
LiBrA-CAN: a Lightweight Broadcast Authentication
protocol for Controller Area Networks

Bogdan Groza1, Stefan Murvay1, Anthony van Herrewege2 and Ingrid Verbauwhede2

1 Faculty of Automatics and Computers, Politehnica University of Timisoara,
{bogdan.groza, pal-stefan.murvay}@aut.upt.ro

2 ESAT/COSIC - IBBT, KU Leuven, Belgium,
{anthony.vanherrewege, ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Security in vehicular networks established itself as a highly active re-
search area in the last few years. However, there are only a few results so far
on assuring security for communication buses inside vehicles. Here we advocate
the use of a protocol based entirely on simple symmetric primitives that takes
advantage of two interesting procedures which we call key splitting and MAC
mixing. Rather than achieving authentication independently for each node, we
split authentication keys between groups of multiple nodes. This leads to a more
efficient progressive authentication that is effective especially in the case when
compromised nodes form only a minority and we believe such an assumption to
be realistic in automotive networks. To gain more security we also account an
interesting construction in which message authentication codes are amalgamated
using systems of linear equations. We study several protocol variants which are
extremely flexible allowing different trade-offs on bus load, computational cost
and security level. Experimental results are presented on state-of-the-art Infineon
TriCore controllers which are contrasted with low end controllers with Freescale
S12X cores, all these devices are wide spread in the automotive industry. Finally,
we discuss a completely backward compatible solution based on CAN+, a recent
improvement of CAN.

1 Motivation and related work

Vehicular network security established itself as an intense research topic in the last few
years. Remarkable research papers from Koscher et al. [7] and later Checkoway et al. [4]
showed vehicles to be easy targets for malicious adversaries.

While most of previous research was focused on vehicle to vehicle and vehicle to in-
frastructure communication there seem to be only a few results for assuring security on
communication buses inside vehicles. There are several reasons behind this. First, the
relevance of security inside vehicles was decisively shown only in the last two years [7],
[4]. Second, the design principles used by manufacturers are somewhat out of reach for
the academic community, being hard in this way to understand many assertions behind
protocol design. Third, which is relevant for our research here, intra-vehicle commu-
nication is subject to constraints and specifications that are quite different from other
well studied protocols. Most of the approaches advocate the use of secure gateways
between different ECUs (Electronic Control Unit) or subnetworks [1], [13] and rely on

basic building blocks from cryptography (encryptions, signatures, etc.). However, none
of these approaches is meant specifically for assuring broadcast authentication on CAN
which is still the most common communication bus in automotives.

In this respect two main results in assuring CAN security can be found so far, one
of them is based on the well known TESLA protocol [6] and the other proposes a new
paradigm which closely follows CAN specifications [12]. Van Herrewege et al. [12] de-
sign their protocol from scratch and clearly note that the constraints of CAN ”eliminate
all the authentication protocols published so far”. We do agree with this conclusion in
the sense that we believe that standard authentication approaches, may cover only some
of the application areas for CAN and new approaches (even non-standard) are needed.

Previous proposals. TESLA like protocols proved to be highly effective in sensor
networks [10], [9] and so far are the most efficient alternative for assuring broadcast
authentication with efficient Message Authentication Codes (MAC). However, when
it comes to CAN bus, this protocol family has one drawback that is critical for auto-
motives: delays, which by the nature of TESLA are unavoidable. The main purpose
of the work in [6] is to determine a lower bound on these delays. Delays in the order
of milliseconds or below, as shown to be achievable in [6], are satisfactory for many
scenarios, but such delays do not appear to be small enough for intra-vehicle commu-
nication. There is no obvious way to improve on these delays further. Of course one
alternative is in using a bus with a higher throughput, more computational power and
better electronic components (e.g., oscillators) but this will greatly increase the cost
of components, nullifying in this way the cost effectiveness of CAN. CANAuth [12]
is a protocol that has the merit to follow in great detail the specifications of CAN, its
security is specifically designed to meet the requirements of the CAN bus. In particu-
lar, CANAuth is not intended to achieve source authentication as the authentication is
binded to the message IDs and messages may originate from different sources which
will be impossible to trace. This fits the specification of CAN which has a message
oriented communication. However, a first issue is that the number of CAN IDs is quite
high, in the order of hundreds (11 bits) or even millions in the case of extended frames
(29 bits) and storing a key for each possible ID does not seem to be so practical. For
this purpose, in [12] a clever solution is imagined: the keys are linked with acceptance
codes and masks, which fortunately are not numerous. But still, this leads to some secu-
rity concerns as we discuss next. Traditionally, keys are associated to entities to ensure
that they are not impersonated by adversaries, but the effect of associating keys to mes-
sages is less obvious. For example, any external tool (assume On-Board Diagnostics
(OBD) tools which are wide spread) that is produced by external third parties will have
to embed the keys associated for each ID that it sends over or even just listens on CAN.
It is thus unclear which keys can be shared with different manufacturers and how or
what are the security outcomes for this. Obviously, if a third party device, even an in-
nocuous one designed just as passive receiver, is easier to compromise then all the IDs
which it was allowed to send or just receive are equally compromised.

