
1

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area
Networks

BOGDAN GROZA, Politehnica Timisoara
STEFAN MURVAY, Politehnica Timisoara
ANTHONY VAN HERREWEGE, KU Leuven
INGRID VERBAUWHEDE, KU Leuven

Despite realistic concerns, security is still absent from vehicular buses such as the widely used Controller Area Network
(CAN). We design an efficient protocol based on efficient symmetric primitives, taking advantage of two innovative proce-
dures: splitting keys between nodes and mixing authentication tags. This results in a higher security level when compromised
nodes are in minority, a realistic assumption for automotive networks. Experiments are performed on state-of-the-art Infineon
TriCore controllers, contrasted with low-end Freescale S12X cores, while simulations are provided for the recently released
CAN-FD standard. To gain compatibility with existent networks, we also discuss a solution based on CAN+.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: General: Security and protection

General Terms: Security, Algorithms, Performance

Additional Key Words and Phrases: CAN bus, cryptography, authentication, broadcast

ACM Reference Format:
Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, Ingrid Verbauwhede, 2014. LiBrA-CAN: Lightweight Broadcast
Authentication for Controller Area Networks. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January xxxx), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. MOTIVATION AND RELATED WORK
Vehicular network security established itself as an intense research topic in the last few years. Out-
standing experimental results from [Koscher et al. 2010] and later [Checkoway et al. 2011] showed
vehicles to be easy targets for malicious adversaries. The myriad of attacks reported in the last five
years showed that virtually any subsystem inside a car is vulnerable to attacks that exploit the CAN
bus as an entry point. To justify our concern, Table I summarizes some of the attacks reported so far,
grouping them according to the vehicular subsystem on which they act: power train, chassis, body,
multimedia, telematics, HMI or active/passive safety. These attacks are reproducible on most (if not
all) cars on the market. Any device inside a car can be seriously affected by real-world adversaries
and this is no surprise as long as CAN (the bus used to connect all relevant communications inside
a vehicle) lacks cryptographic security. The same holds for other communication buses inside the
car, even for the most recent developments, e.g., FlexRay, CAN-FD.

Proposals for assuring security for in-vehicle buses are not many and there are several clear rea-
sons behind this. First, the relevance of assuring security inside vehicles was decisively proved only
in the recent years [Koscher et al. 2010], [Checkoway et al. 2011]. Second, some of the design

This work was supported by in part by research grant POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013.
It was also supported in part by the Research Council KU Leuven: GOA TENSE (GOA/11/007). In addition, this work is
supported in part by the Flemish Government through FWO G.0550.12N and the Hercules Foundation AKUL/11/19, and by
the European Commission through the ICT programme under contract FP7-ICT-2011-284833 PUFFIN.
Author’s addresses: Bogdan Groza and Stefan Murvay, Faculty of Automatics and Computers, Politehnica University of
Timisoara, Romania; Anthony van Herrewege and Ingrid Verbauwhede, ESAT/COSIC and iMinds, KU Leuven, Belgium.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© xxxx ACM 1539-9087/xxxx/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:2 B. Groza et al.

Table I. Recently reported attacks having CAN as entry-point

Subsystem Affected module Consequence
Power Train (longitudinal propulsion: en-
gine, transmission, etc.)

Engine Increase idle RPM, temporary RPM in-
crease, initiate crankshaft re-learn (disturbs
engine timings), disable cylinders, kill en-
gine, grind starter, remote car start, cannot
turn on (DoS to/from BCM), cannot turn off
(while turned on, cause BCM to activate ig-
nition output) [Koscher et al. 2010]

Chassis (wheels and their relative position
and movement: steering, braking, etc.)

Brakes Disable, engage front left, engage front
right, unlock front left, unevenly engage
right brakes, releases brakes (prevents brak-
ing) [Koscher et al. 2010]

Power steering Disable [Koscher et al. 2010]
Body (entities that do not belong to vehicle
dynamics: wipers, lighting, window lifter,
air conditioning, seats, etc.)

Doors Lock/unlock car, unlock all while at
speed [Koscher et al. 2010]

Gauges & instruments Falsify speedometer reading, falsify fuel
level, freeze display panel [Koscher et al.
2010]

Electric window lift Control windows [Hoppe and Dittman
2007], DoS [Hoppe et al. 2008], disable win-
dow relays [Koscher et al. 2010]

Multimedia, Telematics and HMI
(information exchange: display, switches,
radio, navigation, Internet, etc.)

Radio Increase volume, change display, produce
ticking sound [Koscher et al. 2010]

Driver Information Center Change display [Koscher et al. 2010]
Active/Passive Safety (airbags, warnings,
seatbelt, ABS, ESP, cruise control, etc.)

Airbag Suppress missing airbag warnings by emu-
lating its presence [Hoppe et al. 2008]

principles used by manufacturers are out of reach for the academic community, making it hard to
understand many assertions behind protocol designs. Since intra-vehicle communication systems
are subject to many constraints that range from the technical side up to the economical factors,
e.g., hard real-time constraints, low cost margins, etc., exploring for new solutions is vital. Sev-
eral approaches to in-vehicle security advocate the use of secure gateways between different ECUs
(Electronic Control Unit) or subnetworks [Bar-El. 2009], [Wolf et al. 2006] and rely on basic cryp-
tographic constructions (encryptions, signatures, etc.). These proposals do not particularly target
broadcast authentication on CAN, which is still the most common communication bus inside vehi-
cles, we discuss protocols dedicated for CAN bus authentication in the following subsection.

1.1. Related work
TESLA and CANAuth. TESLA like protocols proved to be highly effective in sensor networks [Perrig
et al. 2000], [Perrig et al. 2001] and so far are the most efficient alternative for assuring broadcast
authentication with low-cost symmetric primitives, e.g., Message Authentication Codes (MAC).
However, when it comes to the CAN bus, this protocol family has one drawback that is critical
for automotive systems: delays, which by the nature of TESLA are unavoidable. The main purpose
of the work in [Groza and Murvay 2013] is to determine a lower bound on these delays and es-
tablish some trade-offs. Delays in the order of milliseconds, as shown to be achievable in [Groza
and Murvay 2013], are satisfactory for many scenarios, but such delays do not appear to be small
enough for in-vehicle communication. Due to the nature of TESLA like protocols, these delays are
always present and cannot be eliminated. To reduce the delays, one can use a bus with a higher
throughput, more computational power and better electronic components (e.g., oscillators), but this
will greatly increase the cost of components, nullifying in this way the cost effectiveness of CAN.
CANAuth [Van Herrewege et al. 2011] is a protocol that has the merit to follow in great detail the
specifications of CAN, its security is specifically designed to meet the requirements of the CAN
bus. In particular, CANAuth is not intended to achieve source authentication as the authentication
is binded to the message IDs and messages may originate from different sources which will be im-
possible to trace. This fits the specification of CAN which has a message oriented communication.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:3

However, a first issue is that the number of CAN IDs is quite high, in the order of hundreds (11 bits)
or even millions in the case of extended frames (29 bits) and storing a key for each possible ID does
not seem to be so practical. For this purpose, in [Van Herrewege et al. 2011] a clever solution is
imagined: the keys are linked to multiple ID codes using masks, which greatly reduces the number
of keys. But still, this leads to some security concerns. Traditionally, keys are associated to entities
to ensure that they are not impersonated by adversaries, but by associating keys to messages the
identity of the sender can be no longer verified. For example, any external tool (assume On-Board
Diagnostics (OBD) tools which are wide-spread) that is produced by external third parties will have
to embed the keys associated for each ID that it sends over or even just listens to on CAN. Obvi-
ously, if such a device is easy to compromise (even an innocuous one such as passive receiver) then
all the IDs which it was allowed to authenticate are equally compromised.

Voting. Szilagyi and Koopman introduce a validity voting scheme in [Szilagyi and Koopman
2009] and [Szilagyi and Koopman 2010]. The scheme is intended for generic time-triggered com-
munication such as TT-CAN, FlexRay, etc. The core part of the protocol relies on the classical
paradigm of sharing keys between each sender and receiver then authenticating packets on a one
MAC per receiver basis. Further, to make it feasible to embed the MACs in a single frame, the tags
are truncated and concatenated (e.g., 3 MACs each of 8 bits are fitted at the end of a single frame).
The communication is time triggered, each receiver releasing his message and his vote on previous
messages in fixed time slots. Both the new message and his vote, along with all previously received
messages, are authenticated under the same array of MACs to other receivers. The procedure leads
to a drawback as stated in [Szilagyi and Koopman 2010]: for frames that are lost, the receive history
of the nodes does not match and authentication will fail for these frames. As suggested in [Szilagyi
and Koopman 2010] this can be fixed by adding additional bits for lost packets, but sufficient votes
from other nodes would still be required to deem the frame authentic.

Other proposals. Since our initial conference report on LiBrA [Groza et al. 2012], several other
lines of work appeared. CaCAN [Kurachi et al. 2014] uses a centralized approach in which a central
node monitors the bus for malicious frames and destroys them with error flags. As acknowledged
by the authors, one drawback of this approach is that the monitor node can be unplugged from
the bus, nullifying the protection layer. MaCAN [Hartkopp et al. 2012] uses standard key-sharing
between nodes and an AES based CMAC for authentication, the authentication tag is truncated to
32 bits in order to fit it along with the message in a single frame. Subsequent formal analysis [Bruni
et al. 2014] found the protocol vulnerable to some attacks but easy to fix. One more serious security
issue with MaCAN is that the use of a counter is avoided and freshness is assured by linking to a
common time value preserved on the nodes. Needless to say, synchronization errors will always be
present and the protocol appears to provide no protection against adversaries that can force such
errors by delaying the synchronization packets from the time server. This means that replay attacks
cannot be completely avoided in MaCAN. Moreover, messages are authenticated only for a fixed
number of times, this leaves the possibility for an adversary to compromise frames that are missing
the authentication tag. The use of shared keys between nodes is also explored in [Woo et al. 2014],
[Wang and Sawhney 2014] and [Bittl 2014]. Other works such as [Lin et al. 2015] are focused on
the impact of the added security mechanisms on real-time constraints. A survey on security threats
and protocols is available in [Studnia et al. 2013].

1.2. LiBrA-CAN, design intentions
Scope. This work extends and improves our conference report from [Groza et al. 2012]. We include
more motivation, details and proofs which were previously omitted due to the obvious space con-
straints. The main LiBrA scheme is changed from the centralized version to a distributed scheme
that is more appropriate to the context of CAN, new variations of the scheme are further provided.
We also bring improvements and details on the computational costs of the mixed MAC construction
which gives security improvements to LiBrA. Finally, we provide in this extended version a more
detailed performance analysis taking into account the recently released CAN-FD [Robert BOSCH
GmbH 2012] standard (not available at the time of our initial report).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:4 B. Groza et al.

