
Cryptanalysis of an Authentication Protocol

Bogdan Groza
“Politehnica” University of Timisoara
Automation and Applied Informatics

Department
Bd. Vasile Parvan nr. 2,Timisoara, Romania

E-mail: bogdan.groza@aut.upt.ro

Dorina Petrica
“Politehnica” University of Timisoara
Automation and Applied Informatics

Department
Bd. Vasile Parvan nr. 2,Timisoara, Romania

E-mail: dorina.petrica@aut.upt.ro

Abstract

Authentication protocols have applications in many
fields. The security of authentication protocols is
commonly based on cryptographic primitives.
Constructing secure authentication protocols is not an
easy challenge and there is a large number of
authentication protocols that prove to be insecure.
Wulf et al. have proposed in [1] a protocol by which
an entity can authenticate in a distributed system
environment without using any shared secret. This
paper will make a brief analysis of the proposed
protocol and will show how it can be broken. The
protocol will be broken by using multiplicative
inverses of the integers from nZ , where n is a prime
number.

1. Introduction

In this paper we will analyze the security of the
authentication protocol proposed by Wulf et al. in [1].
Some of the ideas from [1] were also proposed more
recently in the case of a publish-subscribe system [2].

Authentication protocols are probably the most
commonly used security protocols. Entity
authentication is a process in which an entity proves
his identity and his presence to another entity.
Authentication requires both an identity guarantee,
which is usually connected to the presence of a secret
(for example a password), and a time guarantee which
will be made by some time variant parameters - to
ensure that this authentication did not happened before.
Authentications are usually challenge-response
protocols in which an entity sends a random challenge
to another entity who wishes to prove his identity.

The security of authentication protocols was much
debated especially in the last decade when many

protocols that were known to be secure failed under a
more careful analysis.

There is long list of protocols that were proved to be
insecure; probably the most well known cases are that
of Needham-Schroeder, Otway-Rees, TMN. Finally,
the most important thing is that understanding why
security fails has an important role in constructing
stronger solutions.

In this paper we will show that the proposal from
[1] can be broken easily only by using multiplicative
inverses of integers from nZ , where n is a prime
number.

Section 2 shows the description of the protocol from
[1] and section 3 outlines some mistakes in the
proposal. In section 4 the protocol is analyzed while
section 5 shows how to break the protocol. In section 6
some additional remarks will be made and section 7
holds the conclusion of the paper.

2. The Description of the Protocol

In order to build an authentication protocol, the use
of two functions f , g with the following properties
was proposed in [1]:

f and g are one-way functions (1)

() ()() ()()yxgfyfxfg ,, = (2)

The fact that these functions are one-way means
that by giving x it is easy to compute)(xf but by
giving)(xf it is infeasible or hard to compute x .

Functions f and respectively g are chosen in
secret by each entity and will remain secret on the
respective side. One entity will use g to compute a
challenge for the other while the response can be
computed only by the other entity which is in

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

possession of f . The notations A and B will be used
to denote the entities and it will be considered that A
needs to authenticate to B. In the first step A will send
to B a value x and the value of ()xf . This will be the
first step:

Step1. A B: A, x , ()xf

Now, in order to authenticate to B, A will send a
request and B will send him back a challenge which
consist on a randomly selected number y and the
value of ()yxg , . In order to respond to this challenge
A will compute ()yf and ()()yxgf , . The following
are the steps of the authentication protocol:

Step 2. A B: A
Step 3. B A: y , ()yxg ,
Step 4. A B: ()yf , ()()yxgf ,

Now B has to verify that A is authentic and he
achieves this by computing () ()()yfxfg , and
checking that indeed () ()() ()()yxgfyfxfg ,, = .

The reader may now easily remark why it was
necessary for f and g to remain secret: in case that
f is known the attacker can easily respond to the

challenge by computing ()yf , ()()yxgf , ; otherwise if
g is known to the attacker he can respond with

()()rxfgr ,, for some arbitrary value r and the
authentication will also hold.

In order to increase the effectiveness of the protocol
it was also proposed that verifier values which is the
pair ()xfx, to be replaced in every protocol run with
the newly sent values ()yfy, or else with

() ()()yxgfyxg ,,, . In section 4 we will show how this
replacement will lead an attacker to both impersonate
A and make impossible for A to authenticate ever
again.