Our proposal. We take advantage of a progressive authentication mechanism, by
which only a few bits of the MAC are revealed in each packet to each verifier, and each
part of the MAC can be verified by more than one receiver. To achieve this flexible
authentication mechanism we base our proposal on two paradigms: key splitting and

MAC mixing, the later being an optional procedure to increase security by allowing
any node to detect a potential forgery.

Key splitting allows a higher entropy for each mixed MAC that is sent at the cost
of loosing some security for groups that contain malicious nodes. In scenarios with
high number of nodes, an adversarial majority will be required to break the protocol,
while if there are fewer adversarial nodes, the security level is drastically increased.
Consequently, this appears to give a flexible and efficient trade-off. This procedure is not
new, similar techniques were proposed in the past in the context of broadcast encryption.
We could trace this back up to the work of Fiat and Naor [5] but there is a high amount
of papers on this subject. However, the constraints of our application in CAN networks
are entirely different from related work where this procedure was suggested or used
in scenarios such as sensor networks [2], pay-tv [8], etc. The main idea behind such
schemes is that groups of k corrupted receivers cannot learn the secret (in settings with
n > k users).

In addition to this we exhibit a distinct contribution in the construction of Linearly
Mixed MACs which allow us to amalgamate more authentication codes in one via a
system of linear equations. This construction has the advantage that if one of the MACs
is wrong then this will affect all other MACs and thus the mixed MAC will fail to verify
on any of the multiple keys. This increases the chance of a forgery being detected and
ultimately it increases the reliability in front of benign nodes that are in possession of
a wrong key. To best of our knowledge this procedure is new. The closest work that we
could find are the multi-verifier signatures proposed by Roeder et al. [11]. In their work,
linear systems of equations are used as well upon message authentication codes but the
security properties and goals of their construction are different.

These procedures allow us to design a protocol that is more flexible and efficient.
For our setting we assume a reduced number of participants. While indeed ECUs in-
side cars come from different manufacturers which may or may not be trustworthy, we
believe that suspicious ECUs should be limited in number, since the potential insertion
of a trapdoor in some component will discredit the public image of the manufacturer
too much and it appears to be little or no benefit for this. More, ECUs coming from the
same manufacturer should be trustworthy with each other and can use the same shared
key (randomly generated at runtime for each (sub)network that they are part of). In this
way the number of actual keys needed to assure broadcast security should be more lim-
ited than it appears to be on a first sight. In our design we try to take advantage of this
assumption, and our approach is more efficient in the case when compromised nodes
form only a minority.

2 The Protocol

We begin with a brief overview of the CAN protocol followed by a description of the
frame structure employed in our protocol. Then we outline the main authentication
scheme which builds upon keys shared between groups of receivers, a procedure which
we call key splitting. Further, we discuss some variations of the main scheme that can
be used for different trade-offs. Subsequently we introduce a construction which we
call Linearly Mixed MAC (LM-MAC) which gives additional security benefits.

2.1 Overview of the CAN protocol

Controller Area Network (CAN) is a broadcast serial bus. The typical topology consists
of a differential bus which connects multiple nodes by two wires (called CAN-H and
CAN-L). This is also suggested in Figure 3 which is related to the main version of
our protocol. To avoid collisions an arbitration based on message identifiers (29 bits in
extended frames and 11 bits in standard frames) is used. Each CAN frame begins with a
start bit and is followed by the arbitration field, a control field (6 bits), data bits (0-64),
CRC sequence (15 bits), a 2 bit acknowledgment and 7 bits that mark the end of the
frame. Additional stuffing bits (distinct in value to the previous bit) are added after each
6 consecutive bits of identical value. This structure is suggested in Figure 1.

Start of Frame

Arbitration

Control

Data Field

(at most 64 bits)

End of Frame

ACK

CRC

IFS IFS

CAN Frame

Fig. 1. Structure of a CAN frame

2.2 Frame structure

As a general procedure, we separate between frames that carry messages and frames that
carry authentication tags. This seems to be a correct option due to a widely employed
CAN mechanism which is ID filtering that is used to restrict certain frames to arrive to
a particular node. While we do want to keep this feature, we want the node to be able
to carry additional authentication tasks, e.g., in the case of the two-stage authentication
discussed further, a reason for which we intend for the authentication frames to be able
to reach the node and thus they may need to have a different ID than the message frame.
The last bit of the identifier field specifies whether a frame carries an authentication tag
or message. This procedure is employed in our experimental setup while in section
4 we discuss a backward compatible solution which can embed all the authentication
information inside the message.

Larger data blocks or authentication tags can be split across multiple frames with the
same ID field and counter. Other adjustments can be done at the implementation level.
For example, since the ID field is quite short, both the node and window identifiers
(which denote the source and the number of the authentication frame) can be moved in
the data field. We preferred to place these identifiers in the ID field since it is a frequent
choice of developers to place a unique ID for each node in the CAN ID field. But indeed,
such an option can affect real-time requirements and for this purpose placing these IDs
in the data field is safer. The size of the counter c could be roughly around 20–40 bits

stag1tag

ID Field (11 or 29 bit)

mesid
nodeid winid c mData Frame

Authentication Frame

Data Field (at most 64 bits)

Data Field (at most 64 bits)ID Field (11 or 29 bit)

mesid
nodeid winid c

1

0

Fig. 2. Data frames and authentication frames

but this greatly depends on the bus speed (which determines the number of packets
released each second).