Table II. Specifications, advantages and limitations of current proposals for assuring CAN security

Protocol Specifications and advantages Possible Limitations

TESLA-CAN
[Groza and Murvay 2013]

- efficient use of symmetric primitives with time
synchronization
- successful and well studied in sensor networks

- fixed authentication delays (usually millisec-
onds),
- time triggered release of keys (potential conflicts
with CAN arbitration)
- resynchronization can be an issue at very small
authentication delays

CAN-Auth
[Van Herrewege et al. 2011]

- ID oriented authentication, follows in detail CAN
specifications
- no authentication delays or time synchronization

- no source authentication (unclear security im-
plications, e.g., third party tools can inject forged
frames)
- number of keys increases with number of IDs

Voting
[Szilagyi and Koopman 2010]

- shared symmetric keys between each 2 nodes
- each node votes for the authenticity of previous
messages

- small number of nodes
- time triggered release of authentication tags
(nodes need to wait over multiple time slots to get
sufficient votes)
- nodes are required to be present and vote
- disagreements between nodes if packets are lost
- each node needs to apply a MAC on his current
message, his votes on previous messages, and all
messages that he received previously

LiBrA-CAN
(this work)

- efficient source authentication with dishonest mi-
nority
- efficient forgery detection with MAC mixing
- no authentication delays or time synchronization

- small number of participants
- malicious nodes in minority

LiBrA-CAN is based on two paradigms: key splitting and MAC mixing, the later procedure is
optional and is intended to increase security by allowing each node to detect a potential forgery.
Key splitting allows a higher entropy for each mixed MAC that is sent at the cost of losing some
security for groups that contain more malicious nodes. An adversarial majority will be required
to break the protocol, while if there are fewer adversarial nodes, the security level is drastically
increased. Consequently, this appears to give a flexible and efficient trade-off. Note that in contrast
to the scheme of Szilagyi and Koopman which requires the nodes to be present and vote, LiBrA
benefits from a majority of non-corrupted nodes, but does not require their presence to vote (it is
just their keys that need to be safe). This procedure is not new, similar techniques were proposed
in the past in the context of broadcast security. We could trace this back up to the work of Fiat and
Naor [Fiat and Naor 1994], but there is a large amount of papers on this subject. The work of Canetti
et al. [Canetti et al. 1999] provides efficient constructions based on the same principles. However,
the constraints of our application in CAN networks are entirely different from related work where
this procedure was suggested or used in scenarios such as sensor networks [Chan et al. 2003], pay-
TV [Naor and Pinkas 1998], etc. The main idea behind such schemes is that groups of l corrupted
receivers cannot learn the secret (in settings with n > l users). In addition to this, we exhibit a
distinct contribution in the construction of Linearly Mixed MACs which allows us to amalgamate
several authentication tags in a single tag via a system of linear equations. This construction has
the advantage that if one of the MACs is wrong then this will affect all other MACs and thus the
mixed MAC will fail to verify on any of the multiple keys. This increases the chance of a forgery
being detected and ultimately it increases the reliability in case benign nodes are in possession of a
wrong key. To the best of our knowledge this procedure is new. The closest work that we could find
are the multi-verifier signatures proposed by Roeder et al. [Roeder et al. 2012]. In their work, linear
systems of equations are used as well upon message authentication codes but the security properties
and goals of their construction are different. For our construction we require that the mixed MACs
are strongly non-malleable, a property which appears to be entirely different.

Another assumption behind our design is that the number of nodes that are connected to the same
bus line is not large. To strengthen our assumption we present in Figure 1 the network topology
of a high-end vehicle based on [Leohold 2004]. Indeed, it is easy to see that while there is a high
number of ECUs, not all of them share the same network, and consequently they can be easily
placed into small broadcast groups based on the sub-network they are part of. While indeed ECUs
inside cars come from different manufacturers which may or may not be trustworthy, we believe

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:5

Gateway

Powertrain
CAN

Comfort
CAN

Infotainment
CAN

Diagnostics
CAN

Fig. 1. Network topology of a VW Phaeton based on [Leohold 2004]

that suspicious ECUs should be limited in number, since the potential insertion of a trapdoor in
some component will discredit the public image of the manufacturer too much and there appears
to be little or no benefit for this. Moreover, ECUs that come from the same manufacturer and are
trustworthy with each other may potentially use the same shared key (randomly generated at runtime
for each sub-network in which they are plugged). In this way the number of actual keys needed to
assure broadcast security should be smaller than it appears to be at first sight. In our design we
try to take advantage of this assumption, and our approach is especially efficient in the case when
compromised nodes form only a minority. The idea of malicious nodes in minority is also supported
by research subsequent to our initial conference report on LiBrA-CAN [Groza et al. 2012]. Most of
the research works suggest that the attack comes either from a malicious device inserted on the bus
or from compromising the software inside a single ECU [Kurachi et al. 2014] , [Woo et al. 2014],
[Wang and Sawhney 2014]. Grouping nodes under the same secret shared key is also proposed
in [Hartkopp et al. 2012] where groups are formed on the trust-level on the node.

It is also an advantage for the current proposal that a new CAN standard that supports flexible
data rates was released: CAN-FD [Robert BOSCH GmbH 2012]. The larger data frames of CAN-
FD [Robert BOSCH GmbH 2012] allow us to design a more robust authentication protocol that
significantly reduces the overhead of independent authentication frames, we detail this in the main
version of the protocol. Besides the larger data field, CAN-FD allows an increased data rate after
the arbitration which will make it even faster to carry the authentication data. We present real-time
simulation of our protocol using the industry standard CANoe tool from Vector (www.vector.com).

2. THE PROTOCOL
We begin with a brief overview of the application setting and assumptions. Then we outline the
main authentication scheme and discuss some variations or improvements to it.

2.1. Network topology and frame structure
The Controller Area Network (CAN) is a broadcast serial bus designed by Bosch [Robert BOSCH

GmbH 1991], [International Organization for Standardization 2003]. The typical topology consists
of a differential bus that connects multiple nodes by two wires (called CAN-High and CAN-Low).
This network architecture is suggested in Figure 2, the setup corresponds to one of the protocol
versions that we discuss in Section 2.5 for which we defer the details on key allocation.

CAN frames carry at most 8 bytes of data. Each CAN frame begins with a start bit followed by
the arbitration field (29 bits in extended frames and 11 bits in standard frames), a control field (6
bits), data bits (0-64), CRC sequence (15 bits), a 2 bit acknowledgement and 7 bits that mark the
end of frame. Stuffing bits are added after each 5 consecutive bits of identical value. The newer
CAN-FD standard [Robert BOSCH GmbH 2012] allows up to 64 bytes of data to be carried by one
frame and more, the data rate can be increased after the arbitration procedure.

For the case of standard CAN frames (unable to carry both the data and authentication tag), as
well as for some variations of the main scheme, we separate between message frames and authen-
tication frames. Larger data blocks or authentication tags (exceeding 8 bytes) can be split across

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:6 B. Groza et al.

4 12μC

CAN-H

CAN-L

μC
9

10

12

μC
5

6

12

μC
3

6

10

μC
3

5

9

8

1

2

3

4

5

6

8

9

10

12

Fig. 2. Topology of the CAN bus and key allocation for centralized authentication

ID Field (11 or

29 bit)

frameid
iN mesc mMessage

Frame

Authentication

Frame

Data Field
ID Field (11 or

29 bit)

frameid
autc

1

0

M MAC ()i m
N

-

Data Field

iN

iN

mesc
iN M MAC ()i m

N
-

Fig. 3. Data frames and authentication frames

multiple frames with the same ID field and counter. On the other side, with CAN-FD frames, it
is advantageous to embed the authentication tag in the message frame and take benefit of the in-
creased data rate that follows the arbitration procedure. This also reduces the authentication delay
and allows immediate verification.

In Figure 3 we suggest the structure of the frame for the case when the authentication tag, i.e.,
M-MACKiN (m̃), is embedded in the message frame and we also outline the case when it is sent
as a separate authentication frame (dashed arrow). In both cases the frame structure consists in the
identifier of the message id frame which is the usual CAN ID, the identifier of the source node Ni,
a message counter cmes , the message itself m and the authentication tag M-MACKiN (m̃). Supple-
mentary, in the case of authentication frames, a new counter caut specifies the number of the au-
thentication frame (intended for protocol variants where there is more than 1 authentication frame
for a message). The last bit of the identifier field specifies whether a frame carries an authentication
tag or message (1 vs. 0). Separate authentication frames are sent in our experimental setup with
CAN capable boards, while in the CAN-FD simulation from CANoe the data frames carries the
authentication tag as well (allowing immediate authentication). Further adjustments can be done.
For example, since the data field is quite short, the node identifier (which denotes the source of the
authentication frame) can be moved in the ID field (suggested by a dashed arrow in Figure 3). A
discussion dedicated to the use of counters for assuring freshness follows in the next subsection.

2.2. Adversary model and security objectives
In the previously described setting, we do assume the usual presence of an adversary that has

full control over the communication channel. That is, the adversary can eavesdrop, modify, block or
send messages at his will.

The security objective of our scheme is to assure an authentic channel, i.e., to prevent messages
that originate from the adversary to be accepted by the honest principals. This is achieved by adding
to each message a number of authentication tags that are computed with secret keys that are shared
between nodes. By increasing the size of the authentication tags, the scheme can essentially resist
against any number of corrupted nodes, as long as a single key remains secure on the sender and
receiver’s side. For practical reasons it is our assumption that corrupted nodes are in minority and
thus we hold as an intuitive model that the adversary is a device that tries to act on behalf of an
honest node from the network. In real world instantiations this may happen in one of the following

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:7

two circumstances. The adversary can be an external device that is plugged into the network (this
is the general cause of all the attacks reported so far, e.g., [Koscher et al. 2010]) or it is one of the
genuine ECUs from the network that tries to impersonate one of the other honest ECUs (this seems
a plausible scenario in case of an untrusted third-party component). In the later case the adversary is
in possession of a limited number of keys but still misses some of the keys that are held by the honest
nodes (otherwise, if the adversary has all the keys, there is nothing that can be done). The design
intention behind LiBrA-CAN is to make the scheme resilient in front of both these situations. The
case of a larger number of adversaries (i.e., more nodes that leaked their keys) requires a quantitative
discussion based on the main LiBrA-CAN protocol and is deferred for Examples 2 and 3 in Section
2.4 (however, none of the practical attacks reported so far relied on such an assumption).