This was the formal description of the protocol and
in order to obtain a practical implementation the use of
two functions based on discrete exponentiation was
proposed. The functions proposed in [1] were:

() nxxf a mod= (3)

() () nyxyxg b mod, ⋅= (4)

These functions will remain secret in the sense that
each entity will choose an arbitrary value for a and
respectively for b and keep the value secret.

These functions are suitable to be used in the
proposed authentication scheme. Both functions will
be hard to be deduced by an adversary because in order
to determine a or respectively b the adversary had to
compute a discrete logarithm. Therefore, the secrecy of
these functions relies on the difficulty of computing
discrete logarithms in nZ . It is commonly known that
the discrete logarithm is infeasible to compute, this
means that giving nxb mod , x , n it is infeasible to
compute b for large values of n .

The composition property (2) is also easy to verify

since indeed () ()() (), mod
ba ag f x f y x y n= ⋅ =

()(),f g x y= .
The following additional conditions were imposed

for the parameters: n , a and b are all large primes.
With the previously defined functions f and g the

protocol can be rewritten as follows:

Step 1. A B: A, x , () nxxf a mod=
Step 2. A B: A
Step 3. B A: y , () () nyxyxg b mod, ⋅=

Step 4. A B: () nyyf a mod= , ()(),f g x y =

()() mod
abx y n= ⋅

The identity of A will be verified by computing

() ()() () nyxyfxfg
baa mod, ⋅= and checking that

() ()() ()()yxgfyfxfg ,, = .

3. Some Shortcomings of the Proposal

We will now outline some shortcomings of the
proposal from [1]:

1) The conditions imposed for functions f and g
are not sufficient to guarantee security. One may note
that the protocol can be broken if an attacker can
determine for a given value γ two values α and β
such that () βαγ =,g . This attack is possible because
in the verification step B will compute and verify the
value of () βαγ =,g for the newly received values

()yf=α , ()()yxgf ,=β and the verifier ()xf=γ -
so if such α and β can be determined the
authentication holds. This additional condition should

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

be stated in [1] and also in [2] because there is no proof
that the previous two conditions (1),(2) for functions
f and g can guarantee the security of the protocol.

The attack in section 4 is based on this remark.
2) The condition imposed for the values of n , a

and b to be large primes might not be appropriate for
achieving stronger security. It is natural to choose n a
large prime because it is needed to make the discrete
logarithm intractable. But we do not see any argument
for requesting a and b to be also primes. More, we
see that in fact it should be requested for x to be a
generator of nZ in order to make the discrete
logarithm hard to compute – otherwise if the order of
x is small it will be much easier to compute the
discrete logarithm. If the verifier is always changed it
is also recommended for the value of the verifier to
have a high order because again the intractability of the
discrete logarithm depends on this order.

3) It is possible for an attacker to mount chosen-
text attacks against the protocol; these are attacks in
which an adversary strategically chooses challenges in
order to learn information about the secret. The
attacker can lunch such an attack by selecting some
elements from nZ with low order. The attacker can

take some divisors kii ,1, =δ of the order group of the

group nZ (i.e. kini ,1,1| =−δ when n is prime)
such that they are relatively prime to each other (i.e.

()gcd , 1, i j i jδ δ = ≠ , gcd denotes the greatest

common divisor) and it is feasible to compute discrete
logarithms on elements with order ()1 , 1,in i kδ− = .
Let χ be a generator of nZ and compute elements

kini
i ,1,mod == δχω , obviously each iω will have

the order ()1 , 1,i in i kζ δ= − = . Suppose that the
values of iω are offered as challenges to entity A.
Since it will be feasible to compute discrete logarithms
on each element iω the adversary can learn from the
responses of A the congruence of the secret exponent
modulo each iζ . This leads to congruencies of the

form kia ii ,1,mod =≡ ζλ which results in a system
that can be solved by Chinese Remaindering Theorem

and has a unique solution modulo ∏
=

k

i
i

1

ζ . If we

compute the values of () iii ζρσ mod1−= and

1

k

i
i

i
i

ζ
ρ

ζ
==

∏
 then the solution of these congruencies

will be
=

⋅⋅=
k

i
iii

1

σρλτ and for the secret exponent

holds ∏
=

≡
k

i
ia

1

mod ζτ .