2.3 The main scheme: centralized authentication

A master oriented communication makes sense since it is practical to have one node
with higher computational power that can take care of the most intensive part of the
authentication. Figure 3 shows the master node and the slave nodes connected to the bus,
it also outlines the keys that are shared between nodes. For the key sharing procedure,
all slaves register to the master which distributes the keys.In practice associating nodes
to a group and sharing the keys is done by standard techniques, e.g., key-exchange
protocols, we do not insist on this since such issues are straight-forward to solve.

4 12μC

CAN-H

CAN-L

μC
9

10

12







μC
5

6

12







μC
3

6

10







μC
3

5

9







8

1

2

3

4

5











6

8

9

10

12











Fig. 3. Master and slave microcontrollers (µC) in a setting for centralized authentication

In the main scheme we make use of Mixed Message Authentication Codes (M-MAC)
which amalgamate more MACs into one. Here we give an abstract definition for this
construction while in a forthcoming section we provide a more elaborate instance with
additional security properties. Indeed, the easiest way to build an M-MAC is simply
by concatenating multiple tags, such a construction is fine for our protocol and can

be safely embodied in the main scheme (still, we can achieve more security with the
LM-MAC introduced in an upcoming section).

Construction 1. (Mixed Message Authentication Code) A mixed message authenti-
cation code M-MAC is a tuple (Gen,Tag,Ver) of probabilistic polynomial-time algo-
rithms such that:

1. K ← Gen(1`, s) is the key generation algorithm which takes as input the security
parameter ` and set size s then outputs a key set K = {k0, k1, ..., ks} of s keys,
2. τ ← Tag(K,M) is the MAC generation algorithm which takes as input the key set K
and message tuple M = (m0,m1, ...,ms) where each mi ∈ {0, 1}∗ then outputs a tag
τ (whenever needed, to avoid ambiguities on the message and key, we use the notation
M-MACK(M) to depict this tag),
3. v ← Ver(k ,m, τ) is the verification algorithm which takes as input a key k ∈ K, a
message m ∈ {0, 1}∗ and a tag τ and outputs a bit v which is 1 if and only if the tag is
valid with respect to the key k , otherwise the bit v is 0. For correctness we require that
if k ∈ K and m ∈M then 1← Ver(k ,m,Tag(K,M)).

The centralized scheme is summarized by the next construction. For simplicity of
the exposition, since the main scheme is used to authenticate the same message to all
nodes (rather than authenticate a tuple of messages as in the cummulative authentication
scheme), we replace M with a simple array that points out the values that are authenti-
cated, e.g., idnode , idwin , c,m , etc. Obviously in this case the M-MAC receives as input
a message tuple of s identical messages.

Construction 2. (Centralized Authentication) Given a mixed message authentica-
tion code algorithm M-MAC for some security parameter `, size s and a group of n
nodes, we define protocol CN-CAN-LiBrAM,S∗(M-MAC, `, s, n, b, w) as the following
set of actions for the masterM:

1. Setup(`, n, s) on which masterM generates all subsets of s slaves out of n slaves,
let t =

(
n
s

)
be the number of subsets, and randomly picks t keys, each of ` bits, then

places them in the keyset KM = {k1, k2, ..., kt}. Subsequently masterM uses a secure
channel to send each node the corresponding keys (alternatively these keys can be dis-
tributed in an off-line manner). Let Ki

S = {k1, k2, ..., kt′} with t′ =
(
n−1
s−1
)

denote the
key set received by each slave S.
2. RecMes(idnode , idwin , c,m) on which masterM receives a data frame containing
message m from slave S checks if the counter is up-to-date then stores the packet in a
queue of messages to be authenticated.
3. RecTag(idnode , idwin , c,M-MACKi

S
(idnode , idwin , c,m)) on which master M re-

ceives an authentication frame containing tag M-MACKi
S
(idnode , idwin , c,m) from

slave S. Further, he retrieves the packet matching the identifiers and counter from the
queue and if the message proves to be authentic, i.e., 1← Ver((idnode , idwin , c,m), k ,
M-MACKi

S
(idnode , idwin , c,m)), ∀k ∈ Ki

S , he proceeds to authenticating the tag to
other nodes with SendTag(idnode , idwin ,m,Ki). If the message is not available in the
queue then the tag is discarded (subsequently an error message can be sent).
4. SendTag(idnode , idwin ,m,Ki) on which masterM after receiving a message and
its valid tag, groups all the remaining keys KM \ Ki

S in sets of size v then for each

such set K̃j
S computes M-MACK̃j

S
(idnode , j,m) and broadcasts it in authentication

frames with node identifier idnode and window identifier set to j (obviously there are
|KM \Ki

S |/v windows).

and for each of the slaves S∗:

1. Setup(`, n, s) on which slave Si obtains its key set Ki
S = {k1, k2, ..., kt′} with t′ =(

n−1
s−1
)

from masterM (either offline or via a secure channel).
2. RecMes(idnode , idwin , c,m) on which slave S receives a data frame containing
message m from another slave Sj and proceeds similarly to master M by storing it
in a queue of messages to be authenticated.
3. RecTag(idnode , idwin , c,M-MACKj

