sender and 
the registration server. However there are two distinct 
situations which correspond to a fail safe failure or a 
fail danger failure. In the first situation the clock of the 
sender goes slower than that of the registration server, 
this corresponds to a fail safe failure since the secrets 
are disclosed too late when the receiver assumes that 
the authentication key was already released and 
therefore packets are dropped. In the second situation 
the clock of the sender goes faster than that of the 
registration server, this corresponds to a fail danger 
failure since the keys are released earlier and packets 
can be forged by an adversary. A further analysis of the 
failure modes is now done. The analysis is done for a 
sender and a receiver with synchronization errors 

,S RSε , ,R RSε , a network delay R∆  (the time needed for 
the packet to travel from the sender to the receiver) and 
by RS

iRT  we denote the time value at RS  when S  
releases packet iP . Assuming potential clock drifts 

between the sender and the registration server, we can 
now distinguish between five distinct intervals 
according to the time value at the registration server 
and the time value at the sender when the keys are 
released: 

a) Functional Interval.  This corresponds to the 
case when the keys are released in the correct time 
interval: RS

iRT ( ) ( ), ,
,,S RS S RS

S RSMDT i MDT i ε ∈ +  . 
b) Potential Communication Failure. This is the 

case when the keys are released outside the functional 
interval causing potential packet drops from the 
receivers (a receiver with network delay  smaller than 

R∆  receives packets at correct time, however the keys 
are not released at the correct time): RS

iRT  ∈  

( ) ( )( ), ,
, ,, 1S RS S RS

S RS R R RSMDT i MDT iε ε+ + − ∆ − . 
c) Communication Failure. Packets are released 

too late and are certainly dropped by the receivers with 
network delay higher than R∆ :  RS

iRT  ∈  

( ) ),
,1 ,S RS

R R RSMDT i ε + − ∆ − +∞ . 
d) Potential Security Failure.  Packets are 

released too soon, an attacker can forge packets but if 
the receiver has a network delay R∆  or higher the 
attacker can not forge packets on time (forged packets 
will be dropped by the receiver since they arrive too 
late): RS

iRT ∈ ( ) ( )( ), ,
, ,S RS S RS

R R RSMDT i MDT iε− ∆ − . 
e) Security Failure. Packets are released too son, 

an attacker can forge packets for any receiver with a 
network delay R∆  or smaller: RS

iRT  ∈  

( ) ( ), ,
,,S RS S S RS

broadcast R R RSMinTV t MDT i ε − ∆ −  . 

It is important to note that situations b) and c) 
correspond to a fail safe failure while situations d) and 
e) correspond to a fail danger failure. Now it can be 
easily seen that the sender needs to keep its clock 
inside the functional interval. This is reinforced by the 
synchronization procedure described in section 2.5, 
also in the case when , ,S RS R RSε ε<  the sender can 
prevent a fail danger failure but however it can enter 
into a fail safe failure. 

Assuming that there are no significant clock drifts 
between the participants (i.e. situation a), which 
implies that the keys are released in the correct time 
interval) in order to break the protocol the only thing 
that an attacker could do is to compute a packet 

( ) ( ){ }, , ,
atti att att iKD kP i M MAC M k=  where attk  is the key 

forged by the attacker and ( )att if k k= . Assuming that 
this packet arrives on time it will prove to be authentic 
when packet 1iP+  containing key attk  is received. If 

CPU 1024 bit 
module 

1536 bit 
module 

2048 bit 
module 

Exponentiati
on 

Intel Centrino 
1.6 Ghz 

74x10-6s 168x10-6 s 281x10-6s  50x10-3s  

Athlon 64 
2800+ 1.8 Ghz 

62x10-6s 129x10-6s 223x10-6s 42x10-3s 

Athlon 64 
3800+ 2.4 Ghz 

46x10-6s 96x10-6s 167x10-6s 32x10-3s 

CPU SHA1 SHA256 SHA512 MAC 
(SHA1) 

Intel Centrino 
1.6 Ghz 

2.8x10-6s  8.5x10-6s  27x10-6s  10x10-6s  

Athlon 64 
2800+ 1.8 Ghz 

2.4x10-6s 7.1x10-6s 25x10-6s 9.4x10-6s 

Athlon 64  
3800+ 2.4 Ghz 

1.8x10-6s  5.3x10-6s  18.7x10-6s  6.9x10-6s  



( )att if k k=  then attk  is the square root of ik  and since 
the modulus is the product of two prime numbers then 
there are exactly four square roots of ik . When the 
sender releases the key 1ik +  then 1 modi attk k n+ ≠ ±  with 
probability ½ and therefore with probability ½ the 
attacker can factor the modulus (it is commonly known 
that computing modular square roots is equivalent to 
factoring). This means that if an attacker manages to 
forge the scheme by computing the key attk  then it can 
solve the integer factorization problem, since this is 
infeasible to solve the security of the protocol holds. 
 
4. Conclusions 

 
A new broadcast authentication protocol was 

proposed. The solution is based on time 
synchronization and uses the squaring function for 
computing the one-way chains; this leads to the 
potential use for a broadcast over a long period of time 
since the length of the chain is unbounded. An analysis 
of the time synchronization issues was done and the 
security of the protocol is proved to be equivalent to 
factoring. Also an analysis of the failure mode was 
presented; this is an interesting aspect that applies to 
other protocols based on time synchronization too. 
This solution may be useful in assuring the authenticity 
of information broadcasted over public networks such 
as the Internet for long time periods. As future work 
we are interested in potential applications of the 
proposed solution. 
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