4) The authors sustained that there is a connection
between this protocol and zero knowledge protocols.
Zero-knowledge protocols are build to address the fact
that an adversarial verifier may be able to select
challenges in such a way that he can obtain responds
that provide certain information about the secret on
which authentication is made (i.e. chosen text attacks).
In this protocol an adversarial verifier can strategically
give such challenges, as seen previously, so this
protocol is certainly not zero-knowledge. In the form
presented and with the selected candidates for
functions f and g this is certainly a public key
challenge-response authentication (section 6 examines
the similarities between this protocol and a public key
protocol).

4. Analyzing the Protocol

A careful analysis of the proposed functions will be
done.

First we will remark an additional property of g
that was not taken into account in [1], observe that:

() ()1,, yxgyxg ⋅= (5)

Although it may appear trivial this property has
some fundamental implications.

The most important is that the claim that an
adversary cannot compute ()yxg , for some arbitrary
values of x and y is not always true. It is easy to
observe that if one knows ()bag , he also knows

()1, −⋅⋅ ξξbag for any integer ξ , here 1−ξ denotes the
multiplicative inverse of ξ . Now, because of (5) the
following relation holds:

() () ()bagbagbag ,,, 11 =⋅⋅=⋅⋅ −− ξξξξ (6)

Define now the function kψ , where k is a constant
integer:

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

() nxx k
k mod=ψ (7)

Observe also that ψ has the following property:

() () ()yxyx kkk ψψψ ⋅=⋅ (8)

Redefine f using ψ :

() ()xxf aψ= (9)

Also remark that function g is from the same
family as f and the fact that it has two parameters it is
not so important since:

() ()yxyxg b ⋅=ψ, (10)

Now, by using ψ redefine the authentication steps
as follows:

Step1. A B: A, x , ()xaψ
Step 2. A B: A
Step 3. B A: y , ()yxb ⋅ψ
Step 4. A B: ()yaψ , ()()yxba ⋅ψψ

And the verification will be done by checking that
() ()() ()()yxyx baaab ⋅=⋅ ψψψψψ . This is certainly a

more elegant and realistic description of the protocol.
Define also:

()[] ()11 −− = xx aa ψψ (11)

By using (8) observe that:

()[] () () () 1111 ==⋅=⋅ −−
aaaa xxxx ψψψψ (12)

It is now easy to see how an attacker can
impersonate entity A, let cψ denote an arbitrary
instance of ψ chosen by the attacker:

Step 2. Attacker B: A
Step 3. B Attacker: y , ()yxc ⋅ψ

Step 4. Attacker B: () ()1
a cx x yψ ψ− ⋅ ⋅ , ()()yxbc ⋅ψψ

The authentication of the attacker certainly holds
since one may easily verify that indeed

() () ()()1
b a a cx x x yψ ψ ψ ψ−⋅ ⋅ ⋅ ()()c b x yψ ψ= ⋅ .

If we remember the security issue from the previous
chapter, we can see that this attack was possible
because the adversary was capable to compute

() ()1
a cx x yα ψ ψ−= ⋅ ⋅ and ()()c b x yβ ψ ψ= ⋅ such

that for the given ()xaψγ = it holds that () βαγ =,g .
Computation of such α and β was possible because
property (6) let the adversary predict the result of g
over the authentication values.

It worth also to note that the attack was possible
because even if an attacker does not know the value of

()xaψ he can make the verification not depend on it

by computing the multiplicative inverse ()1−xaψ and
since (12) holds the verification does not depend
anymore on the value of the verifier ()xaψ .

As a brief conclusion the attacker can break the
protocol if he has the ability to compute ()1−xaψ given

()xaψ - this is certainly the case of this protocol and
the next section will describe the concrete attack over
the protocol.

5. How to Break the Protocol

By using the elements form the previous section it
is easy to break the protocol.

We will remark that when n is prime nZ forms a
group with the operation of multiplication - this means
that all elements have a multiplicative inverse.
Multiplicative inverses are easy to compute in nZ ,
whether n is prime or not, with the extended
Euclidean algorithm [3, page 67].

