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Abstract—Broadcast authentication in Controller Area Net-
works (CAN) is subject to real time constraints that are
hard to satisfy by expensive public key primitives. For this
purpose we study here the use of one-time signatures which
can be built on the most computationally efficient one-way
functions. We use an enhancement of the classical Merkle
signature as well as the more recently proposed HORS sig-
nature scheme. Notably these two proposals offer different
trade-offs, the first is more efficient in terms of memory
while the second is more efficient in terms of verification
speed and signature size. Further, both signature schemes can
be efficiently paired with time synchronization to reduce the
overhead to re-initialize the public keys, which would otherwise
require expensive authentication trees. We do outline clear
bounds on the performance of such a solution and provide
experimental results on development boards equipped with
Freescale S12X, a commonly used automotive grade micro-
controller. We also benefit from the acceleration offered by
the XGATE co-processor available on S12X derivatives which
significantly increases computational performances.

I. MOTIVATION AND RELATED WORK

Controller Area Network (CAN) [7] is a bus wide spread
in the field of automotives and commonly present in gen-
eral purpose automation applications. Traditionally, environ-
ments that relied on CAN were isolated in secure perimeters.
But things changed nowadays and it is more obvious that
control systems (inside a car or not) will be targets of
cyberterrorism in the near future. Due to the increased
degree of interconnectivity it will be impossible to perfectly
isolate any control system from the outside world. A good
survey on the subject of security in control systems can be
found in [5]. Also, recent research shows how vulnerable
cars are to Dolev-Yao adversaries [8]. Therefore, it is clear
that controllers will need to authenticate to each other in
order to trust the exchanged information. In particular, the
importance of assuring security inside a car and on the CAN
bus is discussed by Wolf et al. in [22].

It is of our interest here to design and implement at the ap-
plication layer a broadcast authentication protocol for CAN
based on one-time signatures. Symmetric key primitives
were successfully used, even in constrained environments
such as sensor networks [17], [10], [11]. However using
them was feasible only with time synchronization, which is
a simple procedure but introduces an authentication delay
which needs to be at least several times greater than the
synchronization error. Although one can do clever engineer-
ing work to improve on this, it will be preferable in some

contexts to have immediate authentication. A version of the
scheme that achieves immediate authentication is in fact
available from Perrig et al. in [16] but this scheme addresses
the case in which the Message Authentication Code (MAC)
on the message is sent before the key disclosure while
the message itself afterwards (allowing to authenticate the
message when it is received). This however means that the
sender must still wait until the disclosure delay expires
in order to authenticate the message. Here by immediate
authentication we mean that as soon as a principal knows the
value of the message he can broadcast it and its authenticity
can be checked by receivers as soon as the authentication
tag is received.

To achieve this, there is no other alternative but the use
of digital signatures. However, digital signatures are more
expensive and require more communication bandwidth. RSA
will require thousands of bits for each signature, while
elliptic curves can reduce this to several hundreds, still in
both cases the computational costs of signing and verifying
is very high. To this one will need to add the size of the
source code as well as memory requirements which are
usually limited in industrial controllers. There is still an
alternative to this: the use of one-time signatures which were
initially proposed by Merkle in [12], [13]. Although they are
frequently mentioned in the literature as a cheaper alternative
to conventional signatures, they are quite unused in practice,
mostly because of their one-time nature. Using Merkle
trees makes them viable for multiple uses, but it requires
sending an entire path of a tree, and generating, potentially
storing all this three on the signer side, which requires
even more resources (this resources in fact increase with
the number of signed messages). A more recent one-time
signature scheme was proposed by Perrig in [15] and a better
alternative to it is provided by Reyzin et al. in [18]. A general
solution, from which the proposals of Merkle [12], [13]
and Lamport [9] can be derived as particular cases, was
provided by Bleichenbacher and Maurer in [1] and another
work by the same authors studies the optimality of this kind
of signatures [2]. Thus, there is good literature available on
this subject despite a reduced practical impact.