As a particular flavour of authentication, assuring the freshness of each message is a desired goal,
i.e., preventing replay attacks. We do believe that this is a critical issue for real-time communication
networks that requires dedicated research, here we provide only a generic security construction.
Related work is split around the use of counters [Kurachi et al. 2014], [Woo et al. 2014], [Wang and
Sawhney 2014] and the use of timestamps [Hartkopp et al. 2012]. The use of timestamps cannot
fully prevent replays since synchronization errors cannot be completely removed. There is no con-
crete specification in [Hartkopp et al. 2012] for the periodicity of the timestamps; the consequences
of a replay attack within the time-frame given by the synchronization error are unclear. Moreover,
we note that the synchronization protocol from [Hartkopp et al. 2012] is in fact insecure since an
adversary can delay the response of the time-server making the ECU receive a somewhat older ref-
erence time (the protocol does not check for synchronization errors at all and small errors will be
always present). Counters remove part of this problem (replays during the time-frame given by the
synchronization error), but the drawback in using counters is that nodes can go into bus-off mode
or disconnect from the bus; in this way the latest value of the counter is lost. Still, having in mind
that synchronization requires a protocol that is periodically triggered, checking for synchronization
errors, and that replays may still be possible, we prefer the use of counters. We assume that when-
ever the node re-joins the bus, e.g., after restart, the correct value of the counter will be obtained.
Updating the counter can happen similarly to the way synchronization is done but hopefully it will
be done sporadically (improving on the use of bandwidth) and will always prevent a message from
being accepted twice, i.e, replay. If the delayed acceptance of a message can be a security problem,
then adding timestamps as well is unavoidable, as counters assure uniqueness for a received mes-
sage but an adversary can always delay the message up until the counter is updated by some another
receive event. The size of the message counter cmes strictly depends on the number of messages
that are expected to be authenticated under the same key. For example, in the case of high-speed
1Mbps CAN at most 10–20 thousand messages are expected each second, a 32 bit counter is more
than sufficient for several days. The group keys can be refreshed on an hourly basis and the counters
reset when this happens, thus significantly reducing the size of the counters. Moreover, this can be
further improved by associating the counter to each pair formed by node (sender) identity and key,
since we expect that messages from the same sender (i.e., reports for the same signals) are not sent
quicker than 1–10 ms intervals the counter size could drop to 16 bits. This will save bandwidth
which should be more important than the additional memory required for storing more counters
since these are small, e.g., 16 bits. In what follows we assume that each node keeps an individ-
ual message counter for each sender, key pair. The counter is reset at each protocol restart and the
counter of each received message is checked for monotonicity whenever a message is received from
a particular sender. Following a successful receive event (a frame that passes the authentication test)
the counter is updated.
2.3. Mixed Message Authentication Codes
In the main scheme we make use of Mixed Message Authentication Codes (M-MAC) which amal-
gamate more MACs into one. The M-MAC uses an array of keys to build a tag which is verifiable by
any of the keys. The easiest way to build an M-MAC is simply by concatenating multiple tags, such

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:8 B. Groza et al.

a construction is fine for our protocol and can be safely embodied in the main scheme (however, we
do further improve on this trivial construction). The generic M-MAC construction is described next.

Construction 1. (Mixed Message Authentication Code) A mixed message authentication code
M-MAC is a tuple (Gen,Tag,Ver) of probabilistic polynomial-time algorithms such that:
1. K ← Gen(1`, s) is the key generation algorithm which takes as input the security parameter `
and set size s then outputs a key set K = {k1, ...,ks} of s keys,
2. τ ← Tag(K,M) is the MAC generation algorithm which takes as input the key set K and message
tuple M = (m1, ...,ms) where each mi ∈ {0, 1}∗ then outputs a tag τ (whenever needed, to avoid
ambiguities on the message and key, we use the notation M-MACK(M) to depict this tag),
3. v ← Ver(ki,mi, τ) is the verification algorithm which takes as input a key ki ∈ K, a message
mi ∈ {0, 1}∗ and a tag τ and outputs a bit v which is 1 if and only if the tag is valid with respect to
the key ki and message mi, otherwise the bit v is 0. For correctness we require that if ki ∈ K and
mi ∈M then 1← Ver(ki,mi,M-MACK(M)).

PROPERTIES. The first security property which we require for an M-MAC is unforgeability and
is a standard property for any MAC code (this property forbids the adversary from forging a cor-
rect authentication tag). We do develop on this by requiring a new property which we call strong
non-malleability and which lets any verifier detect whenever the adversary had tampered with any
part of the M-MAC. We show that both these properties are achievable by the following LM-MAC
construction, while simple concatenation of the tags fails in assuring the second property.

Construction 2. (Linearly Mixed MAC) We define the LM-MAC as the tuple of probabilistic
polynomial-time algorithms (Gen,Tag,Ver) that work as follow:
1. K ← Gen(1`, s) is the key generation algorithm which flips coins and returns a key set K =
{k1, ...,ks} where each key has ` bits (` is the security parameter of the scheme),
2. τ ← Tag(K,M) is the MAC generation algorithm which returns a tag τ = {x1, x2, ..., xs}
where each xi is the solution of the following linear system in GF (2b):

KD1(k1,m1) · x1 + ...+ KDs(k1,m1) · xs ≡ MACk1(m1)

KD1(k2,m2) · x1 + ...+ KDs(k2,m2) · xs ≡ MACk2(m2)

...

KD1(ks,ms) · x1 + ...+ KDs(ks,ms) · xs ≡ MACks(ms)

Here b is polynomial in the security parameter ` and KD stands for a key derivation process. If such
a solution does not exist, then the M-MAC algorithm fails and returns ⊥.
3. v ← Ver(ki,mi, τ) is the verification algorithm which returns 1 if and only if having τ =
{x1, x2, ..., xs} it holds MACki(mi) ≡ KD1(ki,mi)·x1+KD2(ki,mi)·x2+...+KDs(ki,mi)·xs.
Otherwise it returns 0.

Let us emphasize that the probability that the M-MAC fails to return a solution is negligible
in the security parameter (if proper b and s are chosen). As shown in [Charlap et al. 1990] the
probability that an n by n matrix with random elements from GF (q) is non-singular converges to∏∞
i=1(1− 1/qi) as n→∞. For example, in case when s = 4, we have a chance for the M-MAC to

fail of around 10−5 for b = 16 and 10−10 for b = 32.
Example 1. We want to clarify here our intentions on M-MACs with respect to the protocol

design. Consider a case when master M broadcasts messages m1 and m2 to slaves S1 and S2

along with the authentication tag. To increase the efficiency of our protocol we want to authenticate
both messages with the same mixed MAC and more, since only a portion of each tag is disclosed,
e.g., 64 bits (reducing the bus overhead but also the security level), we want one of the slaves to
be able to carry out the authentication further with a new valid tag (note that this is what hap-
pens in the case of the two-stage authentication). Consider that the following packets arrive on the
bus: message m1, message m2 and the mixed tag obtained by simply concatenating the two tags

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:9

MACk1(m1)||MACk2(m2). However, due to the message filtering feature of the CAN bus it may be
that the two messages do not reach both slaves. Assume message m1 reaches S1 and m2 reaches
S2. Now neither S1 or S2 can carry the authentication further, even in the case when they both have
k1 and k2 they are not in possession of the message that reached the other slave and thus they can
not validate the other part of the tag. More relevant, note that the nodes are unable to detect if the
other part of the tag is compromised. Now consider the case of the LM-MAC. In this case the tag is
obtained by mixing the two tags via the linear equation system, e.g., the two components of the tag
x1, x2 verify a relation of the form α1x1 + α2x2 = MACk1(m1) and β1x1 + β2x2 = MACk2(m2)
(here α’s and β’s are derived from the secret keys k1, k2). If an adversary compromises any part of
the tag, i.e., either x1 or x2, then both equations will fail to verify and any of the receivers possessing
a key the adversary has not compromised can detect this (indeed, we assume that the adversary is
not in possession of the secret keys k1 and k2 since in such case he can compute correct LM-MACs
anyway). Consequently, with the LM-MACs any of them can check the tag for correctness and this
validation will also hold for the other receiver, this is inherited from the strong non-malleability
property for M-MACs.

For efficiency, we can drop on some of the computation from the M-MAC at small penalties in
security. The next construction provides such a simplification.

Construction 3. (Simplified Linearly Mixed Message Authentication Code) We define the
SLM-MAC in the same manner as the LM-MAC except for the fact that in the generation and
verification algorithms the message is not used by the key derivation process, i.e., KDi(kj ,mj) is
replaced by KDi(kj),∀i, j ∈ 1..s.

Both the LM-MAC and SLM-MAC constructions are unforgeable, provided that the underlying
MAC is unforgeable. They are also strongly non-malleable and an adversary cannot manipulate a
single element of the tag without making the tag fail on all of the underlying keys (except for neg-
ligible probability). As the coefficients are constant in the case of the SLM-MAC, this construction
will not provide strong non-malleability if the adversary learns any of the MACki(mj) values. This
would not be the usual case as the authentication tag is comprised by τ = {x1, x2, ..., xs} from
which one cannot build MACki(mj) unless he is in possession of ki in order to derive the cor-
responding coefficients KDj(ki), j ∈ 1..s. We defer the formal treatment of these properties for
Appendix A.

2.4. LiBrA-CAN - the main scheme
In previous work [Groza et al. 2012] we defined the main authentication scheme around a master
oriented communication. This was justified by the fact that due to the limited size of a standard CAN
frame [Robert BOSCH GmbH 1991] one frame would not be enough to carry both the message and
the authentication tag. Consequently, using a master node with higher computational power to con-
tinue the authentication seemed like a correct practical approach, justified also by the results of the
experimental section. However, the master oriented communication may somewhat conflict with
CAN specifications (which clearly specify that CAN is a multi-master bus) and it also results in
more overhead by sending multiple authentication frames (notably, CAN frames have about 50%
overhead). Fortunately, as we worked on the protocol, the new CAN standard with flexible data
rates CAN-FD was released [Robert BOSCH GmbH 2012] and this allows us to place all the au-
thentication information in a single frame, reducing the overhead and making it possible to have
a cleaner, crisper protocol specification (we also include results from a real-time simulation of the
main scheme on CAN-FD).
NOTATION. To avoid unnecessary formalism that would not impact security we make some sim-
plifications. Whenever the authentication tag does not fit in a single frame we assume that it is sent
over separate authentication frames each of them having the proper counter caut (we do not explic-
itly use caut in the description of the schemes since this will only overload the notations). For the
same reason, we use the notation m̃ to denote the message that is already augmented by the counter
cmes , identifier id frame and node identityNi (the node identityNi can be eventually skipped if it is
embedded in the ID field of the frame). Since, with one exception, all versions of the protocol au-

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:10 B. Groza et al.

Table III. Possible groups with 4 nodes, groups of size 2 outlined

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

N1 X X X X X X X X
N2 X X X X X X X X
N3 X X X X X X X X
N4 X X X X X X X X

Table IV. Fraction of uncorrupted keys on each node, in the case of 8 participants, with group size g = 1..7
and corrupted nodes l = 0..8

g |G| |G′| l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7
1 8 1 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%
2 28 7 25% 21% 17% 14% 10% 7% 3.5% –
3 56 21 37.5% 26% 17% 10% 5% 1.7% – –
4 70 35 50% 28% 14% 5% 1.4% – – –
5 56 35 62% 26% 8.9% 1.7% – – – –
6 28 21 75% 21% 3.5% – – – – –
7 8 7 87% 12.5% – – – – – –

thenticate the same message to all nodes (rather than authenticate a tuple of messages), we replace
M with the augmented message m̃ and we write M-MACK(m̃). Obviously in this case the M-MAC
receives as input a message tuple of s identical messages m̃, i.e., M = {m̃, m̃, ..., m̃︸ ︷︷ ︸

s−times

}.

The key allocation procedure distributes the keys to the n nodes by placing them in groups of size
g. Figure 2 provides an example of key-sharing for the master oriented version of the scheme, for
the main scheme every sender will be placed in the role of the master. We start with an example that
shows how we intend to distribute keys to the nodes, then we proceed to the main scheme.