S
(idnode , idwin , c,m)) on which Si receives an

authentication frame containing tag M-MACKi
S
(idnode , idwin , c,m)) from the master

M or another slave Sj and verifies for all keys k ∈ Ki ∩Kj if the tag is correct. If for
all keys in its keyset a correct tag was received
then message m is deemed authentic.
4. SendMes(m,Ki) on which slave Si whenever wants to broadcast a message m in-
crements its local counter, computes the tag M-MACKi

S
(idnode , 0, c,m) with its keyset

Ki and sends the data frame containing m and an authentication frame containing the
tag on the bus (note that in the case of slaves idwin is set to 0).

Example 1. The key allocation done by the Setup procedure allows the keys to be
split between groups of n slaves. Here we clarify our intentions with the key splitting
procedure by giving an example. Table 1 shows the groups that can be formed in the
case of 4 nodes. If we consider groups formed by exactly 2 nodes we have

(
4
2

)
= 6

groups and each two nodes share exactly
(
2
0

)
= 1 group. Table 1 outlines the groups

shared by S1, i.e., G9, G10, G12, and those shared by S2, i.e., G5, G6, G12. Note that
they intersect in one group G12. In Table 2 the case of n = 4 and n = 8 nodes are
explored, with complete groups of all sizes k and any number of corrupted nodes l. The
total number of groups and the subgroup shared by each node as well as the percentage
of secure bits, i.e., bits that cannot be forged by an adversary, from each M-MAC are
outlined. Indeed, the percent of authenticated bits from each tag is higher and decreases
significantly with the number of corrupted nodes.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

S1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1. Possible groups with 4 nodes, groups of size 2 outlined in gray

Authentication bits from one M-MAC (%)
n k groups sub-groups l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

4 1 4 1 25 25 25 25 - - - -
4 2 6 3 50 33 33 16 - - - -
4 3 3 75 25 0 0 - - - -
8 1 8 1 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
8 2 28 7 25 21 17 14 10 7 3.5 0
8 3 56 21 37.5 26 17 10 5 1.7 0 0
8 4 70 35 50 28 14 5 1.4 0 0 0
8 5 56 35 62 26 8.9 1.7 0 0 0 0
8 6 28 21 75 21 3.5 0 0 0 0 0
8 7 8 7 87 12.5 0 0 0 0 0 0

Table 2. Authentication rate in the case of n = 4, 8 participants, groups of size k and l corrupted
nodes

2.4 Variations of the main scheme: two-stage and cumulative authentication

For practical reasons we discuss two variations of the main scheme. In the experimental
results section, the first variation is shown to have certain advantages in front of the
main scheme for scenarios when nodes have equal computational power.

In the case of two-stage authentication we assume a scenario in which only slave
nodes are present, i.e., nodes with equal computational power. In this case each node
can start broadcasting by sending a tag which includes only a part of the keys for the
subgroups that he is part of and a second slave (pointed out by some flag, or predefined
in protocol actions) continues with the authentication. The procedure is repeated until
the desired number of authentication frames is reached. Various ways for tag allocation
can be imagined. Consider the case of 8 nodes in subgroups of size 3 and 4 authenti-
cation frames (codenamed TS-8S3F4). If M-MACs are used then these can be set up
to work in GF (216) or GF (232). Subsequently each node sends an M-MAC with keys
for 4 of the nodes (or 2 in case GF (232)) and the nodes reply in a round-robin fashion
(note that a frame carries at most 64 bits). To save some computational power and have
even more flexibility in tag allocation it is also possible to skip the use of the M-MAC.
In Table 3 we give an example for this case. Each row corresponds to one of the 8 slaves
and each column to one of the 56 groups that are formed with 3 slaves, × is used as
placeholder to denote that a node is part of a group. Here f ij denotes the j-th part of
frame i and the authentication is started by slave S1 with frame f1∗ followed by S2 with
f2∗ then again S1 with f3∗ but this time followed by S3 with f4∗ (here ∗ is a placeholder
for any of the frame components). We can set the size of each tag in f2∗ and f2∗ to 16
bits and for f1∗ and f3∗ use around 5-7 bits for each tag. This will result in a security
level of around 64 bits for each node.

Since in some scenarios small delays may be acceptable, we can take benefit of
them and increase the efficiency of the main scheme. In the cumulative authentication
scheme a timer can be used and all messages are accumulated by the master over a
predefined period δ then authenticated at once (this procedure can be employed in the

slave-only settings as well). While this introduces an additional delay δ, similar to the
case of the TESLA protocol, this delay can be chosen as small as needed to cover appli-
cation requirements. Different to the case of the delay from TESLA like protocols, this
delay is not strongly constrained by external parameters (such as oscillator precision,
synchronization error, bus speed, etc.).