Contribution. In a previous short paper we made a brief
appointment on the use of an improved Merkle one-time
signature for this purpose [6]. Here we enhance our previous
performance analysis with more details and also implement
a more efficient solution based on the HORS signature



scheme [18]. We do find the enhanced Merkle and HORS
signatures to offer different tradeoffs, the first is more effi-
cient in terms of memory, while the second is more efficient
in terms of signature size and verification time. Indeed,
with the HORS signature we exhibit good improvements
in the authentication delay. The enhanced Merkle signature
also has certain advantages. More concrete, the size of the
messages is quite small in most broadcast scenarios since
CAN frames carry small data from sensors and actuators
(the size of the data field in a CAN frame is actually limited
to 64 bits) and this signature allows message recovery,
thus small messages can be embedded in the signature.
Finally, both signature schemes can be efficiently paired with
time synchronization to reduce the overhead to re-initialize
the public keys, which would otherwise require expensive
authentication trees.

The paper is organized as follows. Section 2 gives an
outline of the signature scheme that we use and of the
protocol. The theoretical efficiency of this solution is studied
in section 2, while in section 3 we proceed on experimental
results on S12X microncotrollers which are equipped with
XGATE co-processors [14] that can be used to speed up
computations. To improve even more we used a hardware
random number generator. Section 4 holds the conclusions
of our paper.

II. SIGNATURE SCHEMES AND BROADCAST PROTOCOL

We employ the now classical procedure of using a one-
way key chain with time synchronization to commit the
public keys that are used to verify the signatures. We stress
that the intention is to use these public keys to authenticate
the broadcast and not to assure non-repudiation. Because of
this we can renounce on the classical structure of Merkle
trees to authenticate them, which will be more memory
and bandwidth consuming. If one wants to assure non-
repudiation at some point, at the cost of extra-memory, then
eventually any number of the released public keys could
be signed afterwards. The signature schemes are flexible
and their parameters can be used to adjust the consumed
computational power, memory and bandwidth. These are
discussed in detail after the protocols description.

A. The signature schemes

We first review the one-time signature schemes that we are
going to use and give an example to underline its efficiency.
In the next section we integrate this in the protocol that
we are going to use. The generic principle behind both
one-time signatures is to apply a simple on-way function,
e.g., a hash function, over some input that plays the role of
secret key and use the output as public key. However if bits
are signed individually this results in an inefficient scheme,
not necessarily due to the number of hash computations
since these are cheap, but mainly due to the size of the
signature itself, e.g., in worst case on hash for each bit. For

this purpose, several improvements were proposed in the
literature. The enhanced Merkle signature and HORS [18]
that we discuss next employ the one-way chains in two
highly distinctive fashions, a reason for which we choose
to evaluate both of them in out CAN broadcast scenario.

Enhanced Merkle Signature Scheme (EMS). Given one-
way function f , signature scheme EMS is a triplet of
polynomial time algorithms Gen,Sign,Ver where:

1) Gen is a probabilistic algorithm that takes
as input the security level k along with two
integers λ, µ and outputs the public-private
key pair pk, pv, i.e., pb = {(fλ(uµ), fλ(vµ))
,..., (fλ(u2), fλ(v2)), (f

λ(u1), f
λ(v1))},

pv = {(uµ, vµ), ..., (u1, v1)} ← Gen(1k, λ, µ)
(here all ui, vi are random values of k bits each),

2) Sign is a deterministic algorithm that takes as input the
private key pv, a message m of blog2(λ)c·µ bits which
can be written as m = mµ...m2m1 (where each mi

has blog2(λ)c bits), and outputs a signature s, i.e., s =
{(fλ−mµ(uµ), fmµ(vµ)), ..., (fλ−m2(u2), f

m2(v2)),
(fλ−m1(u1), f

m1(v1))},
3) Ver is a deterministic algorithm that takes as input the

signature and the public key and outputs message m =
mµ...m2m1 if and only if ∀i = 1..µ, fλ−mi(si) =
fλ(ui), f

mi(si) = fλ(vi) or ⊥ otherwise.

Security. The previous scheme is an improvement of
the classical Merkle, but as we couldn’t find proof for its
security we consider to give a proof sketch here. First note
that signing each component of the message is independent
from another, thus it is sufficient to prove that the adversary
is unable to forge any part of the signature. Let Adv be
an adversary that manages to forge a signature on some
message block m′ with non-negligible probability εAdv. We
use Adv to make an algorithm that inverts f with non-
negligible probability on some target y = f(x). The inverter
chooses random l ≤ λ and random r then flips a bit b. If
b = 0 then the inverter computes the pair f l(y), fλ(r) which
is set as the public key otherwise he computes and sets the
public key as fλ(r), f l(y). Now the adversary is allowed to
make a query to the signing oracle. Let PrBad denote the
probability that Adv asks for mAdv > l and b = 0, or else
mAdv < l and b = 1 which will make the oracle fail to
answer and abort. Obviously PrBad = 1 − l/λ. Otherwise,
the oracle succeeds and the adversary must output the
forgery with probability εAdv for some m′ 6= mAdv . If
m′ > mAdv as l is also random with probability (λ−l)/λ we
have m′ > l and with probability 1/2 we have b = 0 which
means that we can use the adversary output to invert f with
probability 1/2 · (λ− l)/λ · εAdv. Otherwise, if m′ < mAdv

with the same probability we can invert f in the second case
if b = 1. Summing up, the probability to invert the function
is non-negligible.