Example 2. Table III shows all the 16 groups that can be formed in the case of 4 nodes, including
the empty groupG0 and the group containing all nodesG15. The check-mark X is present if the node
is part of the group referred in the column header. We highlight in grey the columns corresponding to
all groups that can be formed by 2 distinct nodes, there are exactly

(
4
2

)
= 6 such groups. Moreover,

each 2 distinct nodes share exactly
(
2
0

)
= 1 group out of the 6. To exemplify further, we outline

the groups shared by N1, i.e., G9, G10, G12, and those shared by N2, i.e., G5, G6, G12 by marking
them with a square; it is easy to see that they intersect in a single group, i.e., G12. We now proceed
to a broader example. In Table IV the case of n = 8 is explored, with complete groups of all sizes g
and any number of corrupted nodes l. We outline the total number of groups |G| and the number of
groups shared by each node |G′| as well as the percentage of uncorrupted keys on each node, i.e.,
keys that are not known by the adversary. This value is computed as follows: for n = 8 and g = 2
there are 28 groups, if there is a single corrupted node, i.e., l = 1, the node is part of exactly 7
groups and controls 7/28 = 25% of the 28 shared keys. But each honest node shares exactly 1 key
with the dishonest one, consequently, out of the 7 keys only 6 cannot be controlled by the dishonest
node resulting in a fraction of 6/28 = 21%.
KEY SHARING PROCEDURE. There are numerous key-sharing procedures proposed in the liter-
ature based on the two well-known and explored alternatives: a secure symmetric-key server, e.g,
employed in related work from [Hartkopp et al. 2012] and [Woo et al. 2014], or the public key
infrastructure (PKI), e.g., suggested in related work from [Wolf et al. 2006]. However, the biggest
challenge in the context of in-vehicle security is not in writing some key-exchange protocol but in
finding one that can be integrated in real-world deployments where components from a single car
come from many distinct manufacturers. Since our work is focused on broadcast authentication,
rather than key-sharing, we believe that integrating a handshake for the key exchange will have little
theoretical merits while a proposal that could ease practical adoption is out of reach for the current
work. For this reason, in what follows we simply assume that the corresponding keys exist on each

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:11

node. For security reasons, we assume that new keys are negotiated at each protocol re-initialization,
e.g., each time the car starts, and refreshed at periodic intervals, e.g., each hour/day depending on
the intended security level. We do however emphasize that while our implementation frequently
uses truncated authentication tags to make them fit in the small CAN data-field (a procedure present
in any of the related proposals), this does not make the authentication keys vulnerable since the
keys can have full lengths, e.g., from 64–128 bits. It is just the probability that an adversary can
simply guess an authentication tag that is higher due to the truncation. As previously discussed,
re-initializing keys is also beneficial to assure freshness, thus the size of the message counter can
dictate the frequency of reinitialization.

Construction 4. (LiBrA-CAN - Main Scheme) Given an M-MAC construction for some
security parameter ` and n nodes placed in groups of size g, we define protocol
LiBrA-CANN∗(M-MAC, `, n, g) as the following set of actions for each CAN node denoted as
Ni, i = 1..n:

1. Setup(`, n, g) is the key setup procedure. Let t =
(
n
g

)
be the number of subsets of g nodes out

of the n nodes, the Setup procedure generates the t random keys, each of ` bits, then distributes to
each node the keys for the groups that he is part of. Let KiN = {ki1,ki2, ...,kit′} with t′ =

(
n−1
g−1
)

denote the key set of each nodeNi and Ki,jN = {ki1,ki2, ...,kit′′} with t′′ =
(
n−2
g−2
)

the keys shared by
each node Ni with node Nj .
2. SendMesTag(Ni, m̃,KiN) on which node Ni whenever wants to broadcast a message m̃ incre-
ments its local counter, computes the tag M-MACKiN (m̃) with its keyset KiN and sends the message
m̃ and the authentication tag on the bus.
3. RecMesTag(Ni,Nj , m̃,M-MACKiN (m̃)) on which node Ni receives a data frame containing
message m̃ from node Nj along with the corresponding tag M-MACKjN

(m̃). Node Ni checks if the
message is fresh, i.e., counter up to date, and authentic for all common keys, i.e., 1 ← Ver(m̃,k,
M-MACKjN

(m̃)), ∀k ∈ Ki,j . If the tag is correct for all keys in the common keyset, i.e., Ki,j , then
message m̃ is deemed authentic and the message counter updated.

Example 3. To see that our scheme achieves superior security we compare it to the scheme in [Szi-
lagyi and Koopman 2010]. We take for example a setup with 4 receivers and 1 sender. In Szilagy
and Koopman’s scheme, one frame will be sent containing 4 MACs (one for each receiver). Set
each of these tag to 9 bits (in [Szilagyi and Koopman 2010] 8 bits are suggested for each MAC, we
use 9 here just to make the comparison fair between the schemes, but these numbers are artificially
small anyway and serve just as an example). The security level after the first frame is 9 bits for each
node and, regardless of the number of subsequent votes from the other nodes, the security level is at
most (4 − l) × 9 bits, where l is the number of corrupted nodes. This is because subsequent votes
from other nodes will only confirm that their fragment from the initial MAC is correct and there
are only (4− l) trusted fragments each of 9 bits. Now consider LiBrA in the case of groups of size
2 and one sender. In this setup, there are 6 groups and keys shared between the sender and these
groups. The sender now has to broadcast 6 MACs each of 6 bits each (this adds up to a 36 bit tag
as previously). If there is no corrupted node, as each node has 3 of the 6 keys, the security level
after the first message from the sender is double compared to Szilagy and Koopman’s scheme, i.e.,
50%×36 = 18 bits vs. 9 bits. Subsequently each new authentication frame of the sender contributes
with the same amount of authentication bits (though our intention is to assure authentication in a
single frame in order to avoid delays and reduce overheads which can be done simply by increasing
the size of each tag). If we set the number of corrupted nodes to 1, we still get 12 bits of security
after a single message and the same amount of authentication bits will be added by each new frame
(because for each honest node 33% of the key bits are not corrupted). More relevant examples can
be drawn by increasing the number of nodes and MAC tags. In the case of 8 nodes, as shown later

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:12 B. Groza et al.

H1L

H2L H4L

H6L

1 2 3 4
l

20

40

60

80

100

120
bits

H1L

H2L
H3L

H4L

2 4 6 8
n

10

20

30

40

50
ÈGÈ

Fig. 4. Fraction of recovered bits (left) for 8 nodes with l = 1..7 and number of groups (right) for n = 1..8 (group size
given in the round brackets)

in Table IV, creating groups of size 2 leads to 25% of security bits being recovered from each tag by
each receiver, while increasing the group size to 6 it leads to 75% of security bits (all this in contrast
to 12.5% security bits recovered if keys are shared pairwise as in the scheme from [Szilagyi and
Koopman 2010]). In the case of 1 corrupted node, the security level is the same for 2 or 6 nodes and
in case of 2 corrupted nodes it drastically drops but it is still higher for groups of size 2. Roughly
speaking, groups of size 2 give double or triple security level when there are less than 2 corrupted
nodes.

The security of the main scheme can be directly linked to the security of the M-MAC construction
that we analyse in Appendix A. Below we give an account for the influence of corrupted principals
on the security level, i.e., collusion attacks. We simply point to combinatorial bounds as the security
of such multicast schemes is well established, see for example [Canetti et al. 1999].
NUMBER OF GROUPS AND KEYS. For n participants we have 2n groups, this includes one empty
group and one group which contains all participants. There are

(
n
g

)
possible groups of size g. For n

nodes, given all groups of size g, each node is part of
(
n−1
g−1
)

groups. Further, if one considers that
there is 1 corrupted node then he shares with each other node

(
n−2
g−2
)

groups. If there are l corrupted

nodes then they share with each node
(
n−l−1
g−l−1

)
groups (this gives the number of corrupted keys on

each node). For a more accurate view, we translate this discussion into security bits. Assume that
the M-MAC is built by simple concatenation of regular MACs (each of them computed with the
corresponding shared key). Having an M-MAC of some fixed bit-length t, each individual MAC is
truncated to t/n bits. If keys are pair-wisely shared between the sender and receivers, i.e., g = 1,
then each node receives exactly t/n security bits (since it is in possession of a single key that works
for one of the MACs). But in case we share the keys between groups of size g, then each node is
in possession of

(
n−1
g−1
)

keys which is a fraction of
(
n−1
g−1
)
·
(
n
g

)−1
from the total number of keys

and equivalently from the bits carried by the M-MAC (obviously this more than 1/n for g = 1).
Figure 4 shows on the left side the decrease in security bits, having fixed 256 bits for the tag, for
groups of size g = 1, 2, 4, 6 in the case of 0..4 adversaries (a dishonest minority). If we consider
an authentication tag of 256 bits, if this is to be shared by 8 nodes with 8 different keys then only
256/8 = 32 bits per node remain. Contrary, in the case of groups of size g = 2 there are 64 bits for
each node; even if there is 1 corrupted node, still 54 bits remain untouched (while this is not much,
it may be enough for real-time security). Generally, with 1 adversarial node the highest security is
for g = n/2 due to the binomial expansion in which the middle coefficient is the larger. With at
most n/2 adversaries, i.e., adversarial minority, the highest security is at g = 2 and it decreases
linearly. On the right side, Figure 4 shows the number of groups (which translates into keys) in the
case of n = 1..8 nodes and subgroups of size g = 1, 2, 3, 4. Obviously, this grows exponentially,
but for smaller g the number of keys is decent and gives strong security benefits.

We further design several variations of the main authentication scheme that give efficient trade-
offs as shown in the experimental results section. These variations can be roughly grouped in two
main classes. First, for non-homogeneous networks it makes sense to have a master oriented authen-
tication where the node with higher computational power deals with the main part of the authenti-
cation procedure. Second, for homogeneous networks where all nodes have similar computational

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:13

power it makes sense to have a distributed authentication scheme where all participants contribute
to the authentication task. For brevity, whenever possible without confusions, we skip the formalism
related to the schemes.

2.5. Master oriented versions of the scheme
A master oriented communication makes sense since it is practical to have one node with higher
computational power that can take care of the most intensive part of the authentication. This is also
supported by our experimental results. More, if the master node is a trustworthy third party, there
are clear security benefits if he handles all keys that are shared between nodes since he can continue
the authentication further with all the remaining keys (not only with the keys known to the sender).
This is summarized by the next construction. Figure 2 shows the master node and the slave nodes
connected to the bus, it also outlines the keys that are shared between nodes.

Construction 5. (Centralized Authentication) Given an M-MAC construction for some
security parameter ` and n nodes placed in groups of size g, we define protocol
CN-LiBrA-CANM,N∗(M-MAC, `, n, g) as follows. Let KM denote the keyset of the master node
and run the previous key-setup procedure only for the master node (i.e., the master places the slaves
in groups of size g and shares keys with the groups). The following set of actions hold for the master
M:

1. RecMesTag(M,Ni, m̃,M-MACKiN (m̃)) on which masterM receives message m̃ and authen-
tication the tag M-MACKiN (m̃) from slave Ni. Subsequently, master M checks if the counter is
up-to-date and if the message is authentic, i.e., 1 ← Ver(m̃,k, M-MACKiN (m̃)), ∀k ∈ KiN . If so,
he proceeds to authenticating the tag to other nodes with SendTag(M, m̃,KiN) and updates the
message counter.
2. SendTag(M, m̃,KiN) on which masterM gathers all the remaining keys KM \ KiN computes
M-MACKM\KiN (m̃) and broadcasts it as an authentication frame with the same ID as the original
message (note that in this case the M-MAC is computed with the remaining

(
n
g

)
− g keys, there is

no restriction from the construction of M-MAC to do it so).

and for each of the slaves N ∗:
1. RecMesTag(Ni,Nj , m̃,M-MACKjN

(m̃)) on which slaveNi receives message m̃ and an authen-
tication tag from another slave Nj and proceeds similarly to masterM by checking if the message
is authentic but only with respect to the keys k ∈ KiN ∩ KjN that he shares with slave Nj . The
message is not deemed authentic until a successful RecTag(Ni,M,Nj ,M-MACKM\KjN

(m̃)) event
follows.
2. RecTag(Ni,M,Nj ,M-MACKM\KjN

(m̃)) on which slave Ni receives an authentication frame
containing the tag M-MACKM\KjN

(m̃) from the master M (that continues the authentication of

slave Nj) and verifies for all keys k ∈ KiN ∩
(
KM \KjN

)
if the tag is correct. If for all keys in its

keyset the tag is correct then message m̃ is deemed authentic and the message counter updated.
3. SendMes(Ni,m,KiN) on which slave Ni whenever wants to broadcast a message m̃ increments
its local counter, computes the tag M-MACKiN (m̃) with its keyset KiN and sends the data frame
containing message m̃ and the corresponding tag on the bus.

