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Abstract 
 

The Delayed Message Authentication Protocol 
(DeMA protocol) is a protocol that can be used in 
order to exchange authentic information between two 
entities by using a one-way chain (i.e. an array of 
elements generated by a one-way function) on each 
entity’s side. The use of the discrete power function in 
the DeMA protocol offers the advantage that the length 
of the chains does not influence the computational 
time. In this paper we are concerned with the 
particular case of the discrete squaring function which 
offers more computational advantages since the 
elements of the one-way chains may be efficiently 
computed in a time-memory trade. The complete 
description of the DeMA protocol in the case of the 
discrete squaring function is given and also some 
experimental results are presented which help on 
understanding the computational performance of the 
protocol. By using this implementation of the DeMA 
protocol message authentication can be assured at the 
cost of almost one modular multiplication for each 
exchanged message.  
 
1. Introduction 
 

The use of one-way chains was initially proposed 
for assuring entity authentication [8] and a commonly 
known example of application that implements this 
technique is the S-Key system by Haller [7]. There are 
also a number of user authentication schemes based on 
one-time passwords which have distant relation to this 
technique [4], [9]. A one-way chain 

( ) ( ) ( ) ( )0 1 2, , ,..., if x f x f x f x  is an array generated 
by the successive composition of a one-way function 
f . Here x  is a secret value and ( )if x  denotes the 

composition of f  with itself for i  times 

( ) ( )( )1i if x f f x−= ; of course, ( )0f x x= . We will 

define the length of this chain as the number of 

function compositions necessary to obtain the highest 
order element, therefore the length of the previous 
chain is i , also note that in fact the chain contains 

1i +  elements.  
A first approach to construct a one-way chain is to 

use hash functions which are easy to compute. 
However, by using such function the length of the 
chain is fixed and when the chain is exhausted it 
requires re-initialization. An alternative solution is the 
use of functions from public-key encryption such as 
the discrete power function. By using such functions 
the one-way chain can have an unbounded length - but 
these functions require much more computational 
power [1], [2], [6]. 

In present, one-way chains are also used in some 
applications to assure information authenticity. An 
example is the electronic payment scheme proposed by 
Rivest and Shamir [12]. More recently one-way chains 
were proposed to be used to assure authenticity in 
constrained environments such as sensor networks 
[10]. Other proposals for the use of one-way chains in 
assuring information authenticity are in [3], [11]. 

The Delayed Message Authentication Protocol was 
proposed in [5] to assure authenticity in the exchange 
of information between two entities by using a one-
way chain on each entity’s side. In this paper we 
propose and investigate the use of the discrete squaring 
function for generating the one-way chains necessary 
in the DeMA protocol. Although this function is more 
computational intensive than some of the simplest one-
way functions (such as hash functions) it has the 
advantage that the one-way chain can have an 
unbounded length. Also the elements of the one-way 
chain may be efficiently computed in a time-memory 
trade which significantly increases the computational 
performance. 

In section 2 the Delayed Message Authentication 
Protocol is described and the complete description of 
the protocol for the case of the discrete squaring 
function is given. In section 3 the theoretical 



performance of the protocol is discussed and practical 
results are analyzed. Section 4 holds the conclusions of 
this paper. 
 
2. The Delayed Message Authentication 
Protocol with the Discrete Squaring 
Function 
 
2.1. Description of the DeMA protocol 
 

To introduce our proposal we briefly describe the 
Delayed Message Authentication Protocol from [5].  

The DeMA Protocol can be used to exchange 
authentic information between two entities A  and B  
by using a one way chain on each side.  

The protocol consists in a variable number of 
communication sessions and each session consists in 
exactly two rounds. Each session provides the 
necessary information to prove the authenticity of the 
message from the previous session and in particular 
each round is the confirmation of the previous round. 
Before the first communication session, entity A  
randomly chooses Ax  and B  randomly chooses Bx , 
both these values will be kept secret and will be used 
to generate the session keys. The session keys (which 
are elements of the one-way chains) for A  and B  in 
session k  are defined by the relations: 

 
( ) ( ) ,  0,1,...,k

A Ak f x kησ η−= =   (1) 

( ) ( ) ,  0,1,...,k
B Bk f x kηρ η−= =  (2) 

 
Here η  is an integer fixed by common agreement 
between the entities which denotes the maximum 
number of sessions.  