HORS Signature Scheme. Given one-way function f ,



signature scheme HORS is a triplet of polynomial time
algorithms Gen,Sign,Ver where:

1) Gen is a probabilistic algorithm that takes as input
the security parameters l, k and integers λ, µ then
generates λ random k-bit values s1, s2, ..., sλ then
computes vi = f(si) and outputs the public-private
key pair pk, pv, i.e., pb = {µ, f(s1) ,..., f(sλ)},
pv = (k, s1, ..., vλ)← Gen(1k, l, λ),

2) Sign is a deterministic algorithm that takes as input
the private key pv and message m then computes h =
hash(m) and splits h into k substrings h1, ..., hµ each
of log2(t) bits and outputs s = (sh1 , ..., shµ) (where
each hi is interpreted as an integer index),

3) Ver is a deterministic algorithm that takes as input
the signature s, the public key pb and message m the
outputs 1 if and only if f(s′i) = vi for each i extracted
as integer index from h(m).

Security. The security proofs for this scheme can be found
in the original paper [18]. We mention here that the security
level of this signature scheme is µ(log λ− logµ− log r) if
the adversary obtains r signed messages of its choice.

B. The broadcast protocol

For each of the signature schemes we use a broadcast
protocol that relies on one-way key chains. In the case of
the EMS signature, the key chain is used to commit future
public keys, while in the case of the HORS signature each
element of the key chain forms a public key for the signature
(this happens in a similar fashion to the BiBa protocol from
Perrig [15]).

Time synchronization is loose and is done with syn-
chronization error εR,S which is the round-trip time of a
handshake between the receiver and the sender. Usually this
handshake has two steps as 1.R → S : NR, 2.S → R :
SigS(t

S
sync , NR) where tsync denotes time on the sender

side and NR is a nonce chosen by the receiver. However,
as we need to keep the synchronization error as small as
possible, we will not use a digital signature and instead
we will use a MAC which is several order of magnitudes
cheaper. By using it, the synchronization error gets to the
order of several milliseconds, which is accurate enough for
high speeds of the broadcast. Afterwards, the receiver R can
estimate at any point tcurrent that the time on the sender’s
side S is TS,R(tcurrent) ∈ [tSsync + tcurrent − tRsync , tSsync +
tcurrent − tRsync + εR,S ].

Broadcast with EMS. Given signature scheme EMS and
the roles sender S and receiver R we define protocol
Broadcast-EMSS,R[λ, µ, δ] as the following actions per-
formed by S:

1) Initialization: S generates a key chain by using a
random K0 and computing Kn = f(Kn−1),∀i = 1..n,
then he commits the tip of its top level-chain, i.e., Kn,
the disclosure delay δ and the public key obtained by
running Gen(1k, λ, µ),

2) Commitment: S sends at any point in time interval
[tstart+i·δ, tstart+(i+1)·δ−ξ] (here ξ is a tolerance
value to prevent the sender to commit a MAC to
close to the disclosure point which will increase the
chance for a receiver to drop the packet) a fresh public
key pb generated by using Gen(1k, λ, µ) and a MAC
computed with Ki+1 on it, i.e, MACKi+1

(pb),
3) Key Disclosure: S sends at time tstart + i · δ the

corresponding key from the key chain, i.e., Ki,
4) Authentic Broadcast: S sends at any time in [tstart+i·

δ, tstart+(i+1) ·δ−ξ] message m as a signature with
message recovery s = Sign(m, pvlast) (here pvlast is
the most recently generated private key);

and R respectively:

1) Initialization: R receives the initialization information
of the sender, i.e., Kn, the disclosure interval δ and
the public key pk,

2) Time Synchronization: R performs a loose time syn-
chronization with S, such that the synchronization
error εR,S << δ,

3) Receive Keys and Commitments: R receives Ki and
checks if f(Ki) = Ki−1 and discards it otherwise.
Any MAC computed with Ki that is received after
TS,R(i · δ) is discarded. Any public key for which
there exists a valid MAC and key K that can verify it
is deemed authentic,

4) Message Verification: R runs Ver(pki, sigi) for any
valid public key and deems authentic any output
different from ⊥.