CUMULATIVE AUTHENTICATION. Since in some scenarios small delays may be acceptable, we
can take benefit of them and increase the efficiency of the main scheme. In the cumulative authenti-
cation scheme a timer can be used and all messages are accumulated by the master over a predefined
period δ then authenticated at once (this procedure can be employed in the slave-only settings as
well). While this introduces an additional delay δ, similar to the case of the TESLA protocol, this
delay can be chosen as small as needed to cover application requirements. Distinct to the case of

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:14 B. Groza et al.

the TESLA protocol the delay is not strongly constrained by external parameters (such as oscillator
precision, synchronization error, bus speed, etc.).
LOAD BALANCED AUTHENTICATION. The centralized authentication scheme is beneficial in the
case when the communication master has higher computational resources, but it may be the case
that the master node is already busy with other computational tasks. For such case, a load balanced
version of the scheme can be used in which the communication master can send a flag (authenticated
along the message) to point for a particular slave(s) to carry the authentication further.

2.6. Distributed versions of the scheme
Indeed, an authentication master may not always be present. Moreover, several events can lead to
his unavailability (for example he can enter Bus Off-mode due to problems with the transceiver or
the ECU itself can suffer a malfunction). For this purpose we introduce the cascade authentication
scheme where the slaves reply in a cascade manner by sending the authentication tag for their group
of keys. In what follows, we assume that all the nodes continue the authentication in a round-robin
fashion until they reach the sender (or stop after sufficient authentication tags are released). Thus,
we point out to node (i + 1) as the next node and whenever we reached the n-th node the first one
becomes the next, etc.

Construction 6. (Cascade Authentication) Given an M-MAC construction for some se-
curity parameter ` and n nodes placed in groups of size g, we define protocol
DC-LiBrA-CANN∗(M-MAC, `, n, g) as follows. Let Ki,jN denote the keys shared between nodes i
and j (we assume the same key-setup as previously, except that the master does not play any role in
authentication), then the following set of actions is defined for each of the nodes N ∗:
1. RecMes(Ni,Nj , m̃) on which nodeNi receives a data frame containing message m̃ from another
node Nj checks if the counter is up-to-date then stores the message in a queue of messages to be
authenticated.
2. RecTag(Ni,Nj ,M-MACKj,j+1

N
(m̃)) on which Ni receives an authentication frame containing

tag M-MACKj,j+1
N

(m̃) from another nodeNj and verifies for all keys k ∈ KiN ∩K
j,j+1
N if the tag is

correct. If for all keys in its keyset a correct tag was received then message m̃ is deemed authentic
and the message counter updated. If i = j + 1 then it proceeds to SendTag(Ni, m̃,Ki).
3. SendTag(Ni, m̃,Ki) on which node Ni gathers all the keys shared with node Ni+1 in the set
Ki,i+1
N , computes M-MACKi,i+1

N
(m̃) and broadcasts it as an authentication frame.

4. SendMes(Ni, m̃,Ki) on which nodeNi whenever wants to broadcast a message m̃ increments its
local counter, computes the tag M-MACKi,i+1

N
(m̃) and sends the data frame containing m̃ followed

by an authentication frame containing the tag on the bus.
SECURITY. The cascade authentication is intended for balancing the computational costs of the
authentication between principals. Since the nodes proceed in a chain reaction by simply re-
authenticating messages with their own keys, new tags are produced that extend the authentication
over new keys. The security level at each node is at most that of the tag from the initial message that
triggered the cascade (assuming all nodes in the cascade are trusted, otherwise this is proportional to
the number of uncorrupted keys). Consequently, the security level depends solely on the size of the
individual tags that are used for the response of the honest receivers that continue the cascade (by
further providing correct authentication tags with the correct keys that they hold). For this reason
we advise that a sufficient security level must be chosen to avoid an exhaustive search of the correct
authentication tag by the injection of faked messages until an honest node will continue the cascade.
For the LM-MAC construction, while the size of the tag remains the same and it requires the same
number of attempts to obtain a valid response from an individual node, it is not possible to attack
small fragments of the tag (by exhaustive search on each fragment until a node provides a valid
response) and later recompose the larger tag from the smaller fragments, e.g., by simple concatena-
tion. Thus the LM-MAC provides additional security benefits in front of simple concatenation. We
do not further explore these benefits for the Cascade Authentication scheme since we believe that

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:15

Table V. Technical specifications for S12XDT512 and TriCore TC1797

Characteristic S12XDT512 TriCore TC1797
Flash Memory 512 KB 4 MB

RAM 20 KB 156 KB (SRAM)
EEPROM 4 KB 16 KB emulated by 64KByte data Flash

Clock Speed 80 MHz 180 MHz

for practical needs the main LiBrA-CAN scheme is the optimal choice as tags are sent at once with
the messages avoiding supplementary bus load and facilitating immediate authentication.
TWO-STAGE AUTHENTICATION. In the case of two-stage authentication we assume a scenario
with nodes of equal computational power. In this case each node can start broadcasting by sending
a tag which includes only a part of the keys for the subgroups that he is part of and a second node
(pointed out by some flag, or predefined in protocol actions) continues with the authentication. The
procedure is repeated until the desired number of authentication frames is reached.
MULTI-MASTER AUTHENTICATION. For the same reasons, a distributed version of the central-
ized authentication scheme can be imagined. In this case, several nodes with higher computational
power can form a group of communication masters. Each of them may broadcast a distinct authen-
tication tag and if any such tag is missing, due to the unavailability of a particular node, the other
masters will take care of replacing this tag with one of their own.

3. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed protocol suite, we used several setups with different
hardware components having the goal to determine the minimum authentication delay.

3.1. Protocol performance
Automotive grade embedded devices from Freescale and Infineon as well as a notebook equipped
with an adapter for CAN communication from Vector were employed. On the S12X platform, only
the main core was used at a frequency of 80MHz (the X stands for the XGATE co-processor that can
be further used to optimize computations). The embedded platforms that we used are representative
for industry’s low-end and high-end edges. Table V holds several technical details on these two
platforms. We built several test beds as follows:
• Testbed T1: Intel T7700+4×TC1797 . The master node is implemented on a standard PC
connected via a high speed CANcab connector from the CANcardXL board to the slave nodes that
are built on the TriCore platform (this enables a 1Mbps communication speed).
• Testbed T2: TC1782+4×TC1797 . Master and slave nodes are built on similar TriCore
(TC1797) development boards. CAN communication speed is set to 1Mbps.
• Testbed T3: Intel T7700+4×S12X . The master node is implemented on a PC (Intel Core2Duo
CPU T7700@2.4GHz) while slave nodes are built on the S12X boards. The master-slave CAN
communication is done through the CANcardXL using a low speed CANcab for 125kbps.
• Testbed T4: S12X+4×S12X . Both master and slave nodes are built on identical S12X devel-
opment boards with CAN communication speed set to 125kbps.
• Testbed T5: S12X+8×S12X . We used 8 nodes based on S12X boards for cascade and two-
stage authentications. To these, one more S12X node was added as master for the case of centralized
authentication.

Centralized authentication was tested for the case of 4 nodes in groups of size 2 that leads to
a total of 6 groups. Messages and authentication tags are always sent as separate frames and the
message size is always 8 bits, e.g., the size of a message from an analog-to-digital converter. The
MAC size for each key is truncated to 21 bits so that 3 authentication tags fit a single 64 bit CAN
frame. The MAC is computed using the MD5 hash function over an input formed by concatenating
the group key to the message. While we are aware that MD5 is weak and collisions were found long
ago, we use it as a baseline for speed comparisons. Since real-time attacks were not reported so far
on MD5, it should still be secure for the setting that we address. For completeness and to serve as

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:16 B. Groza et al.

Table VI. Example of tag allocation for the cascade scheme DC-8S2F4

- N1 N2 N3 N4 N5 N6 N7 N8

N1 - 36 10 10 8 - - -
N2 - - 26 10 10 18 - -
N3 - - - 18 10 10 26 -
N4 - - - - 8 10 10 36

a thorough comparison, we will also provide results for other relevant hash functions, including the
SHA3 candidates in Table VIII. The resulting hash is then truncated to the desired size. Table VII
holds the timings and bus loads for each test bed. Here δ is the authentication delay, i.e., the delay
between the time at which a message is received up to when it is authenticated on the receiver side
(this includes the time to verify the tag and partly the time to compute and send it since these two
can start as soon as the message is sent). For the bus load we considered the fraction of traffic caused
by the authentication tags over the entire bandwidth.

As expected, scenarios in which high end devices played the role of master nodes (PC, TriCore)
showed better performances than in the case of low end master nodes. The case of a PC master with
TriCore slaves does not perform better, despite the considerable difference in computational power
between master nodes (TriCore vs. Intel Core2Duo) due to limitations of CAN adapters. Because of
their internal hardware/software design, these adapters introduce some limitations, e.g., the average
response time specified by Vector for the CANcardXL is 100µs.

A more complex setting was implemented around 8 S12X nodes grouped two by two which leads
to 28 groups. The size of the authentication tags and the truncated MAC size differs in each variant.
We set up the implementations as follows:

• Centralized: The sender computes and sends one MAC for each group that he is part of. The
master computes and sends one MAC for each of the other 21 groups (if groups of size 2 are used).
If the master is to perform the authentication in only 2 frames then each MAC can be truncated to 5
bits and this will lead to a total of 35 security bits for each node. But if we increase the number of
authentication frames from the master to 3, then each MAC can be truncated to 9 bits giving a total
of 63 authentication bits for each node which is a reasonable level for real-time security.
• Cascade: Three additional nodes take part in the authentication process besides the sender. The
sender computes four MACs, three of which are for the nodes that will help to authenticate the
message. The helper nodes will then compute three extra authentication tags to provide enough
authentication information for all other nodes. An example of tag allocation is suggested in Table
VI. On each line 64 bits are distributed to the nodes denoted on the columns (this is achieved by
concatenating MACs that are truncated to the corresponding bit length). Here N1 is the sender and
nodes N2, N3 and N4 continue the authentication. If the size of the groups is 2 then each node
will get around 36 security bits, but if the size of the groups is increased to 3 then, at the same
computational cost and bandwidth, around 63 security bits are received by each node.
• Two-stage: The master node is missing in this implementation, therefore we use two helper nodes
for computing and sending the complete authentication tag. In the two-stage variant, the sender will
first put one authentication tag on the bus which contains the full 36 authentication bits for one of the
helper nodes, 20 bits for the second one and 8 extra bits for another node. This first tag is followed
by a second tag generated by the first helper node which contains the remaining 16 authentication
bits for the second helper node and 48 bits equally distributed for three of the remaining nodes.
To complete the 36 authentication bits for each of the remaining nodes, the sender and the second
helper node will each put an authentication tag on the bus. As discussed previously, the security
level can be raised to around 64 bits by using groups of size 3 and the described tag allocation
procedure.