Now an attacker can easily compute the values

nyxx kka mod⋅⋅= −α and ()() nyx
kb mod⋅=β ,

here k is a random integer selected by the attacker.
This is possible since x , ax , y and ()byx ⋅ are not

secret and the multiplicative inverse of ax , that is
ax − , is easy to compute. The attacker will use these

values α , β in the third step of the authentication.
The following would be the run of the protocol in

the case when the attacker impersonates the real user
(we will suppose that Step1 of the protocol was already
run as in section 2):

Step 2. Attacker B: A
Step 3. B Attacker: y , () () nyxyxg b mod, ⋅=

Step 4. Attacker B: nyxx kka mod⋅⋅= −α ,

()() nyx
kb mod⋅=β

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

The attacker has successfully impersonated A and
the verification of the identity holds because it is easy
to check that indeed

() () βα =⋅⋅⋅= − nxyxxxg
bakkaa mod, . Again notice

that even if an attacker does not know the value of a
he can make the verification not depend on it by
computing the multiplicative inverse of ax and since

1=⋅ −aa xx - the authentication protocol does not
depend anymore on the verifier ax .

Example: In order to make things more clear we
will consider this example. Suppose that A chooses the
prime 12457=n , 2351=a , 509=x while B will
choose 673=y , 2953=b . The first step will be:

Step1. A B: A, 509=x , 778mod =nx a

Now the attacker request an authentication and B
sends him a challenge:

Step 2. Attacker B: A
Step 3. B Attacker: 673=y , () 1074mod =⋅ nyx b

The attacker chooses an arbitrary 253=k ,
computes the multiplicative inverse of nx a mod (that
is 9687mod =− nx a since

nxx aa mod19687778 ≡⋅=⋅−) and responds with the
following values:

Step 4. Attacker B: 7586mod =⋅⋅= − nyxx kkaα ,

()() 6795mod =⋅= nyx
kbβ

Entity B verifies authenticity by checking that

() βα =⋅ nx
ba mod and this holds since

() 679512457mod7787586 2953 =⋅ .
Now if the values of the verifier are always replaced

with the newly sent values it is easy to see that after an
attack the real user will never be able to authenticate
again. For example if we suppose that the previous
attack took place and B had replace the verifier pair

axx, with the newly sent values
nyxxy kka mod, ⋅⋅= −α (about which B believed

although cannot verify that is ny a mod) when A
request an authentication and B sends him a new
challenge 'y the following will be steps of the
authentication:

Step 5. A B: A

Step 6. B A: 'y , () () nyyyyg
b

mod, '' ⋅=

Step 7. A B: ()'yf , ()() () nyyyygf
ab

mod, '' ⋅=

The authentication fails and A will be rejected
because B will verify that ()() ()()'' ,, yygfyfg =α and
B will decide that A is not authentic since

() nyyyyxx
abbakka mod'' ⋅≠⋅⋅⋅− .

Example: Consider the previous attack on the
protocol, now the verifier is 673=y , 7586α = .
Entity A wants to authenticate and B sends the
challenge 129' =y , the protocol run will be the
following:

Step 5. A B: A
Step 6. B A: 129' =y , () 11708, ' =yyg

Step 7. A B: () 9969' =yf , ()() 3272, ' =yygf

Now B will verify that A is authentic by checking

that ()() ()()'' , yygfyf
b

=⋅α but since

()() 4444' =⋅
b

yfα the authentication will certainly
fail.

Also if the verifier pair axx, is replaced by

() () nyxyxg b mod, ⋅= , ()() nyx
kb mod⋅=β the

authentication of A will again fail. The following will
be the steps of the authentication in this case:

Step 5. A B: A

Step 6. B A: 'y , ()() ()() nyyxyyxgg
bb mod,, '' ⋅⋅=

Step 7. A B: () () nyyf
b

mod'' = ,

()()() ()() nyyxyyxggf
abb mod, '' ⋅⋅=⋅

The authentication fails because B will verify that
()() ()()()()'' ,, yyxggfyfg ⋅=β and this is false since:

()() ()() nyyxyyx
abb

bakb mod'' ⋅⋅≠⋅⋅ .

Example: We will again consider the first attack on
the protocol, now the verifier is () 1074, =yxg and

6795=β . Entity A wants to authenticate and B sends

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

the challenge 129' =y , the protocol run will be the
following:

Step 5. A B: A
Step 6. B A: 129' =y , ()() 4364,, ' =yyxgg

Step 7. A B: () 9969' =yf , ()()() 4206, ' =⋅ yyxggf

In order to check that A is authentic B will verify

that that ()() ()()()()'' , yyxggfyf
b

⋅=⋅β but since

()() 5027' =⋅
b

yfβ the authentication will certainly
fail.