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10G11G12G13G14G15G16G17G18G19G20G21G22G23G24G25G26G27G28
S1 f1

1 f1
2 f1

3 f1
4 f1

5 f1
6 f1

7 f1
8 f1

9 f1
10 f3

1 f3
2 f3

3 f3
4 f3

5 f3
6 f3

7 f3
8 f3

9 f3
10 f3

11
S2 × × × × × × f2

1 f2
2 f2

3 f2
4 × × ×

S3 × × × × × × × × × × ×
S4 × × × × × × × × ×
S5 × × × × × × × ×
S6 × × × × × × × ×
S7 × × × × × × ×
S8 × × × × × × ×

G29G30G31G32G33G34G35G36G37G38G39G40G41G42G43G44G45G46G47G48G49G50G51G52G53G54G55G56
S1
S2 × × × × × × × ×
S3 f4

1 f4
2 f4

3 f4
4 × × × × × ×

S4 × × × × × × × × × × × ×
S5 × × × × × × × × × × × × ×
S6 × × × × × × × × × × × × ×
S7 × × × × × × × × × × × × × ×
S8 × × × × × × × × × × × × × × ×

Table 3. Example of tag scheduling with two-stage authentication TS-8S2F4 (8 nodes with
groups of size 3)

2.5 Increasing security with LM-MACs (Linearly Mixed MACs)

As outlined in our abstract description, M-MACs use an array of keys to build a tag
which is verifiable by any of the keys. The first security property which we require
for an M-MAC is unforgeability and is a standard property for any MAC code, thus it
merely derives from the main building block. We do develop on this by requiring a new
property which we call strong non-malleability and which we show to be achievable by
our more advanced LM-MAC construction.

Construction 3. (Linearly Mixed MAC) We define the LM-MAC as the tuple of prob-
abilistic polynomial-time algorithms (Gen,Tag,Ver) that work as follow:
1. K ← Gen(1`, s) is the key generation algorithm which flips coins and returns a key
set K = {k0, k1, ..., ks} where each key has ` bits (` is the security parameter of the
scheme),
2. τ ← Tag(K,M) is the mac generation algorithm which returns a tag τ = {x1, x2,
..., xs} where each xi is the solution of the following linear system in GF (2b):


KD1(k1,m1) · x1 + KD2(k1,m1) · x2 + ...+ KDs(k1,m1) · xs ≡ MACk1(m1)

KD1(k2,m2) · x1 + KD2(k2,m2) · x2 + ...+ KDs(k2,m2) · xs ≡ MACk2(m2)

...

KD1(ks,ms) · x1 + KD2(ks,ms) · x2 + ...+ KDs(ks,ms) · xs ≡ MACks(ms)

Here b is polynomial in the security parameter ` and KD stands for a key derivation
process. If such a solution does not exist, then the M-MAC algorithm fails and returns
⊥.
3. v ← Ver(k ,m, τ) is the verification algorithm which returns 1 if and only if having
τ ′ = MACk (m) it holds τ ′ ≡ KD1(k ,m) ·x1+KD2(k ,m) ·x2+ ...+KDs(k ,m) ·xs.
Otherwise it returns 0.

Let us emphasize that the probability that the M-MAC fails to return a solution is
negligible in the security parameter (if proper b and s are chosen). As shown in [3] the
probability that an n by n matrix with random elements from GF (q) is non-singular
converges to

∏∞
i=1(1 − 1/qi) as n → ∞. For example in case when s = 4 we have a

chance of around 10−5 for b = 16 and 10−10 for b = 32 for the M-MAC to fail.
Example 2. We want to clarify here our intentions on M-MACs with respect to the

protocol design. Consider a case when master M broadcasts messages m1 and m2 to
slaves S1, S2 along with the authentication tag. To increase efficiency of our protocol
we want to authenticate both messages with the same mixed MAC and more, since
only a portion of each tag is disclosed (reducing the bus overhead but also the secu-
rity level), we want one of the slaves to be able to carry out the authentication further
with a new part of a valid tag (note that this is what happens in the case of the two-
stage authentication). Consider that the following packets arrive on the bus: message
m1, message m2 and the mixed tag obtained by simply concatenating the two tags
MACk1(m1)||MACk2(m2). However, due to the message filtering of the CAN bus it
may be that the two messages do not reach both slaves. Assume message m1 reaches
S1 and m2 reaches S2. Now neither S1 or S2 can carry the authentication further, even
in the case when they both have k1 and k2 they are not in possession of the message that
reached the other slave and thus they can not validate the other part of the tag. More rel-
evant, note that the nodes are unable to detect if the other part of the tag is compromised.
Now consider the case of the LM-MAC. In this case the tag is obtained by mixing the
two tags via the linear equation system, e.g., the two components of the tag x1, x2 verify
a relation of the form α1x1 + α2x2 = MACk1

(m1) and β1x1 + β2x2 = MACk2
(m2)

(here α’s and β’s are derived from the secret keys k1, k2). If an adversary compromises
any part of the tag, i.e., either x1 or x2, then both equations will fail to verify and any of
the receivers can detect this (indeed, we assume that the adversary is not in possession
of the secret keys k1 and k2 since in such case he can compute correct LM-MACs any-
way). Consequently, with the LM-MACs any of them can check the tag for correctness
and this validation will also hold for the other receiver, this is inherited from the strong
non-malleability property for M-MACs.

