
Using the Discrete Squaring Function in the Delayed Message Authentication
Protocol

Bogdan Groza, Toma-Leonida Dragomir, Dorina Petrica

Politehnica University of Timisoara, Faculty of Automatics and Computers
Bd. Vasile Parvan nr. 2, 300223 Timisoara, Romania,

Email: bogdan.groza@aut.upt.ro

Abstract

The Delayed Message Authentication Protocol
(DeMA protocol) is a protocol that can be used in
order to exchange authentic information between two
entities by using a one-way chain (i.e. an array of
elements generated by a one-way function) on each
entity’s side. The use of the discrete power function in
the DeMA protocol offers the advantage that the length
of the chains does not influence the computational
time. In this paper we are concerned with the
particular case of the discrete squaring function which
offers more computational advantages since the
elements of the one-way chains may be efficiently
computed in a time-memory trade. The complete
description of the DeMA protocol in the case of the
discrete squaring function is given and also some
experimental results are presented which help on
understanding the computational performance of the
protocol. By using this implementation of the DeMA
protocol message authentication can be assured at the
cost of almost one modular multiplication for each
exchanged message.

1. Introduction

The use of one-way chains was initially proposed
for assuring entity authentication [8] and a commonly
known example of application that implements this
technique is the S-Key system by Haller [7]. There are
also a number of user authentication schemes based on
one-time passwords which have distant relation to this
technique [4], [9]. A one-way chain

() () () ()0 1 2, , ,..., if x f x f x f x is an array generated
by the successive composition of a one-way function
f . Here x is a secret value and ()if x denotes the

composition of f with itself for i times

() ()()1i if x f f x−= ; of course, ()0f x x= . We will

define the length of this chain as the number of

function compositions necessary to obtain the highest
order element, therefore the length of the previous
chain is i , also note that in fact the chain contains

1i + elements.
A first approach to construct a one-way chain is to

use hash functions which are easy to compute.
However, by using such function the length of the
chain is fixed and when the chain is exhausted it
requires re-initialization. An alternative solution is the
use of functions from public-key encryption such as
the discrete power function. By using such functions
the one-way chain can have an unbounded length - but
these functions require much more computational
power [1], [2], [6].

In present, one-way chains are also used in some
applications to assure information authenticity. An
example is the electronic payment scheme proposed by
Rivest and Shamir [12]. More recently one-way chains
were proposed to be used to assure authenticity in
constrained environments such as sensor networks
[10]. Other proposals for the use of one-way chains in
assuring information authenticity are in [3], [11].

The Delayed Message Authentication Protocol was
proposed in [5] to assure authenticity in the exchange
of information between two entities by using a one-
way chain on each entity’s side. In this paper we
propose and investigate the use of the discrete squaring
function for generating the one-way chains necessary
in the DeMA protocol. Although this function is more
computational intensive than some of the simplest one-
way functions (such as hash functions) it has the
advantage that the one-way chain can have an
unbounded length. Also the elements of the one-way
chain may be efficiently computed in a time-memory
trade which significantly increases the computational
performance.

In section 2 the Delayed Message Authentication
Protocol is described and the complete description of
the protocol for the case of the discrete squaring
function is given. In section 3 the theoretical

performance of the protocol is discussed and practical
results are analyzed. Section 4 holds the conclusions of
this paper.

2. The Delayed Message Authentication
Protocol with the Discrete Squaring
Function

2.1. Description of the DeMA protocol

To introduce our proposal we briefly describe the
Delayed Message Authentication Protocol from [5].

The DeMA Protocol can be used to exchange
authentic information between two entities A and B
by using a one way chain on each side.

The protocol consists in a variable number of
communication sessions and each session consists in
exactly two rounds. Each session provides the
necessary information to prove the authenticity of the
message from the previous session and in particular
each round is the confirmation of the previous round.
Before the first communication session, entity A
randomly chooses Ax and B randomly chooses Bx ,
both these values will be kept secret and will be used
to generate the session keys. The session keys (which
are elements of the one-way chains) for A and B in
session k are defined by the relations:

() () , 0,1,...,k

A Ak f x kησ η−= = (1)

() () , 0,1,...,k
B Bk f x kηρ η−= = (2)

Here η is an integer fixed by common agreement
between the entities which denotes the maximum
number of sessions.