Security. The signature scheme was proved to be secure
while the security of such protocols based on time syn-
chronization is well known. The informal argument is that
from MACK(M) and f(K) an adversary cannot produce
MACK(M

′) for any M ′ 6= M since K is not known
as well as it cannot be found from f(K). By the time
K is released it is already too late for the adversary to
send a MAC and a message as they will not be anymore
accepted by the receiver due to the time constraint. For
completeness we can give a more formal proof sketch here.
It is commonly acknowledged that although random oracles
do not give an absolute proof they can be used at least as
a sanity check to prove the security of protocols. If we
assume that the oracle Of that computes function f can
be replace by a random oracle OR, which outputs k bits,
the proof is straight forward. Assume that the adversary
has witness polynomially many queries p(k) to oracle OR.
Suppose at some point the adversary is forced to produce
MACK(MAdv) for some message of its choice. But the
adversary knows just OR(K) which is the output of the
random oracle and K is unpredictable subject to the fact
that it may have been already asked by the adversary to
OR. This means he can guess it and produce a valid MAC
only with probability 1/(2k − p(k)) - which is negligible.



Broadcast with HORS. Given signature scheme HORS
and the roles sender S and receiver R we define protocol
Broadcast-HORSS,R[λ, µ, δ] as the set of following actions
performed by S:

1) Initialization: S generates a key chain starting
from random K0, ...,Kλ and computing Kij =

f(Kj−1i ),∀i = 1..λ, j = 1..µ, then he commits the
tip each chain, i.e., Kµi ,

2) Authentic Broadcast: S sends at any time in [tstart +
i · δ, tstart + (i + 1) · δ − ξ] message m along with
its signature computed with HORS having as secret
key input the keys from the current disclosure interval
Ki0,Ki1, ...,Kiλ (the number of messages signed in
each time interval depends on the security level and
signature parameters);

3) Key Disclosure: S sends at time tstart + i · δ all the
keys from the current interval that were not disclosed
as HORS signature (to save some bandwidth, sending
these keys can be skipped since the receivers can
validate future signatures with previously received
keys, but note that this will increase verification time
on receivers)

and R respectively:
1) Initialization: R receives the initialization information

of the sender, i.e., Kµi ,∀i = 1..λ and the disclosure
interval δ,

2) Time Synchronization: R performs a loose time syn-
chronization with S, such that the synchronization
error εR,S << δ,

3) Receive Keys and Commitments: R receives keys Kji
and checks if f(Kj−1i ) = Kji and discards it otherwise.

4) Message Verification: R runs Ver(pki, sigi) for any
signature that is received in the correct time interval
and deems authentic any input that is correctly veri-
fied.

Security. The security can proved by simply constructing
a forger for the HORS signature. In this case a challenger
can simply use the public key of the signature to be forged
to build key chains and further simulate the broadcast
protocol with the hope that an adversary will forge the target
signature.

C. Efficiency

We start by analyzing various trade-offs that can be
achieved with the enhanced Merkle signature then we com-
pare it to RSA signatures and finally to HORS. The main
conclusion is that in general HORS would be more efficient
in terms of verification speed and bus load (while it is
less efficient in terms of memory requirements) and in
the experimental section we provide the computational and
communication bounds that we reached for HORS.

Enhanced Merkle Signature. To judge efficiency it is rele-
vant to consider the number of bits that can be signed with a
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Figure 1. Variation of signed bits and signature size with µ ∈ [0, 350]

committed public key. Since the length of the chains, i.e., λ,
and their number, i.e., µ, is bounded by the computational
power in time δ we could write λ = σ · δ/µ, where σ
denotes computational speed, i.e., the number of function
computations per second. Having a fixed σ it is relevant to
decide which will be more efficient from a computational
point of view: to have larger µ and shorter λ or vice-versa.

Figure 1 depicts the variation of signed bits and signature
size with parameter µ of the signature scheme. The plot
is depicted for a speed fixed to 2000 one-way function
computations per second, which is around the average of
our experimental results presented in the next section. As
can be seen, larger µ means more bits can be signed, but
require much more bandwidth.