We now sketch a more formal account of the properties that we require for our
building blocks. These are mediated by two attack games against unforgeability, i.e.,
GameUFM-MAC, and strong non-malleability, i.e., GameSNMM-MAC. Both games are defined
for a generic M-MAC construction and in particular the LM-MAC can be proved to
resist such attacks. The attack game on strong non-malleability GameSNMM-MAC against
an M-MAC requires an adversary to be able to construct an M-MAC in such way that
verification fails with at least one of the keys but succeeds with another. An M-MAC
that is resilient to such an attack is called strongly non-malleable.

Definition 1. (Unforgeability Attack Game) We define the M-MAC unforgeability
game GameUFM-MAC as the following five stage game between challenger C and adversary
Adv :

1. Challenger C runs the key generation algorithm Gen(1`, s) to get a key set K =
{k0, k1, ..., ks}.
2. Adversary Adv is allowed to requests C any subset of the keyset K′ = {kj0 , kj1 , ..., kjt},
t < s where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 1 of the keys.
3. Adversary Adv is allowed to make queries to the MAC generation oracleOTag(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tag(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is a correct tag under key ki for message m.
4. Eventually, the adversary outputs the tuple (m♦, τ♦, i) for some index i such that he
is not in possession of ki.
5. The game output is 1 if the following two conditions hold: Ver outputs 1 on (τ,m, ki)
and the adversary never queried m to the Tag oracle. Otherwise the game output is 0.

Definition 2. (Unforgeability) We say that a mixed message authentication code
M-MAC is unforgeable if: Pr

[
GameUFM-MAC(1

`, s) = 1
]
< negl(`).

Definition 3. (Strong Non-malleability Attack Game) We define the M-MAC strong
non-malleability game GameSNMM-MAC as the following five stage game between chal-
lenger C and adversary Adv :

1. Challenger C runs the key generation algorithm Gen(1`, s) to get a key set K =
{k0, k1, ..., ks}.
2. Adversary Adv is allowed to requests C any subset of the keyset K′ = {kj0 , kj1 , ..., kjt},
t < s − 1 where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 2 of the
keys.
3. Adversary Adv is allowed to make queries to the MAC generation oracleOTag(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tag(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is correct tag under key ki for message m.
4. Eventually, the adversary outputs the pair (m♦, τ♦).
5. The game output is 1 if there are at least two keys k , k ′ ∈ K such that the following
two conditions hold: Ver outputs 1 on (τ,m, k) but outputs 0 on (τ,m, k ′) and the keys
k , k ′ are not part of the adversary keyset K′. Otherwise the game output is 0.

Definition 4. (Strong Non-malleability) We say that a mixed message authentication
code M-MAC is strongly non-malleable if: Pr

[
GameSNMM-MAC(1

`, s) = 1
]
< negl(`).

Theorem 1. The LM-MAC construction is unforgeable if the underlying MAC is un-
forgeable and is strongly non-malleable in the random oracle model.

Due to space limitations, a proof of this theorem in the random oracle model is
deferred for the extended version of this work.

3 Experimental results

To evaluate the performance of the proposed protocol suite, we used several setups
with different hardware components to determine the minimum authentication delay.
Automotive grade embedded devices from Freescale and Infineon as well as a notebook
equipped with an adapter for CAN communication from Vector were employed to build
the nodes of our experimental CAN network. The embedded platforms that we used are
representatives for industry’s low-end and high-end edges.

3.1 Test beds

Using the aforementioned components we built several test beds. First, the case of a
system using the centralized authentication approach with one master node and 4 slave
nodes was considered:

• Testbed 1: S12+4×S12 . Both master and slave nodes are built on identical S12
development boards with CAN communication speed set to 125kbps.
• Testbed 2: TC1782+4×TC1797 . Master and slave nodes are built on similar Tri-
Core development boards having the same computational and communication capabil-
ities. CAN communication speed is set to 1Mbps.
• Testbed 3: Intel T7700+4×S12 . The master node is implemented on a PC (Intel
Core2Duo CPU T7700@2.4GHz) while slave nodes are built on the S12 boards. The
master-slave CAN communication is done through the CANcardXL using a low speed
CANcab for 125kbps.
• Testbed 4: Intel T7700+4×TC1797 . The master node is implemented on the
same PC as in the previous case while slave nodes are built on the TriCore platform.
This time a high speed CANcab is used with the CANcardXL to enable a 1Mbps com-
munication speed.

A different testbed was set up to compare the different variants of the key splitting
protocol on a system with 8 slaves based on S12X nodes. Two variants were considered
as we further discus: centralized authentication (in this case one extra node was added
to act as the master) and two-stage authentication.

3.2 Protocol performance

Centralized authentication was implemented on the four testbeds prepared for this pur-
pose. Our implementation considers 6 groups of two nodes each formed by combining
the four available nodes. Messages and authentication tags are always sent as separate
frames and the message size is always 8 bits. The MAC size for each group is set to 21
bits so that 3 authentication tags fit a single 64 bit CAN frame. The MAC is computed
using the MD5 hash function over an input formed by concatenating the group key
to the message. The resulting hash is then truncated to the desired size. Table 4 holds
the timings and bus loads for each test bed. Here δ is the authentication delay, i.e., the
time needed by a node to authenticate the message once it receives it. For the bus load
we considered the fraction of traffic caused by the authentication tags over the entire
bandwidth.