Table VII holds the results achieved with these three implementations. The worst performer in
terms of authentication delay is the implementation of the centralized authentication variant as it
involves computing MACs for each of the 28 groups in a sequential manner. In the other imple-
mentations, a smaller number of MACs are computed some of which are done by different nodes in

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:17

Table VII. Authentication delay and bus-load (various configurations)

Setup and scheme
Tag Msg. δ

Bus load Speed
(bits) (bits) (ms)

T1: Centralized n=4, g=2 64 8 0.267 54.31% 1Mbps
T2: Centralized n=4, g=2 64 8 0.378 42.54% 1Mbps
T3: Centralized n=4, g=2 64 8 2.54 53.84% 125Kbps
T4: Centralized n=4, g=2 64 8 1.848 72.22% 125Kbps
T5: Centralized n=8, g=2 64 8 22.62 11.27% 125Kbps
T5: Cascade n=8, g=2 64 8 9.86 36.11% 125Kbps
T5: TwoStage n=8, g=2 64 8 6.806 46.21% 125Kbps

parallel. A smaller authentication delay is obtained when using the two-stage implementation at the
cost of an increased CPU load on the sender side.

3.2. Computational performance with LM-MAC

Previous results were based on the simple concatenation of individual MACs computed with MD5
as the underlying hash function. We now take a brief account of the impact of mixing tags using
linear systems of equations.

In Table VIII we give an overview on the computational timings for various hash functions and
input sizes on both of the employed platforms. The usual message size for our scenario will be
less than 64 bits (the maximum size of the data carried in one CAN frame) since it contains values
from various sensors, etc., that are usually small. To this one will need to add the size of the key
that is hashed with the message, thus 16 bytes for the input should be the expected length. We also
give measurements for a 64 bytes input just to get an upper bound since an input of such size is less
likely (this is in fact the maximum size of the CAN-FD data field). For the Linearly Mixed MACs, in
addition to the computation of the MACs, two additional computational tasks are required: solving
the linear system of equations on the sender side (a task which should be usually done by the master
which has higher computational power) and reconstructing the MAC on the receiver side.

We made a customized implementation dedicated for GF (216) and GF (232) which resulted in a
less general but more compact source code without any unnecessary operation (note that more than
a single authentication frame is sent, thus security is not limited to a single GF (232) part of a tag).
We improved more by noticing that we could perform the same mixing procedure by working in the
integer group Zp where p is Mersenne prime, i.e., a prime of the form 2q − 1 for some other prime
q, since in this case modular reduction can be performed more efficient. Concretely, for a group
size close to GF (232) we chose p = 231 − 1 = 2147483647 which allows 31 bits of entropy for
any of the mixed tags. Having this fixed, the computational performance was up to about one order
of magnitude cheaper than in the case of the GF (232) field. In Figure 5 (i) we make a graphical
depiction of the computational costs for the case of n = 2, 4, and 8 nodes respectively. In each case
the computational costs of mixing the MACs is compared to the computational cost of 2, 4 and 8
MD5 or HMAC-MD5 operations (these are required to compute the authentication tags in any case).
The simplified mixing is significantly cheaper compared to the MD5, in the case of Zp its cost is
relatively inexpensive compared to the required hashes. Even in the case of the linear mixing based
on Gaussian elimination in Zp it is still half the cost of the corresponding hashes. Table IX shows
the computational costs of simplified linearly mixing SMIX (based on matrix multiplication and
required for the SLM-MAC) in the case of GF (216), GF (232) and Z231−1 and the case of regular
mixing MIX (based on Gaussian elimination and required by LM-MAC) in the case of Z231−1. In
Figure 5 (i) we make a graphical representations of the costs when compared to the costs of regular
MD5s or HMACs required for the corresponding number of nodes. Figure 5 (ii) shows a prediction
of the cost increase when comparing the symmetric functions with the additional costs for mixing
the tags. The prediction is based on the fact that mixing with linear equations (MIX) is done by
Gaussian elimination which is O(n3) while matrix multiplication by a vector (SMIX) required for

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:18 B. Groza et al.

Table VIII. Execution time for some common hash functions

Function
Input size (bytes)

S12X TriCore
0 16 64 0 16 64

MD5 371µs 374µs 689µs 10.16µs 11.00µs 18.34µs

SHA1 1.144ms 1.148ms 2.285ms 14.64µs 15.10µs 27.60µs

SHA256 2.755ms 2.755ms 5.440ms 41.70µs 42.35µs 80.80µs

BLAKE 32 1.496ms 1.532ms 2.925ms 29.78µs 28.67µs 48.64µs

BLAKE-2 32 1.117ms 1.119ms 1.126ms 27.97µs 28.13µs 28.13µs

Groestl 256 2.990ms 2.991ms 4.919ms 237µs 222.8µs 359.2µs

JH 256 6.187ms 12.33ms 12.30ms 104.1µs 191.5µs 191.1µs

Keccak 7.649ms 7.654ms 7.660ms 98.44µs 98.41µs 98.4µs

Skein 5.402ms 5.405ms 5.410ms 183.5µs 183.4µs 183.4µs

Table IX. Execution time for MAC-mixing (Infineon TriCore)

SMIX (GF16) SMIX (GF32) SMIX (Zp) MIX (Zp)

2x2 4.205µs 7.89µs 2.045µs 12.50µs

4x4 15.16µs 28.80µs 5.17µs 36.95µs

8x8 57.3µs 111.0µs 17.28µs 180.20µs

simplified mixing is O(n2). Finally, the number of MD5s or HMACs increases linearly with the
number of nodes. Even in the case of n = 32 nodes, the cost for mixing the tags is lower than the
cost incurred by the corresponding HMACs.

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=2

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=4

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=8

50

100

150

200

250

300

MD5

HMAC

MIXIZpM
SMIXHGF232L

SMIXIZpM

SMIXHGF216L

0 5 10 15 20 25 30
n0

200

400

600

800

1000

1200

1400

cost

Fig. 5. Computational costs (Infineon TriCore) for mixing the tags (left) and estimation for the influence of the participants
number on computational costs (right)

4. IMPROVEMENTS WITH CAN-FD AND CAN+
In this section we discuss two methods for eliminating the drawbacks that arise from the limited
size of the data field from standard CAN frames, first by employing the recently released CAN-FD
standard and second by using an unofficial extension called CAN+ [Ziermann et al. 2009].

4.1. CAN with Flexible Data-Rate (CAN-FD)
Since CAN-FD capable boards are not yet widely available on the market, we take advantage of the
CANoe tool from Vector (www.vector.com) which is the industry standard for developing real-time

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:19

Table X. Bus-load at immediate authentication (main scheme, CANoe simulation)

Scheme
Tag Msg. Cycle Bus load Bus load (no auth)

(bits) (bits) (ms) CAN CAN-
FD

CAN CAN-FD

Main Scheme n=4, g=2 64 8 1 67.71% 17.74% 21.76% 13.12%

Main Scheme n=4, g=2 64 64 10 9.85% 2.07% 4.68% 1.6%

Main Scheme n=4, g=2 64 64 1 92.4% 19.61% 46.6% 16.12%

Main Scheme n=8, g=2 64 64 10 19.14% 4.06% 9.36% 3.2%

Main Scheme n=4, g=2 192 64 1 100% 26.26% 46.6% 16.12%

Main Scheme n=4, g=2 192 64 10 19.41% 2.86% 4.68% 1.6%

Main Scheme n=8, g=2 448 64 1 100% 33.77% 93.2% 32.24%

Main Scheme n=8, g=2 448 64 10 37.97% 4.29% 9.36% 3.2%

simulations of in-vehicle networks. We underline that this is a real-time simulation and the software
allows connection with real-world networks via various hardware interfaces, e.g., VN1630.

Our simulation considers networks of 4 or 8 nodes in groups of size 2 which send messages in
a cyclic manner at 1 or 10 ms. The messages are always 8 bytes long (the maximum allowed in
CAN frames) followed by the authentication tag (which shares the same frame with the message in
case of CAN-FD). With CAN-FD, the LiBrA Main Scheme can deliver immediate authentication
since the MAC tag can be send with the message in the generous 64 byte data field. Thus there is
no authentication delay in our simulation (in contrast to previous experiments from Table VII) since
this delay depends solely on the computational power of the node (for which results in Tables VIII
and IX should be taken into account). To emphasize on the benefits of CAN-FD, we compare the
bus-load with that of CAN in the case when nodes are broadcasting messages at 1or 10 ms cycles.
For the CAN simulation every node sends a message and an additional authentication tag, i.e., 2
frames, at each cycle (immediate authentication is not possible on CAN).

Table X illustrates the simulation parameters and the bus-loads obtained for both CAN (running
at 1Mbaud) and CAN-FD (running at 1Mbaud with the data segment at 8Mbaud). The first lines
show the behaviour for 64 bit tags at various number of nodes, group sizes and cycles, CAN copes
with all of these but the bus-load for CAN-FD is at least 4× lower. We also increased the size of
the authentication tag to 192 and 448 bits respectively. This allows a very high security level, e.g.,
in case that no corrupted nodes are present; each node harvests 50% of security bits for n = 4
and 12.5% for n = 8. CAN-FD behaves perfectly well with bus loads under 25–33%. Note that
in the case of standard CAN there is a 100% bus load and some nodes do not manage to transmit
messages. In particular, for the case of 192 bits tag only two CAN nodes can send messages along
with all the authentication tags, while at 448 bits there is only one node that succeeds so. In contrast
to Table VII, since for CAN-FD we don’t have separate frames that carry the authentication tag, the
bus load covers the entire traffic. Out of this, the authentication tag represents less than 1/2 for 64
bit tags and is sent in the high data rate segment which works 8 times faster than usual (8 Mbps vs.
1 Mbps). This leads to a bus load of only 33% even in the case of the larger 488 bit tags.

4.2. Backward compatibility with CAN+
The CAN+ protocol allows transmission of extra data along with a CAN packet on an out-of-band
channel. It does this by transmitting data at an increased rate in between CAN sample points. At
least 225 extra bits can be transmitted with the CAN+ protocol alongside a CAN message.

Using the CAN+ protocol for LiBrA-CAN data transmission helps in two ways. First of all, the
required bandwidth drops. For LiBrA-CAN schemes whereby a single node never needs to transmit
more than d 22564 e = 3 authentication tags, all LiBrA-CAN data can be transmitted as CAN+ data.
This reduces the LiBrA-CAN overhead for those schemes to 0%. Nodes that need to transmit just a
tag, can do so by transmitting a 0-byte CAN message and embedding the tag as CAN+ data, thereby

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:20 B. Groza et al.

reducing the time they use the bus from 108 bit lengths (for an 8-byte message) to 44 bit lengths in
non-extended CAN mode, which is a 60% decrease.