In session 0  the entities make known to each other 
the values of ( )0Aσ  and respectively ( )0Bρ  which 
will be later used to verify the authenticity of the new 
session keys – this will be done in a secure manner to 
guarantee the authenticity of this information. This 
initialization step is essential for the security of the 
proposed protocol, both entities must be strictly 
assured that the values ( )0Aσ  and ( )0Bρ  were 
generated by A  and respectively B  and these values 
are part of a chain that was not used before and is 
intended for the communication between A  and B . 
This can be achieved by exchanging four packages 
between the entities as follows:  

A → B : ( ){ }, , , , ,A A AA B N Sig A B N  

B → A : ( ){ }, , , , , ,B A A BB A N Sig A B N N  

A → B : ( ) ( )( ){ }, 0 , , , , , 0A A A B AA Sig A B N Nσ σ  

B → A : ( ) ( )( ){ }, 0 , , , , , 0B A A B BB Sig A B N Nσ σ  

Here ASig  and BSig  denotes a digital signature and 

AN , BN  are two nonce to ensure the uniqueness of 
this communication. 

Entity A  starts the , 1≥thk k  communication 
session by sending to B  a package with the 
structure ( )( ) ( ){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k . 

The meaning of the notations is the following: kAM ,  
denotes the message from session k , MAC  is a 
message authentication code computed on kAM ,  with 
the key  ( )1+kAσ  (which will be disclosed in session 

1+k ) and ( )kAσ  is the current session key. Upon 
receiving the package from session k , entity B  must 
verify that the session key ( )kAσ  is correct by 
checking that ( )( ) ( )1−= kkf AA σσ , where ( )1−kAσ  
is the key disclosed in session 1−k . If the session key 
proves to be correct then the package ,PA k  is 
memorized and the authenticity of the message 1, −kAM  
from session 1−k  can now be verified with the 
disclosed key ( )kAσ  by checking the message 
authentication code ( )( )kMMAC AkA σ,1, − .  

Entity B  will confirm the arrival of a correct 
session key by computing and sending a package 

( )( ) ( ){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k , the 

significance of the notations is similar to the package 
sent by A . The next communication session 1+k  will 
be started by A  only if the received value of ( )kBρ  is 
correct and this can be easily verified by checking that 

( )( ) ( )1−= kkf BB ρρ . Both entities A  and B  will 
have to store only the last authentic session key that 
was received. 

For the thk  communication session the two rounds 
will be as follows: 

Session ,1k k η≤ ≤  
Round 1  A → B : 
 ( )( ) ( ){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k  

Round 2  B → A : 
 ( )( ) ( ){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k  

It is very important to note that each round will play 
the role of a confirmation for the previous round, for 
example round 1  of session k  is the confirmation of 
round 2  from session 1−k  while round 2  from 



session k  is the confirmation of round 1  from session 
k , and such confirmation will be sent only if the 
session key from the confirmed round was correct. 

In the DeMA protocol only one of the entities, in 
our case A , will have the ability to start and stop the 
protocol in some session. The protocol can be stopped 
in any round of any communication session by A , 
obviously the authenticity of the message from that 
session will be proved only when the protocol starts 
again and the next session key is disclosed. When A  
decides to restart the conversation it will send a new 
package with a new session key only if the package 
from the previous round was confirmed, otherwise it 
has to resend the package from the previous round. 
The same policy should be applied in the case of 
accidental stops of the protocol which may be caused 
by some communication failures or by an intruder. For 
example we will suppose that the conversation was 
stopped at some session k . If A  has received the 
correct ( )kBρ , this means that round 2 was 
successfully completed, the protocol can be restarted 
later by computing and sending the package for session 

1+k . Otherwise, if the value ( )kBρ  was not correctly 
received and round 2 was not successfully completed 
the protocol will be restarted by resending the package 
from session k  until a correct ( )kBρ  is received. 
These rules must be strictly followed, since if A  
computes and sends the package for session 1+k  
without having the confirmation key ( )kBρ  from 
session k , in the case that the package from session k  
was not received by B  this package can now be 
forged by an attacker who will now be in possession of 
the session key ( )1A kσ + . The same rule must be 
strictly followed by B  which must send the 
confirmation ( )kBρ  in the second round of session k  
only if ( )kAσ  proves to be correct. 