As expected, scenarios in which high end devices played the role of master nodes
(PC, TriCore) showed better performance than in the case of low end master nodes.
The case of a PC master with TriCore slaves does not perform better, despite the
considerable difference in computational power between master nodes (TriCore vs.
Intel Core2Duo) due to limitations of CAN adapters. Because of their internal hard-
ware/software design, these adapters introduce some limitations, e.g., the average re-
sponse time specified by Vector for the CANcardXL is 100µs.

To evaluate the protocol behavior when using different trade-offs we implemented
different variants of the key splitting authentication protocol on a system with 8 slaves
built on S12X nodes. By grouping the eight nodes two by two we obtain a total of 28
groups. The size of the authentication tags and the truncated MAC size differ in each
variant. We set up the implementations as follows:

• Centralized: The message sending node computes and sends one MAC for each
group that he is part of. The master computes and sends one MAC for each of the other
21 groups (if groups of size 2 are used). If the master is to perform the authentication in
only 2 frames then each MAC can be truncated to 5 bits and this will lead to a total of
35 security bits for each node. But if we increase the number of authentication frames
from the master to 3, then each MAC can be truncated to 9 bits giving a total of 63
authentication bits for each node which is a reasonable level for real-time security.
• Two-stage: The master node is missing in this implementation, therefore we use
two helper nodes for computing and sending the complete authentication tag. In the
two-stage variant, the sender node will first put one authentication tag on the bus which
contains the full 36 authentication bits for one of the helper nodes, 20 bits for the second
one and 8 extra bits for another node. This first tag is followed by a second tag generated
by the first helper node which contains the remaining 16 authentication bits for the
second helper node and 48 bits equally distributed for three of the remaining nodes. To
complete the 36 authentication bits for each of the remaining nodes, the sender node
and the second helper node will each put an authentication tag on the bus. As discussed
previously, the security level can be raised to around 64 bits by using groups of size 3
and the described tag allocation procedure.

Table 5 holds the results achieved with these two implementations. The worst per-
former in terms of authentication delay is the implementation of the centralized authen-
tication variant as it involves computing MACs for each of the 28 groups in a sequential
manner. In the other implementation, a smaller number of MACs are computed some
of which are done by different nodes in parallel. A smaller authentication delay is ob-
tained when using the two-stage implementation at the cost of an increased CPU load
on the sender side. However, this cost is somewhat compensated by the higher level of
security offered by the fact that the sender node offers more authentication bits.

3.3 Computational performance with linearly mixed tags

The results from Tables 4 and 5 use the simple concatenation of individual MACs com-
puted with MD5 as the underlying hash function. We now take a brief account of the
impact of mixing tags using linear systems of equations, complete experimental results
on this will be available in the extended version of our work, here we make an accurate

Master Slave δ Bitrate Bus load
S12X 4xS12X 2.54ms 125 kbps 53.84%
PC 4xS12X 1.848ms 125 kbps 72.22%
TriCore 4xTriCore 267 µs 1 Mbps 54.31%
PC 4xTriCore 378 µs 1 Mbps 42.54%

Table 4. Centralized authentication with 4 nodes

Variant Master Slave δ Bus load
Centralized S12X 8xS12X 22.624ms 11.27%
Two-stage - 8xS12X 6.806ms 46.21%

Table 5. Centralized & Cascade with 8 nodes

estimation of the computational costs. To begin with, in Table 6 we give an overview on
the computational timings for various hash functions and input sizes on both of the em-
ployed platforms. For the Linearly Mixed MACs, in addition to the computation of the
MACs, two supplemental computational tasks are required: solving the linear system of
equations on the sender side (a task which should be usually done by the master which
has higher computational power) and reconstructing the MAC on the receiver side. Our
experimental results obtained on the communication master equipped with the Intel
2.4GHz core with the well known NTL library (http://www.shoup.net/ntl/) showed that
the computational cost of solving the system for 2 nodes in GF (28) up to GF (232) are
around 3–6 times more intensive than an MD5 computation and this increases to 10–20
times the MD5 computation in the case of 4 nodes. Since this task should be done by
the master node it shouldn’t raise computational issues. The reconstruction of the MAC
was around 10 times cheaper compared to the linear mixing procedure and compared to
MD5 it was in the range of 0.5–5 times more intensive, the later in the case of 8 nodes
and GF (232). All these are reasonable amounts of computations and we believe that
they can be significantly improved with platform dependent tweaks.

Hash function
Input size (bytes)

S12 TriCore
0 16 64 0 16 64

MD5 371µs 374µs 1414µs 10.16µs 11.00µs 18.34µs

SHA1 1.144ms 1.148ms 4.510ms 14.64µs 15.10µs 27.60µs

SHA256 2.755ms 2.755ms 5.440ms 41.70µs 42.35µs 80.80µs

Table 6. Computational performance of employed embedded platforms

4 Backward compatibility with CAN+

There are two main drawbacks to the LiBrA-CAN protocol. First of all, depending on
the setup, it can require quite a lot of the CAN bus’ bandwidth, and second, all nodes in
the system need to be aware of the LiBrA-CAN protocol for it to work. In this section,
we show a method of eliminating both of these drawbacks using an unofficial extension
of the CAN protocol, called CAN+ [14].