Second, if LiBrA-CAN authentication data is only transmitted as CAN+ data, then nodes that do
not support CAN+ will not even see the LiBrA-CAN data. Thus, a system can be setup whereby
important nodes are outfitted with a CAN+ transceiver, while non-important nodes aren’t. This
makes the LiBrA-CAN protocol completely backwards compatible with existing CAN networks:
nodes supporting CAN+ could be dropped into the network at will and start authentication messages
with LiBrA-CAN, while existing CAN nodes will be completely oblivious as to what is going on
and continue functioning as before. An added bonus is that this also drastically reduces roll-out cost.

The CAN+ protocol [Ziermann et al. 2009] allows out-of-band data transmission by inserting
extra data into the CAN bitstream in between CAN sample points. To better understand this, one
must first take a step back and take a look at the CAN protocol.

At the data link level, CAN works with a non-destructive arbitration mechanism. The first step of
message transmission consists of sending the message’s ID. Due to synchronization, all nodes on
a bus will start transmission at the same time. If one of the nodes transmits a zero (dominant) bit,
the bus will be pulled low, thereby “destroying” the transmission of any one (recessive) bit being
transmitted at the same time. Stopping transmission as soon as such a collision is detected leads to
the non-destructive arbitration mechanism, which prioritizes low-value IDs. One of the requirements
of the arbitration processes is that transceivers detecting a collision do not transmit any more bits,
so they need to be able to detect a collision on a bit in the same time window during which that
bit is sent. This requires the propagation delay to be less than one clock cycle. However, after the
arbitration step, only a single node will still be transmitting and thus, there is no more need to detect
bit errors during their transmission window, meaning transmission can happen at an increased rate.

The idea to split CAN message transmission in a slow and fast phase was first proposed by
[Cena and Valenzano 1999]. The CAN+ protocol takes a slightly different approach: CAN messages
themselves are transmitted at their usual rate, however, in between sample points, extra data is sent
at an increased rate. A traditional CAN transceiver will not notice these extra bits, thereby making
the CAN+ protocol function effectively out-of-band. Figure 6 shows the transmission window for
CAN+ data inside a CAN bit. Up to 15 extra CAN+ bits can be transmitted along with each CAN
bit on a 1 MHz bus. On slower buses, even more bits can be inserted into the data stream. If we
assume that CAN+ bits are inserted during the data and CRC field transmission, then a minimum of
225 CAN+ bits can be transmitted (inside the 15 CRC bits, for a 0 byte message on a 1 MHz bus).

CAN bit

CAN+ transmission
window

15% 55%
75% - CAN
sample point

Fig. 6. Timeframe during which the CAN+ protocol can insert extra data into a CAN bit

We implemented a CAN+ transceiver to get a better idea of its area requirements. The basis of
this implementation is revision 1.47 of the open-source CAN transceiver implementation by Igor
Mohor, found on the OpenCores website (http://www.opencores.org). The design was synthesized
with Xilinx ISE 12.2 for a Spartan-6 FPGA with design goal “Area reduction”. Our design takes
into account the worst case maximum CAN+ data length of 225 bits and, for the given synthesis
results, can not transmit or receive more than that. The required area can be found in Table XI. Since
it is able to piggyback onto the existing CAN interface logic, the CAN+ transceiver only increases
the total transceiver size by a moderate 20%, for a total size of only 430 slices. The total size of the
design is smaller than the sum of the size of the two subdesigns (CAN and CAN+), since the Xilinx
ISE tool executes compacting operations on the full design. A minimum clock speed of 80 MHz

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:21

Table XI. Synthesis results for CAN & CAN+ transceiver on a
Spartan-6 using Xilinx ISE 12.2 (goal: “Area Reduction”).

Slices Registers LUTs
CAN 499 603 917
CAN+ 106 95 227
Combined 430 698 1192

is required for the CAN+ transceiver to function on a 1 MHz CAN bus. Our design meets those
requirements with a maximum clock speed of 90.75 MHz.

4.3. Final words on performance and comparison to related approaches
With respect to bandwidth, the CANoe simulation clearly proves that the bus load easily reaches
100% in the case of CAN while it always stays within reasonable margins with CAN-FD. This
result is not unexpected and clearly indicates that CAN-FD should be the layer to deploy security,
while for the basic CAN, security is achievable only for a limited number of nodes (or messages).
We can of course always improve on this by limiting the size of the authentication tag and avoiding
to authenticate all frames, e.g., as proposed in [Hartkopp et al. 2012], but this will result in a bus
that is only partially secure (an unusual choice as we usually design protocols with the intention
to be fully secure). CAN-FD seems the ideal layer for LiBrA-CAN, indeed, it will help all other
proposals as well and not only ours in particular.

From a computational point of view, the high-grade Infineon TriCore easily handles the hash
computations required by our protocol. The computational requirements do not appear to be prob-
lematic as bandwidth appears to be the limiting factor. Related work also considered the use of
encryption in counter mode to assure the confidentiality of frames, e.g., [Woo et al. 2014]. While
encryption adds an extra layer of security, there are not many advantages in keeping the information
secret, in fact this could make other tasks such as bus monitoring and debugging more difficult. The
use CMAC based on AES rather than hash-based MAC was considered in [Hartkopp et al. 2012].
Our Mixed MACs could also be built on top of the AES based CBC-MAC and this would have been
the construction of choice for us if AES hardware support existed. We believe that the final word on
the exact cryptographic primitive to be used would come from the existing hardware support, likely
AES or the newer SHA3, that will clearly be available on future generation automotive grade con-
trollers. Mixing the authentication tags adds some overhead, but it does not appear to be significant.

The experimental results that we provide are meant to prove that implementing the protocol is fea-
sible and to give an image over the computational costs and bandwidth. Comparing the performance
of our protocol with distinct proposals cannot be done in a straight-forward manner. In Table II of
the introductory section, we did provide a comparative overview of the strengths and weaknesses for
current proposals. However, a quantitative performance comparison with related work is not really
feasible as the goals and design intentions behind the proposals are quite distinct. For example it is
not really possible to compare a TELSA like protocol, e.g., [Groza and Murvay 2013], with proto-
cols based on pairwise shared keys because obviously the first needs extra bandwidth to broadcast
the key chains, even if there are no messages, and it induces authentication delays while pairwise
key sharing is not feasible when the number of nodes is high. A solution such as CaCAN [Kurachi
et al. 2014] has almost inexistent bandwidth requirements and is fully backward compatible, but
if the centralized node used for authentication is unplugged from the bus then all security is lost.
Again, a comparison will be useless. Mutatis mutandis, all other solutions based on pair-wise key
sharing such as [Hartkopp et al. 2012], [Wang and Sawhney 2014], [Bittl 2014], [Woo et al. 2014]
and LiBrA would revolve around the same performances if the proper parameters are tuned, i.e.,
group size, number of nodes under the same key and the size of the authentication tag. Still, the
group key-sharing behind LiBrA is a mechanism that was recognized long ago to have advantages
when adversaries are in minority, e.g., [Fiat and Naor 1994], [Canetti et al. 1999], and we believe
that LiBrA is a better alternative if in-vehicle networks fit into this scenario.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:22 B. Groza et al.

5. CONCLUSION
LiBrA-CAN is an efficient alternative to achieve source authentication if nodes can be placed in
small broadcast groups with dishonest nodes in minority. We expect this to be the case in many
automotive scenarios where, although the number of ECUs may be high, the numbers of manufac-
turers from which they come may not be high and distributing trust between several groups is an
acceptable solution. Experiments performed on the recently released CAN-FD, showed that it is
possible to achieve immediate authentication at small costs in bandwidth. If the number of nodes
is high we see only two resolutions: public key cryptography (with the drawback of high compu-
tational requirements, at least 2 orders of magnitude) or TESLA like protocols (with the drawback
of authentication delays as shown in [Groza and Murvay 2013]). CANAuth [Van Herrewege et al.
2011] is also a solution for high number of nodes if one considers that source authentication is
not relevant and associating keys to message groups is sound from a security perspective. While a
decision on real-world protocol deployments can be taken only by manufacturers and by means of
consortium, we believe that LiBrA carries key concepts for such a deployment. We also consider
that the proposal here has the advantage of being simple to implement and simplicity is one relevant
criteria for adoption in practice.

Acknowledgment. We thank to Prof. Zonghua Gu for pointing the works of [Szilagyi and Koopman 2010]
and [Szilagyi 2012] to our attention. We are grateful to the anonymous referees that provided useful comments
on earlier versions of this manuscript.

REFERENCES
Hagai Bar-El. 2009. Intra-vehicle information security framework. In Proceedings of 9th Embedded Security in Cars Con-

ference, ESCAR.
Sebastian Bittl. 2014. Attack Potential and Efficient Security Enhancement of Automotive Bus Networks Using Short MACs

with Rapid Key Change. In Communication Technologies for Vehicles. Springer, 113–125.
Dan Boneh, Glenn Durfee, and Matt Franklin. 2001. Lower bounds for multicast message authentication. In Advances in

Cryptology (EUROCRYPT 2001). Springer, 437–452.
Alessandro Bruni, Michal Sojka, Flemming Nielson, and Hanne Riis Nielson. 2014. Formal Security Analysis of the MaCAN

Protocol. In Integrated Formal Methods. Springer, 241–255.
Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny Pinkas. 1999. Multicast security: A tax-

onomy and some efficient constructions. In Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM’99), Vol. 2. IEEE, 708–716.

G. Cena and A. Valenzano. 1999. Overclocking of Controller Area Networks. Electronics Letters 35, 22 (Oct. 1999), 1923–
1925.

H. Chan, A. Perrig, and D. Song. 2003. Random key predistribution schemes for sensor networks. In IEEE Symposium on
Security and Privacy. IEEE, 197–213.

Leonard S. Charlap, Howard D. Rees, and David P. Robbins. 1990. The asymptotic probability that a random biased matrix
is invertible. Discrete Mathematics 82, 2 (1990), 153 – 163.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei
Czeskis, Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive Attack
Surfaces. In USENIX Security.

A. Fiat and M. Naor. 1994. Broadcast encryption. In Advances in Cryptology (CRYPTO93). Springer, 480–491.
Bogdan Groza, Pal-Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede. 2012. LiBrA-CAN: a Lightweight

Broadcast Authentication protocol for Controller Area Networks. In Proceedings of The 11th International Conference
on Cryptology and Network Security, CANS 2012, Springer-Verlag, LNCS.

Bogdan Groza and Stefan Murvay. 2013. Efficient protocols for secure broadcast in controller area networks. Industrial
Informatics, IEEE Transactions on 9, 4 (2013), 2034–2042.

O Hartkopp, C Reuber, and R Schilling. 2012. Macan-message authenticated can. In 10th Int. Conf. on Embedded Security
in Cars (ESCAR 2012).

T. Hoppe and J. Dittman. 2007. Sniffing/Replay Attacks on CAN Buses: A simulated attack on the electric window lift
classified using an adapted CERT taxonomy. In Proceedings of the 2nd Workshop on Embedded Systems Security
(WESS).

T. Hoppe, S. Kiltz, and J. Dittmann. 2008. Security threats to automotive CAN networks–practical examples and selected
short-term countermeasures. Computer Safety, Reliability, and Security (2008), 235–248.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:23

International Organization for Standardization 2003. ISO 11898-1. Road vehicles - Controller area network (CAN) - Part 1:
Controller area network data link layer and medium access control. International Organization for Standardization.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway, Damon McCoy,
Brian Kantor, Danny Anderson, Hovav Shacham, and Stefan Savage. 2010. Experimental Security Analysis of a Modern
Automobile. In IEEE Symposium on Security and Privacy. 447 –462.