 
2.2. The discrete squaring function 
 

If symmetric primitives, such as hash-functions, are 
used in the construction of the one-way chains for the 
DeMA protocol, after the chains are exhausted, re-
initialization can became a security problem [5]. By 
using the discrete power functions this problem is 
completely removed while such chains can have 
extreme lengths without influencing the computational 

time [6]. This is because the value of ( )f xη  can be 
easily computed by reducing the exponents 
modulo ( )nφ , also without requiring η  successive 
compositions of the function. A particular case of the 

discrete power function is the discrete squaring 
function: 

 

( ) 2 modf x x n=  (3) 
for which it holds that: 

( ) ( )2 mod modnf x x n
η φη =    (4) 

 
Here n  is a large composite integer which is 

infeasible to factor, ε  is an integer exponent and 
( )nφ  is the Euler totient function which can be 

computed only if the factorization of n  is known. By 
using the function given in relation (3) the one-way 
chain becomes a chain of quadratic residues in Zn . 
The great advantage in using this function is that the 
elements of the one-way chain can be computed in a 
time memory trade as suggested in [6] and the 
computational time is significantly reduced. The time-
memory trade is based on the fact that it is possible to 

compute the value of ( )if xη−  in only one modular 

multiplication if the value of  ( )1if xη− −  is known; 

indeed ( ) ( ) ( )1 1i i if x f x f xη η η− − − − −= ⋅ . Because 
of this, the chain of η  elements can be split into 
smaller chains of  λ  elements. Instead of performing 
one modular exponentiation for every element of the 
chain a smaller chain of λ  elements can be computed 
with only one modular exponentiation followed by 

1λ −  modular multiplications. This can greatly 
increase the computational performance if the discrete 
squaring function is used in the DeMA protocol. 

 
2.3. The DeMA protocol with the discrete 
squaring function 
 

Both the entities will use a modulus which is 
infeasible to factor, let nA  and respectively nB  denote 
the modulus, and a random value Ax  and xB  
respectively. Therefore, by using function (3) the 
session keys are defined by the following relations: 

 

( ) ( ) ( )2 mod mod
k

Ank
A A A Ak f x x n

η φησ
−−= =   (5) 

( ) ( ) ( )2 mod mod
k

Bnk
B B B Bk f x x n

η φηρ
−−= =  (6) 

 
The following is the complete description of the 

protocol, it is important to mention that the 
computation of the session keys induced in step 2 of 



the protocol actions can be efficiently performed with 
the time memory trade solution. 

Key Setup. 
a) A constant number η  which represent an upper 

bound for the number of communication sessions is 
fixed by common agreement (since the discrete power 
function is used, the upper bound can be chosen as 
large as needed without influencing the computational 
performance). 

b) Entity A  randomly chooses two large primes 
pA , qA  and a random value Ax  then computes 
n p qA A A= ⋅ , ( ) ( ) ( )1 1n p qA A Aφ = − ⋅ −  and 

( )0Aσ . 
c) Entity B  randomly chooses two large primes 

pB , qB  and a random value xB  then computes 
n p qB B B= ⋅ , ( ) ( ) ( )1 1n p qB B Bφ = − ⋅ −  and 

( )0Bρ . 
d) Entities A and B  inform each other, in a secure 

manner to guarantee the authenticity of this 
information, of the values of ( )0Aσ ,  nA  and ( )0Bρ , 
nB  respectively; all the other values (the two primes 
and the value of the Euler Totient function) will be 
kept secret on each side since disclosing them will lead 
to the lose of security. 

Protocol Messages. For session 1,...,k η=  
Round 1  A → B : 
 ( )( ) ( ){ }, , ,, , 1 ,σ σ= +A k A k A k A AP M MAC M k k  

Round 2  B → A : 
 ( )( ) ( ){ }, , ,, , 1 ,ρ ρ= +B k B k B k B BP M MAC M k k  

Protocol Actions. 
The protocol actions may be described in the 

following 6 steps: 
1.  Increment the session counter 1k k= + . 
2. Compute the package for session k  (this requires 

the computation of one new session key and one MAC 
– the package structure is given above). 