6. Some Additional Remarks

It is commonly known that any public-key
encryption technique may be used to construct an
authentication protocol and there are mainly two ways
to achieve this [1, page 403]:

1) by making the claimant to decrypt a challenge
encrypted with his public key

2) by making the claimant digitally sign a message
with his private key

As an example, one can derive the following
authentication protocol from ElGamal public key
encryption [4] (consider the same function ψ from the
previous section and that Step 1 has run in the same
manner proposed in section 3):

Step 2. A B: A
Step 3. B A: ()xbψ , ()()xy ab ψψ⋅
Step 4. A B: y

In Step 3 A will decrypt the challenge y by

computing ()() ()()[] 1−⋅⋅= xxyy baab ψψψψ and he
sends back the value of y proving that he can decrypt
arbitrary messages encrypted under its public key.

It should be also stated that such constructions
should be carefully done since the use of the same
private-public key pair for different purposes can result
in security loss.

The proposal from [1] might appear interesting but
with the candidates proposed it is nothing more than a
challenge-response authentication based on a public-
key primitive. It is obviously that the authentication
from [1] is very similar to the previous authentication
based on El-Gamal public key encryption, in fact the
authentication from [1] requires much more
computation and it is insecure.

Once defined the function ψ (see section 4) it is
also easy to observe that:

()() ()()xx baab ψψψψ = (13)

We will now rewrite the steps of the authentication
from section 3 in order to make some observations
(remember that this is the authentication from [1]
redefined by using ψ , Step1 has run as in section 2):

Step 2. A B: A
Step 3. B A: y , ()yxb ⋅ψ
Step 4. A B: ()yaψ , ()()yxba ⋅ψψ

We will underline that the purpose of the challenge
is to verify that A is capable to compute aψ for an
arbitrary value. The authentication as described above,
and with the selected candidates, contains redundant
elements in Step 4 because A computes aψ for two
distinct values and it will be sufficient to compute on
only one value if there is a way to verify this. Notice
that ()xbψ , if b is selected at random, is an arbitrary
value and can be use in Step 2 as a challenge. Now the
response of A to this challenge should be ()()xba ψψ
and B could verify this since (13) holds and he can
check that the response is equal to ()()xab ψψ . So the
protocol can be rewritten in the following simpler way:

Step 1. A B: A, x , ()xaψ - initialization
Step 2. A B: A - request
Step 3. B A: ()xbψ - challenge
Step 4. A B: ()()xba ψψ - response

But with the proposed functions this is nothing new
but Diffie-Hellman key-exchange [4] in which A will
prove that he can recover the key and therefore is
authentic. So if redundant elements are removed from
the authentication proposed in [1] it can be reduced to
Diffie-Hellman key exchange.

7. Conclusions

The proposal from [1] has two main weak-points:
1) the description on a formal level of the two

functions f and g with the requested properties
cannot guarantee security

2) the selected functions were not carefully
examined and some essential properties of integers
from nZ neglected

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

As a consequence the authentication protocol does
not resist cryptanalysis and the attacker can
successfully impersonate the user.

A new protocol can be added on the long and
always open list of insecure protocols.

The proposal from [1] can appear interesting but
with the selected candidates for functions f and g it
results in an insecure authentication protocol. Finding
some good candidates for these functions can finally
lead to a functional authentication scheme – but this is
the hardest task faced by cryptography.

8. References

[1] Wulf, W.A., Yasinsac, A., Oliver, K.S., Peri, R. “A
technique for remote authentication.” Availlable at

http://www.cs.fsu.edu/~yasinsac/Papers/howdoi.pdf, last
accessed 20.06.2005 20:00 PM.

[2] Wang, C., Carzaniga, A., Evans D., Wolf A.L., “Security
issues and requirements for internet-scale publish-subscribe
systems” Proceedings of the 35th Hawaii International
Conference on System Sciences, (2002).

[3] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.,
“Handbook of Applied Cryptography” CRC Press, (1996).

[4] ElGamal, T., “A public key cryptosystem and a signature
scheme based on discrete logarithms”, IEEE Transactions on
Information Theory, 31 (1985).

[5] Diffie, W., Hellman, M.E., “New directions in
cryptography”, IEEE Transactions on Information Theory,
22, (1976).

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05)
0-7695-2453-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