In session 0 the entities make known to each other
the values of ()0Aσ and respectively ()0Bρ which
will be later used to verify the authenticity of the new
session keys – this will be done in a secure manner to
guarantee the authenticity of this information. This
initialization step is essential for the security of the
proposed protocol, both entities must be strictly
assured that the values ()0Aσ and ()0Bρ were
generated by A and respectively B and these values
are part of a chain that was not used before and is
intended for the communication between A and B .
This can be achieved by exchanging four packages
between the entities as follows:

A → B : (){ }, , , , ,A A AA B N Sig A B N

B → A : (){ }, , , , , ,B A A BB A N Sig A B N N

A → B : () ()(){ }, 0 , , , , , 0A A A B AA Sig A B N Nσ σ

B → A : () ()(){ }, 0 , , , , , 0B A A B BB Sig A B N Nσ σ

Here ASig and BSig denotes a digital signature and

AN , BN are two nonce to ensure the uniqueness of
this communication.

Entity A starts the , 1≥thk k communication
session by sending to B a package with the
structure ()() (){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k .

The meaning of the notations is the following: kAM ,
denotes the message from session k , MAC is a
message authentication code computed on kAM , with
the key ()1+kAσ (which will be disclosed in session

1+k) and ()kAσ is the current session key. Upon
receiving the package from session k , entity B must
verify that the session key ()kAσ is correct by
checking that ()() ()1−= kkf AA σσ , where ()1−kAσ
is the key disclosed in session 1−k . If the session key
proves to be correct then the package ,PA k is
memorized and the authenticity of the message 1, −kAM
from session 1−k can now be verified with the
disclosed key ()kAσ by checking the message
authentication code ()()kMMAC AkA σ,1, − .

Entity B will confirm the arrival of a correct
session key by computing and sending a package

()() (){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k , the

significance of the notations is similar to the package
sent by A . The next communication session 1+k will
be started by A only if the received value of ()kBρ is
correct and this can be easily verified by checking that

()() ()1−= kkf BB ρρ . Both entities A and B will
have to store only the last authentic session key that
was received.

For the thk communication session the two rounds
will be as follows:

Session ,1k k η≤ ≤
Round 1 A → B :
 ()() (){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k

Round 2 B → A :
 ()() (){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k

It is very important to note that each round will play
the role of a confirmation for the previous round, for
example round 1 of session k is the confirmation of
round 2 from session 1−k while round 2 from

session k is the confirmation of round 1 from session
k , and such confirmation will be sent only if the
session key from the confirmed round was correct.

In the DeMA protocol only one of the entities, in
our case A , will have the ability to start and stop the
protocol in some session. The protocol can be stopped
in any round of any communication session by A ,
obviously the authenticity of the message from that
session will be proved only when the protocol starts
again and the next session key is disclosed. When A
decides to restart the conversation it will send a new
package with a new session key only if the package
from the previous round was confirmed, otherwise it
has to resend the package from the previous round.
The same policy should be applied in the case of
accidental stops of the protocol which may be caused
by some communication failures or by an intruder. For
example we will suppose that the conversation was
stopped at some session k . If A has received the
correct ()kBρ , this means that round 2 was
successfully completed, the protocol can be restarted
later by computing and sending the package for session

1+k . Otherwise, if the value ()kBρ was not correctly
received and round 2 was not successfully completed
the protocol will be restarted by resending the package
from session k until a correct ()kBρ is received.
These rules must be strictly followed, since if A
computes and sends the package for session 1+k
without having the confirmation key ()kBρ from
session k , in the case that the package from session k
was not received by B this package can now be
forged by an attacker who will now be in possession of
the session key ()1A kσ + . The same rule must be
strictly followed by B which must send the
confirmation ()kBρ in the second round of session k
only if ()kAσ proves to be correct.