3. Send package for session k  to the other entity. 
4. Receive a new package from the other entity. 
5. Check if the received package contains a new 

authentic session key – this is easy to check by 
verifying that ( )( ) ( )1f k kσ σ= −  for A ’s key and  

( )( ) ( )1f k kρ ρ= −  for B ’s key. If the session key is 

not authentic than return to step 4 else proceed to step 
6. 

6. Use the new authentic session key to test the 
authenticity of the message from the previous session. 

Both entities A  and B  start the protocol with 
0k = . The order in which the steps are performed is 

different for A  and B , this is because A  starts the 
protocol. Therefore the order in which A  performs the 
steps is 1, 2, 3, 4, 5, 6 while for B  is 4, 5, 6, 1, 2, 3 
and so on for the completion of each session, the 
protocol run for session k  is also suggested in figure 
1. Because of this, A  starts the protocol in step 1 
while B  starts the protocol in step 4 and after the 
completion of the η  sessions A  ends in step 6 while 
B  ends in step 3. 

Steps: 1,2,3

Steps: 4,5,6,1,2,3

Steps: 4,5,6,1,2,3

Steps: 4,5,6,1,2,3

( )( ) ( ){ }, , ,, , 1 ,A k A k A k A AP M MAC M k kσ σ= +

( )( ) ( ){ }, , ,, , 1 ,B k B k B k B BP M MAC M k kρ ρ= +

( )( ) ( ){ }, 1 , 1 , 1, , 2 , 1A k A k A k A AP M MAC M k kσ σ+ + += + +

( )( ) ( ){ }, 1 , 1 , 1, , 2 , 1A k A k A k A AP M MAC M k kσ σ+ + += + +

A B

 
Fig 1. The DeMA authentication protocol 
 
3. Computational Performance of The 
Protocol 
 
3.1. Theoretical Performance 
 

Since using public key primitives such as the 
squaring functions is more computational intensive 
than using symmetric primitives, we consider taking a 
closer look to the computational performance of the 
protocol. We will consider the measure of the 
computational time required for the completion of one 
round and one session of the DeMA protocol as a 
performance index. 

The computations performed on each round of each 
session of the DeMA protocol consist in: computing 
one session key (which requires one modular 
exponentiation if we do not use the time-memory trade 
discussed in section 2), and one MAC in step 2 plus 
the verification of the received session key (which 
requires one modular multiplication) and of the MAC 
for the previous message in step 5 and 6. This results 
in the computational time given by the next relation: 

 
2t t t tround exp mul MAC= + + ⋅  (7) 

 
Since computing the modular exponentiation is by 

far the most computational intensive operation, without 



loosing the accuracy of the result we can approximate 
the computational time for one round as: 

 
t tround exp≈  (8) 

 
The time-memory trade suggested in the previous 

section can greatly improve the computational 
performance of the protocol. If the chain of η  
elements is split into chains of λ  elements the 
computational time for λ  rounds is: 

 
( )2 1 2expt t tmul MACλ λλ = + − ⋅ + ⋅ ⋅  (9) 

 
From here, the mean computational time for one 

round follows directly as: 
 

1exp' 2 2
t

t t tround mul MACλ λ
⎛ ⎞= + − ⋅ + ⋅⎜ ⎟
⎝ ⎠

   (10) 

 
In (10) we can ignore the computational time 

required by the MAC, since it should be about ten 
times smaller than a modular multiplication, and as λ  
becomes larger the computational time for one round 
can be estimated as: 

  
' 2t tround mul≈ ⋅    (11) 

 
Relation (11) shows that theoretically the 

computational time for one round of the DeMA 
protocol can be reduced to the computational time of 
one modular squaring.  

The computational time for one session of the 
DeMA protocol depends on the computational power 
from each side involved. We may define the 
computational time for one session as: 

 
, ,t t tsession A round B round= +    (12) 

 
Here by ,tA round  and ,tB round  are the 

computational time for one round on A  and B  side 
respectively. 
 
3.2. Practical Results 
 

We have tested the performance of the DeMA 
protocol by running a Java implementation on two 
computers: a Toshiba Tecra notebook with Intel 
Centrino 1.6 Ghz and a desktop computer with AMD 
Athlon 64 2800+ at 1.8 Ghz. Both the computers were 
running Windows XP and had 512 MB of RAM, 

however this is not so important for the computational 
timings.  