R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S. Horihata. 2014. CaCAN - Centralized Authentication
System in CAN (Controller Area Network). In 14th Int. Conf. on Embedded Security in Cars (ESCAR 2014).

J. Leohold. 2004. Communication requirements for automotive systems. In Keynote speech 5th IEEE international workshop
on factory communication systems, Vienna, Austria, Vienna University of Technology.

Chung-Wei Lin, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-aware modeling and efficient mapping for
CAN-based real-time distributed automotive systems. Embedded Systems Letters, IEEE 7, 1 (2015), 11–14.

M. Naor and B. Pinkas. 1998. Threshold traitor tracing. In Advances in Cryptology (CRYPTO’98). Springer, 502–517.
Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. 2001. SPINS: Security protocols for sensor networks. In Seventh

Annual ACM International Conference on Mobile Computing and Networks (MobiCom 2001). 189–199.
Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Xiaodong Song. 2000. Efficient Authentication and Signing of Multicast

Streams over Lossy Channels. In IEEE Symposium on Security and Privacy. 56–73.
Robert BOSCH GmbH 1991. CAN Specification Version 2.0. Robert BOSCH GmbH.
Robert BOSCH GmbH 2012. CAN with Flexible Data-Rate Version 1.0. Robert BOSCH GmbH.
T. Roeder, R. Pass, and F.B. Schneider. 2012. Multi-Verifier Signatures. Journal of Cryptology 25, 2 (2012), 310–348.
Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology ePrint Archive

2004 (2004), 332.
Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed Kaâniche, and Youssef Laarouchi. 2013. Survey on

security threats and protection mechanisms in embedded automotive networks. In 43rd Annual IEEE/IFIP Conference
on Dependable Systems and Networks Workshop (DSN-W). IEEE, 1–12.

Christopher Szilagyi and Philip Koopman. 2009. Flexible multicast authentication for time-triggered embedded control net-
work applications. In IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE, 165–174.

Chris Szilagyi and Philip Koopman. 2010. Low cost multicast authentication via validity voting in time-triggered embedded
control networks. In Proceedings of the 5th Workshop on Embedded Systems Security. ACM, 10.

Christopher Johnathan Szilagyi. 2012. Low cost multicast network authentication for embedded control systems. Ph.D. Dis-
sertation. PhD Thesis, Carnegie Mellon University.

A. Van Herrewege, D. Singelee, and I. Verbauwhede. 2011. CANAuth-A Simple, Backward Compatible Broadcast Authen-
tication Protocol for CAN bus. In 9-th Embedded Security in Cars Conference.

Qiyan Wang and Sanjay Sawhney. 2014. VeCure: A practical security framework to protect the CAN bus of vehicles. In
International Conference on the Internet of Things (IOT). IEEE, 13–18.

M. Wolf, A. Weimerskirch, and C. Paar. 2006. Secure in-vehicle communication. Embedded Security in Cars (2006), 95–109.
Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. 2014. A practical wireless attack on the connected car and security protocol

for in-vehicle CAN. (2014).
Tobias Ziermann, Stefan Wildermann, and Jürgen Teich. 2009. CAN+: A new backward-compatible Controller Area Net-

work (CAN) protocol with up to 16x higher data rates. In DATE. IEEE, 1088–1093.

Received October 2014; revised April 2015, February 2016; accepted November 2016

Appendix A - Security proofs
We now give a formal account of the properties that we require for the M-MAC constructions.
These are proved in a framework of two attack games: one for the unforgeability of the M-MAC,
i.e., GameUFM-MAC, and the other for the strong non-malleability of the M-MAC, i.e., GameSNMM-MAC.
We define these games in similar manner to the games used by Boneh et al. in [Boneh et al. 2001]
to derive lower bounds on the security of multicast message authentication. That is, in each game
the adversary sends to the challenger a target message and a subset of corrupted parties that collude
to fool one or more receivers, further the challenger answers to the adversary’s queries and the
game ends with the adversary delivering a forged authentication tag. The attack on unforgeability
is classical and the proof is straight-forward from the property of the underlying MAC function.
The attack on strong non-malleability GameSNMM-MAC requires an adversary to be able to modify an
M-MAC in such way that verification fails with at least one of the keys but succeeds with another.
We call an M-MAC that is resilient to such attacks to be strongly non-malleable.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

1:24 B. Groza et al.

Since the unforgeability attack game is easier to derive, we begin with the second property. We
prove this by means of a sequence of games following a transition based on the indistinguisha-
bility between the key derivation function and some complete random function, a crisper way for
providing a security proof [Shoup 2004].

For simplicity of the exposition, we use m̃ to denote the input to the Tag algorithm and we assume
it stands for a tuple of s identical messages, i.e., M = {m̃, m̃, ..., m̃︸ ︷︷ ︸

s−times

}.

Definition 1. (Strong Non-malleability Attack Game) We define the M-MAC strong non-
malleability game GameSNMM-MAC as the following three stage game between challenger C and ad-
versary Adv :

(1) Setup stage:
(a) Challenger C runs the key generation algorithm Gen(1`, s) to get a key set K = {k1, ...,ks}

of `-bit keys (` is the security parameter of the scheme).
(b) The adversary Adv makes its corruption query by requesting C a subset of the keyset K♠ =
{kj1 , ...,kjt}, where ji ∈ [1..s] and t < s−1. Note that in this case the adversary is always
missing at least two of the keys.

(c) The adversary Adv fixes its target message m̃� and two target key indexes α, β such that
kα,kβ 6∈ K♠ (that is, these two keys are not corrupted).

(2) Query stage:
(a) Adversary Adv is allowed to make queries to the MAC generation oracle OTag(K, m̃) for

any message tuple m̃ to obtain the corresponding tag τ = {x1, x2, ..., xs} where each xi is
the solution of the following linear system in GF (2b):

KD1(k1, m̃) · x1 + ...+ KDs(k1, m̃) · xs ≡ MACk1m̃)

KD1(k2, m̃) · x1 + ...+ KDs(k2, m̃) · xs ≡ MACk2(m̃)

...

KD1(ks, m̃) · x1 + ...+ KDs(ks, m̃) · xs ≡ MACks(m̃)

(b) Adversary Adv is allowed to make queries to the MAC verification oracle OVer(i, m̃, τ)
with any key index i, tag τ = {x1, x2, ..., xs} and message m̃. The oracle OVer(i, m̃, τ)
proceeds in the natural way by computing τ ′ ≡ KD1(ki, m̃) · x1 +KD2(ki, m̃) · x2 + ...+
KDs(ki, m̃) · xs and checking that τ ′ = MACki(m̃).

(3) Output stage:
(a) Eventually, the adversary outputs the pair (m̃�, τ♣) where τ♣ is a tag maleated by the

adversary.
(b) The game output is 1 if the following two conditions hold: Ver outputs 1 on (kα, m̃�, τ♣)

and 0 on (kβ , m̃�, τ♣). Otherwise the game output is 0. Note that in this case, the adversary
is allowed to query the MAC generation oracle OTag(K, m̃) with m̃� to get the correct tag
τ�.

Definition 2. (Strong Non-malleability) We say that a mixed message authentication code
M-MAC is strongly non-malleable if:

Pr
[
GameSNMM-MAC(1

`, s) = 1
]
< negl(`).

THEOREM 5.1. The linearly-mixed message authentication code LM-MAC is strongly non-
malleable.

Proof. We construct the following sequence of games:

— Game G0. Let this be the original attack game GameSNMM-MAC.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks 1:25

— Game G1. Let this be identical to game G0 except for the following: in the query stage, whenever
solving the linear system of equations replace KD1(kα, m̃),KD1(kα, m̃), ...,KDs(kα, m̃) with
some pure random values ρ1, ρ2, ..., ρs (for each m̃ these are stored on a tape).

— Game G2. Let this be identical to game G1 except that when verifying the tuple (α, m̃�, τ♣)
instead of running OVer(i, m̃, τ) in the usual way the challenger first checks if the adversary ever
asked for the correct tag τ�, retrieve it from the tape (if not then run OTag(K, m̃) to get it) and
checks if: ρ1 · (x♣1 − x

�
1) + ρ2 · (x♣2 − x

�
2) + ...+ ρs · (x♣s − x�s) ≡ 0.

Assuming that the probability in distinguishing between the key derivation function and some
pure random function is negligible ε(`) we have: Pr [Adv wins G0 −Adv wins G1] < ε(`).

If ρ1 · (x♣1 − x
�
1) + ... + ρs · (x♣s − x�s) ≡ 0 then it also holds that ρ1 · x♣1 + ... + ρsx

♣
s ≡

MACkα(m̃), thus whenever the condition of game G2 is verified the one for game G1 is verified as
well. It follows that the probability that game G2 outputs 1 is at least that of game G1 and we have:
Pr [Adv wins G1] ≤ Pr [Adv wins G2] . However, note that ∃i ∈ [1..s] such that x♣i 6= x�i since
otherwise τ♣ = τ� and in this case x♣i will also pass verification for key kβ making the adversary
loose the game. Therefore ∃i ∈ [1..s] such that x♣i − x

�
i 6= 0 and since this is multiplied by some

pure random ρi value we have:

Pr [Adv winsG2] = Pr

 ∑
j=1..s

ρj · (x♣j − x
�
j) ≡ 0

 =
1

2b

⇒ Pr [Adv wins G0] ≤ ε(`) +
1

2b
= ε(`) +

1

2p(`)
≤ negl(`).

We considered b to be a polynomial p(`) in the security level `.
Definition 3. (Unforgeability Attack Game) We define the M-MAC unforgeability game

GameUFM-MAC as the following five stage game between challenger C and adversary Adv :

(1) Setup stage: is identical to that of the strong non-malleability game GameSNMM-MAC with the follow-
ing modification. We request that t < s (that is, the adversary can get all except one of the keys)
and the adversary Adv fixes its target message m̃� and a single key index α such that kα 6∈ K♠.

(2) Query stage: is identical to that of the strong non-malleability game GameSNMM-MAC.
(3) Output stage: the adversary outputs the pair (m̃�, τ♣) where τ♣ and the game outputs 1 if the

following two conditions hold: Ver outputs 1 on (kα, m̃�, τ♣) and the adversary never queried
m̃� to OTag(K, m̃). Otherwise the game outputs 0.

Definition 4. (Unforgeability) We say that a mixed message authentication code M-MAC is un-
forgeable if:

Pr
[
GameUFM-MAC(1

`, s) = 1
]
< negl(`).

THEOREM 5.2. The linearly-mixed message authentication code LM-MAC is unforgeable if the
underlying MAC is unforgeable.

Proof. Unforgeability is straight-forward to relate to the unforgeability of a single MAC. In the
Setup stage, challenger C after receiving the index α from the adversary Adv solves all future
calls to the generation oracle OTag(K, m̃) and verification oracle OVer(i, τ, m̃) by using the black
box for the MAC. When the adversary outputs (i, m̃�, τ�) the challenger yields MACkα(m̃) =

KD1(kα, m̃) · x♣1 + KD2(kα, m̃) · x♣2 + ... + KDs(kα, m̃) · x♣s which is a valid tag if and only if
the adversary Adv is successful. Note that similar to the previous games since the adversary is not
in possession of kα all values KDi(kα, m̃), i = 1..s are simulated by random coins.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January xxxx.