2.2. The discrete squaring function

If symmetric primitives, such as hash-functions, are
used in the construction of the one-way chains for the
DeMA protocol, after the chains are exhausted, re-
initialization can became a security problem [5]. By
using the discrete power functions this problem is
completely removed while such chains can have
extreme lengths without influencing the computational

time [6]. This is because the value of ()f xη can be
easily computed by reducing the exponents
modulo ()nφ , also without requiring η successive
compositions of the function. A particular case of the

discrete power function is the discrete squaring
function:

() 2 modf x x n= (3)
for which it holds that:

() ()2 mod modnf x x n
η φη = (4)

Here n is a large composite integer which is

infeasible to factor, ε is an integer exponent and
()nφ is the Euler totient function which can be

computed only if the factorization of n is known. By
using the function given in relation (3) the one-way
chain becomes a chain of quadratic residues in Zn .
The great advantage in using this function is that the
elements of the one-way chain can be computed in a
time memory trade as suggested in [6] and the
computational time is significantly reduced. The time-
memory trade is based on the fact that it is possible to

compute the value of ()if xη− in only one modular

multiplication if the value of ()1if xη− − is known;

indeed () () ()1 1i i if x f x f xη η η− − − − −= ⋅ . Because
of this, the chain of η elements can be split into
smaller chains of λ elements. Instead of performing
one modular exponentiation for every element of the
chain a smaller chain of λ elements can be computed
with only one modular exponentiation followed by

1λ − modular multiplications. This can greatly
increase the computational performance if the discrete
squaring function is used in the DeMA protocol.

2.3. The DeMA protocol with the discrete
squaring function

Both the entities will use a modulus which is
infeasible to factor, let nA and respectively nB denote
the modulus, and a random value Ax and xB
respectively. Therefore, by using function (3) the
session keys are defined by the following relations:

() () ()2 mod mod
k

Ank
A A A Ak f x x n

η φησ
−−= = (5)

() () ()2 mod mod
k

Bnk
B B B Bk f x x n

η φηρ
−−= = (6)

The following is the complete description of the

protocol, it is important to mention that the
computation of the session keys induced in step 2 of

the protocol actions can be efficiently performed with
the time memory trade solution.

Key Setup.
a) A constant number η which represent an upper

bound for the number of communication sessions is
fixed by common agreement (since the discrete power
function is used, the upper bound can be chosen as
large as needed without influencing the computational
performance).

b) Entity A randomly chooses two large primes
pA , qA and a random value Ax then computes
n p qA A A= ⋅ , () () ()1 1n p qA A Aφ = − ⋅ − and

()0Aσ .
c) Entity B randomly chooses two large primes

pB , qB and a random value xB then computes
n p qB B B= ⋅ , () () ()1 1n p qB B Bφ = − ⋅ − and

()0Bρ .
d) Entities A and B inform each other, in a secure

manner to guarantee the authenticity of this
information, of the values of ()0Aσ , nA and ()0Bρ ,
nB respectively; all the other values (the two primes
and the value of the Euler Totient function) will be
kept secret on each side since disclosing them will lead
to the lose of security.

Protocol Messages. For session 1,...,k η=
Round 1 A → B :
 ()() (){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k

Round 2 B → A :
 ()() (){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k

Protocol Actions.
The protocol actions may be described in the

following 6 steps:
1. Increment the session counter 1k k= + .
2. Compute the package for session k (this requires

the computation of one new session key and one MAC
– the package structure is given above).

3. Send package for session k to the other entity.
4. Receive a new package from the other entity.
5. Check if the received package contains a new

authentic session key – this is easy to check by
verifying that ()() ()1f k kσ σ= − for A ’s key and

()() ()1f k kρ ρ= − for B ’s key. If the session key is

not authentic than return to step 4 else proceed to step
6.

6. Use the new authentic session key to test the
authenticity of the message from the previous session.

Both entities A and B start the protocol with
0k = . The order in which the steps are performed is

different for A and B , this is because A starts the
protocol. Therefore the order in which A performs the
steps is 1, 2, 3, 4, 5, 6 while for B is 4, 5, 6, 1, 2, 3
and so on for the completion of each session, the
protocol run for session k is also suggested in figure
1. Because of this, A starts the protocol in step 1
while B starts the protocol in step 4 and after the
completion of the η sessions A ends in step 6 while
B ends in step 3.

Steps: 1,2,3

Steps: 4,5,6,1,2,3

Steps: 4,5,6,1,2,3

Steps: 4,5,6,1,2,3

()() (){ }, , ,, , 1 ,A k A k A k A AP M MAC M k kσ σ= +

()() (){ }, , ,, , 1 ,B k B k B k B BP M MAC M k kρ ρ= +

()() (){ }, 1 , 1 , 1, , 2 , 1A k A k A k A AP M MAC M k kσ σ+ + += + +

()() (){ }, 1 , 1 , 1, , 2 , 1A k A k A k A AP M MAC M k kσ σ+ + += + +

A B

Fig 1. The DeMA authentication protocol

3. Computational Performance of The
Protocol

3.1. Theoretical Performance

Since using public key primitives such as the
squaring functions is more computational intensive
than using symmetric primitives, we consider taking a
closer look to the computational performance of the
protocol. We will consider the measure of the
computational time required for the completion of one
round and one session of the DeMA protocol as a
performance index.