The protocol was implemented in Java NetBeans 
IDE 5.0 [13]. The Java environment was preferred 
because of the support offered for large integer’s 
arithmetic. The computations performed over the 
groups of integers, were performed by using the 
methods contained in the BigInteger class: BigInteger 
multiply(BigInteger val), BigInteger mod(BigInteger 
m), BigInteger modPow(BigInteger exponent, 
BigInteger m). We have computed the value of 

2 modx n  with one modular multiplication followed 
by one modular reduction; this method was preferred 
to the direct squaring with the function modPow which 
proved to be slower. The Message Authentication 
Codes are computed with the SHA1 hash function. The 
communication was assured by using a ServerSocket 
object that accepts connections on the server side and a 
Socket object on the client side.  

We consider first to benchmark the computational 
performance of the basic cryptographic primitives in 
Java. In Table 1 the computational timings for the 
basic cryptographic primitives on both the computers 
are given. 

In order to test the computational performance of 
the protocol we have connected the two computers 
with a TrendNet TW100 router. The computational 
timings with various sizes for the length of the chain 
and buffer are given in Table 2. The package sent 
between the entities in each round consisted in a 
message of 160 bits plus the MAC of 160 bits and the 
session key of 1024 bits. 

As expected, the results from Table 2 show that the 
computational time is significantly improved by 
increasing the size of the buffer in which the pre-
computed keys are stored (the size of the buffer from 
this implementation is the length λ  of the smaller 
chains). In row (1) the computational time for the 
protocol in the case when the cryptographic primitives 
are enabled is given and in row (2) the computational 
time for the case when the cryptographic primitives are 
disabled is given (row (2) actually shows the 
communication performance with no cryptography). In 
rows (3) and (4) the off-line computational timings are 
given, these timings actually represent the time 
required on each side to compute one new session key 
and one MAC. The final conclusion that can be drawn 
from the experimental results is that the use of the 
time-memory trade (key buffer) improves the 
computational time significantly and for increased size 
of the buffers the computational time for one session 
with or without cryptography is close. Also the last 
two rows of table 2 in which the offline computational 



performance is measured show that for increased sizes 
of the buffer the computational time is almost equal to 
one-modular multiplication – this is a practical result 
which sustain the theoretical expectations from relation 
(11). 

 

Table 1. Computational timings for the basic 
cryptographic primitives 

Table 2. Computational performace of the 
DeMA protocol with quadratic residue chains 
(time is measured in seconds and denotes the 
average time for one session tsession  ) 
 
4. Conclusions  
 

The use of the discrete squaring function for 
generating the one-way chains in the DeMA protocol 
was proposed and investigated. By using this function 
the computational time is not influenced by the length 
of the one-way chain. This function also offers the 
advantage that the elements of such a one-way chain 
may be efficiently computed in a time-memory trade at 
the reduced cost of almost one modular multiplication 
for each element. The practical results included in this 
paper give an estimate measure for the computational 
performance of DeMA protocol implemented with the 
discrete squaring function. The proposed solutions 
may be of interest in a number of applications that deal 
with information authenticity or user authentication 
over public networks such as the Internet. 
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CPU MAC with 
SHA1 

Modular 
Multiplication 

(1024 bit module) 

Modular Exponentiation 
(1024 bit module and 

exponent) 
Intel Centrino 1.6 

Ghz 
610 10 s−×  674 10 s−×  350 10 s−×  

AMD Athlon 64 
2800+ 1.8 Ghz 

68.9 10 s−×
 

660 10 s−×  343 10 s−×  

Number of 
Sessions / Buffer 
Size ( λ ) 

310 /1  4 210 /10
 

5 310 /10  6 410 /10
 

1 Cryptography 
Enabled 

340 10−×
 

31.6 10−×
 

30.8 10−×
 

30.7 10−×
 

2 Cryptography 
Disabled 

30.6 10−×
 

30.4 10−×
 

30.4 10−×
 

30.4 10−×
 

3 Communication 
Disabled (Centrino 
1.6 Ghz) 

321 10−×
 

6615 10−×
 

6159 10−×
 

6113 10−×
 

4 Communication 
Disabled (Athlon 
64 2800+ 1.8 Ghz) 

318 10−×
 

6514 10−×
 

6139 10−×
 

696 10−×  