The CAN+ protocol allows transmission of extra data along with a CAN packet on
an out-of-band channel. It does this by transmitting data at an increased rate in between
CAN sample points. At least 225 extra bits can be transmitted with the CAN+ protocol
alongside a CAN message.

Using the CAN+ protocol for LiBrA-CAN data transmission helps in two ways.
First of all, the required bandwidth drops. For LiBrA-CAN schemes whereby a single
node never needs to transmit more than d 22564 e = 3 authentication tags, all LiBrA-CAN
data can be transmitted as CAN+ data. This reduces the LiBrA-CAN overhead for those
schemes to 0%. Nodes that need to transmit just a tag, can do so by transmitting a 0-byte
CAN message and embedding the tag as CAN+ data, thereby reducing the time they use
the bus from 108 bit lengths (for an 8-byte message) to 44 bit lengths in non-extended
CAN mode, which is a 60% decrease.

Second, if LiBrA-CAN authentication data is only transmitted as CAN+ data, then
nodes that do not support CAN+ will not even see the LiBrA-CAN data. Thus, a system
can be setup whereby important nodes are outfitted with a CAN+ transceiver, while non-
important nodes aren’t. This makes the LiBrA-CAN protocol completely backwards
compatible with existing CAN networks: nodes supporting CAN+ could be dropped
into the network at will and start authentication messages with LiBrA-CAN, while ex-
isting CAN nodes will be completely oblivious as to what is going on and continue
functioning as before. An added bonus is that this also drastically reduces roll-out cost.

5 Discussion and conclusions

The proposed protocol is efficient when the number of nodes is low. We expect this to
be the case in many automotive scenarios where, although the number of ECUs may be
high, the numbers of manufacturers from which they come may not be high and dis-
tributing trust between several groups is an acceptable solution. If the number of nodes
is too high we see only two resolutions: public key cryptography (with the drawback of
high computational requirements, at least 2 orders of magnitude) or TESLA like proto-
cols (with the drawback of authentication delays as shown in [6]). CANAuth [12] is also
a solution for high number of nodes if one considers that source authentication is not
relevant and associating keys to message groups is sound from a security perspective.
While a decision on what protocol should be used for in-vehicle authentication can be
taken only by manufacturers and by means of consortium, we believe that this proposal
should be considered as an interesting alternative. The use of MAC mixing, key split-
ting and the features of the CAN arbitration seems to give an efficient management for
source authentication.

Acknowledgement. This work was supported by in part by research grants PNII-
IDEI 940/2008 and POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013.
It was also supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007), by the Flemish IBBT projects, and by the European Commission through
the ICT programme under contract ICT-2007-216676 ECRYPT II. In addition, it was

supported by the Flemish Government, FWO G.0550.12N and by the European Com-
mission through the ICT programme under contract FP7-ICT-2011-284833 PUFFIN.
We also thank the reviewers for helpful comments on our work.

References

1. H. Bar-El. Intra-vehicle information security framework. In Proceedings of 9th Embedded
Security in Cars Conference, ESCAR, 2009.

2. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks.
In Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages 197–213. IEEE,
2003.

3. L. S. Charlap, H. D. Rees, and D. P. Robbins. The asymptotic probability that a random
biased matrix is invertible. Discrete Mathematics, 82(2):153 – 163, 1990.

4. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security 2011, 2011.

5. A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology (Crypto93), pages
480–491. Springer, 1994.

6. B. Groza and P.-S. Murvay. Higher layer authentication for broadcast in Controller Area
Networks. In International Conference on Security and Cryptography (SECRYPT), 2011.

7. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kan-
tor, D. Anderson, H. Shacham, and S. Savage. Experimental security analysis of a modern
automobile. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447 –462, May
2010.

8. M. Naor and B. Pinkas. Threshold traitor tracing. In Advances in Cryptology (CRYPTO’98),
pages 502–517. Springer, 1998.

9. A. Perrig, R. Canetti, D. Song, and J. D. Tygar. SPINS: Security protocols for sensor net-
works. In Seventh Annual ACM International Conference on Mobile Computing and Net-
works (MobiCom 2001), pages 189–199, 2001.

10. A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient authentication and signing of
multicast streams over lossy channels. In IEEE Symposium on Security and Privacy, pages
56–73, 2000.

11. T. Roeder, R. Pass, and F. Schneider. Multi-verifier signatures. Journal of Cryptology,
25(2):310–348, 2012.

12. A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-a simple, backward com-
patible broadcast authentication protocol for CAN bus. In 9-th Embedded Security in Cars
Conference, 2011.

13. M. Wolf, A. Weimerskirch, and C. Paar. Secure in-vehicle communication. Embedded
Security in Cars, pages 95–109, 2006.

14. T. Ziermann, S. Wildermann, and J. Teich. CAN+: A new backward-compatible Controller
Area Network (CAN) protocol with up to 16x higher data rates. In DATE, pages 1088–1093.
IEEE, 2009.