The computations performed on each round of each
session of the DeMA protocol consist in: computing
one session key (which requires one modular
exponentiation if we do not use the time-memory trade
discussed in section 2), and one MAC in step 2 plus
the verification of the received session key (which
requires one modular multiplication) and of the MAC
for the previous message in step 5 and 6. This results
in the computational time given by the next relation:

2t t t tround exp mul MAC= + + ⋅ (7)

Since computing the modular exponentiation is by

far the most computational intensive operation, without

loosing the accuracy of the result we can approximate
the computational time for one round as:

t tround exp≈ (8)

The time-memory trade suggested in the previous

section can greatly improve the computational
performance of the protocol. If the chain of η
elements is split into chains of λ elements the
computational time for λ rounds is:

()2 1 2expt t tmul MACλ λλ = + − ⋅ + ⋅ ⋅ (9)

From here, the mean computational time for one

round follows directly as:

1exp' 2 2
t

t t tround mul MACλ λ
⎛ ⎞= + − ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (10)

In (10) we can ignore the computational time

required by the MAC, since it should be about ten
times smaller than a modular multiplication, and as λ
becomes larger the computational time for one round
can be estimated as:

' 2t tround mul≈ ⋅ (11)

Relation (11) shows that theoretically the

computational time for one round of the DeMA
protocol can be reduced to the computational time of
one modular squaring.

The computational time for one session of the
DeMA protocol depends on the computational power
from each side involved. We may define the
computational time for one session as:

, ,t t tsession A round B round= + (12)

Here by ,tA round and ,tB round are the

computational time for one round on A and B side
respectively.

3.2. Practical Results

We have tested the performance of the DeMA
protocol by running a Java implementation on two
computers: a Toshiba Tecra notebook with Intel
Centrino 1.6 Ghz and a desktop computer with AMD
Athlon 64 2800+ at 1.8 Ghz. Both the computers were
running Windows XP and had 512 MB of RAM,

however this is not so important for the computational
timings.

The protocol was implemented in Java NetBeans
IDE 5.0 [13]. The Java environment was preferred
because of the support offered for large integer’s
arithmetic. The computations performed over the
groups of integers, were performed by using the
methods contained in the BigInteger class: BigInteger
multiply(BigInteger val), BigInteger mod(BigInteger
m), BigInteger modPow(BigInteger exponent,
BigInteger m). We have computed the value of

2 modx n with one modular multiplication followed
by one modular reduction; this method was preferred
to the direct squaring with the function modPow which
proved to be slower. The Message Authentication
Codes are computed with the SHA1 hash function. The
communication was assured by using a ServerSocket
object that accepts connections on the server side and a
Socket object on the client side.

We consider first to benchmark the computational
performance of the basic cryptographic primitives in
Java. In Table 1 the computational timings for the
basic cryptographic primitives on both the computers
are given.

In order to test the computational performance of
the protocol we have connected the two computers
with a TrendNet TW100 router. The computational
timings with various sizes for the length of the chain
and buffer are given in Table 2. The package sent
between the entities in each round consisted in a
message of 160 bits plus the MAC of 160 bits and the
session key of 1024 bits.

As expected, the results from Table 2 show that the
computational time is significantly improved by
increasing the size of the buffer in which the pre-
computed keys are stored (the size of the buffer from
this implementation is the length λ of the smaller
chains). In row (1) the computational time for the
protocol in the case when the cryptographic primitives
are enabled is given and in row (2) the computational
time for the case when the cryptographic primitives are
disabled is given (row (2) actually shows the
communication performance with no cryptography). In
rows (3) and (4) the off-line computational timings are
given, these timings actually represent the time
required on each side to compute one new session key
and one MAC. The final conclusion that can be drawn
from the experimental results is that the use of the
time-memory trade (key buffer) improves the
computational time significantly and for increased size
of the buffers the computational time for one session
with or without cryptography is close. Also the last
two rows of table 2 in which the offline computational

performance is measured show that for increased sizes
of the buffer the computational time is almost equal to
one-modular multiplication – this is a practical result
which sustain the theoretical expectations from relation
(11).

Table 1. Computational timings for the basic
cryptographic primitives

Table 2. Computational performace of the
DeMA protocol with quadratic residue chains
(time is measured in seconds and denotes the
average time for one session tsession)

4. Conclusions

The use of the discrete squaring function for
generating the one-way chains in the DeMA protocol
was proposed and investigated. By using this function
the computational time is not influenced by the length
of the one-way chain. This function also offers the
advantage that the elements of such a one-way chain
may be efficiently computed in a time-memory trade at
the reduced cost of almost one modular multiplication
for each element. The practical results included in this
paper give an estimate measure for the computational
performance of DeMA protocol implemented with the
discrete squaring function. The proposed solutions
may be of interest in a number of applications that deal
with information authenticity or user authentication
over public networks such as the Internet.

5. References

[1] Bicakci, K., Baykal, N., Infinite Length Hash Chains and

Their Application, IEEE 11th International Workshops
on Enabling Technologies, WETICE, 2002.

[2] Bicakci, K., Baykal, N., “Improving the Security and
Flexibility of One-Time Passwords by Signature
Chains”, Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 11, no. 3, 2003.

[3] Bergadano, F., Cavagnino, D., Crispo, B., “Individual

Authentication in Multiparty Communications”.
Computer & Security, Elsevier Science, vol. 21 n. 8,
2002, pp.719-735.

[4] Chien, Hung-Yu, Jan, Jinn-Ke, (2003). “Robust and

Simple Authentication Protocol”. Oxford Journal, The
Computer Journal, Vol. 46, No. 2, 2003.

[5] Groza, B., (2006) Using one-way chains to provide

message authentication without shared secrets, accepted
at IEEE 2nd Workshop on Security, Privacy and Trust
in Pervasive and Ubiquitous Computing, 2006.

[6] Groza, B., Petrica, D., Dragomir T.L., A time-memory

trade solution to generate one-time passwords using
quadratic residues in Zn, Studies in Informatics
Control, ISSN 1220-1766, 2005, pp. 201- 212.

[7] Haller, N., Metz, C., Nesser, P., Straw, M., A One-Time

Password System. RFC 2289, Bellcore, Kaman
Sciences Corporation, Nesser and Nesser Consulting,
1998.

[8] Lamport, L. Password Authentication with Insecure

Communication. Communication of the ACM, 24, 1981,
770-772.

[9] Mitchell, C. J., “Remote user authentication using public

information”, Cryptography and Coding, 9th IMA
International Conference on Cryptography and Coding,
Cirencester, LNCS 2898, 2003, pp.360-369.

[10] Perrig, A., Szewczyk, R., Wen, V., Culler D., Tygar,

J.D., SPINS: Security Protocols for Sensor Network,
Proceedings of 7th Annual International Conference on
Mobile Computing and Networks MOBICOM, 2001.

[11] Perrig, A., Canetti, R., Tygar, J. D., Song, D., The

TESLA Broadcast Authentication Protocol, In
CryptoBytes, 5:2, Summer/Fall 2002, pp. 2-13.

[12] Rivest, R., Shamir, A. Payword and Micromint: Two

simple micropayment schemes. CryptoBytes, volume 2,
no. 1, RSA Laboratories, 1996.

[13] Java.sun.com: The Source for Java Developers,

http://java.sun.com/

CPU MAC with
SHA1

Modular
Multiplication

(1024 bit module)

Modular Exponentiation
(1024 bit module and

exponent)
Intel Centrino 1.6

Ghz
610 10 s−× 674 10 s−× 350 10 s−×

AMD Athlon 64
2800+ 1.8 Ghz

68.9 10 s−×

660 10 s−× 343 10 s−×

Number of
Sessions / Buffer
Size (λ)

310 /1 4 210 /10

5 310 /10 6 410 /10

1 Cryptography
Enabled

340 10−×

31.6 10−×

30.8 10−×

30.7 10−×

2 Cryptography
Disabled

30.6 10−×

30.4 10−×

30.4 10−×

30.4 10−×

3 Communication
Disabled (Centrino
1.6 Ghz)

321 10−×

6615 10−×

6159 10−×

6113 10−×

4 Communication
Disabled (Athlon
64 2800+ 1.8 Ghz)

318 10−×

6514 10−×

6139 10−×

696 10−×