Figure 2 shows the variation of the number of signed bits
with computational speed σ and µ. Clearly computational
speed cannot compensate enough the decrease in the chain
length as it results in division with a logarithmic factor.
However, decreasing the chain length results in the same
expense of bandwidth as can be seen from figure 1. Thus,
higher computational speeds certainly help up to some point
when one needs to decrease the length λ in order to allow
an increase in µ.

Figure 3 shows the variation of the number of signed
bits with computational speed σ and busload B. The plot
is given for µ ∈ [0, 500] and B ∈ [0, 1]. The maximum
number of signed bits is achieved by taking µ equal to half
the maximum number of packets that can be send on the
bus and then computing λ according to the computational
speed and the disclosure delay which is fixed to 1s in this
plot. As can be seen, the main limitation for the number
of signed bits is given by the bus speed. For example in a
fault tolerant CAN with 128kbps, the number of signed bits
will not exceed 1.2kbps even if a hash computation does not
exceed 100µs. If the bus speed is increased to 1 Mbps, as
in high speed CAN, then the number of signed bits can get
up to 2.5 kbps. These results hold for the EMS signature,
for HORS we discuss the performance in the experimental
results section.
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Comparison with RSA. A relevant thing about this sig-
nature in the way it was presented before is that it allows
message recovery. In an environment with constrained band-
width this becomes relevant with respect to performance.
We consider to outline the efficiency of this scheme by a
short comparative example with an RSA based signature.
If a k bit message is to be signed with fixed λ then
2 ·λ · dk/log2λe one-way function computations are needed
and the signature size is 2·dk/log2λe. Now consider an 1024
bit RSA compared to an MD5. Indeed these primitives are
not very strong for today requirements but the proportion
gets even worse for the RSA as bigger public keys are used.
By taking timings from OpenSSL, on a notebook with an
Intel Core2Duo processor at 1.4 Ghz, we get that MD5 is
3670 times faster than the RSA private key operation which
is done at signing. Now to sign a 128 bit message assuming
λ = 64 we can process 8 bits at a time which results in
2 ·64 ·16 = 2048 computations of MD5. That is still almost
half the time required by RSA. But indeed it results in a
signature that is 2 · 16 · 128 = 4096 bit long, which is 4
times larger than for RSA. But remember that in our scenario
short messages are more common and consider a message

is 32 bits. With length λ = 64 again 8 bits can be processed
at a time and we get a signature of the same size as the
RSA, i.e., 24̇ · 128 = 1024, but only 2 · 4 · 64 = 512 MD5
computations are needed which is 7 times faster than the
RSA. For shorter messages, this improves even more, a more
detailed analysis is done after the complete description of
the protocol. It is commonly known that one can improve
on this even more by signing the bits of m only by using the
f i(u) values from the above signature scheme and using the
f j(v) values to sign the sum

∑
i=1,µ(2

λ−mi). In the worst
case this will require the same computational costs and size
for the signature while in the best case it requires only half
the size. To keep the following description simple we leave
this just as potential improvement in a practical application.

Comparison with HORS. If we assume the message to be
signed is k bits then having length λ for the chains in the
enhanced Merkle signatures and HORS then the following
constraints hold. The size of the signature, which gives the
bus load, is 2k/ log2 λ in case of EMS and twice as short in
case of HORS, i.e., k/ log2 λ. However, in terms of memory
HORS requires λ key chains to be stored, while EMS
requires only k/ log2 λ key chains which is obviously less. In
terms of verification speed HORS is again superior to EMS
requiring only k/ log2 λ as opposed to λk/ log2 λ required
by EMS. In the experimental section we give practical data
on the efficiency of both these schemes.

D. Further improvements: recycling unused keys

Recycling Public keys that were authenticated but unused
can be safely used in forthcoming time intervals. The only
restriction that must be taken into account is to avoid
memory exhaustion attack on the receiver. This is because
and adversary may intentionally break the communication
channel between R and S which will determine the sender
to further store public keys until its resources will exhaust.
To avoid these a maximum life-span of the public keys can
be fixed.

It may be also tempting to recycle unused parts of the
chains corresponding to the public keys. If the new tips are
authenticated this can be done but combining this with the
previous procedures results in an unsafe protocol. For exam-
ple consider that S decides to use an unused part of a public
key and authenticates it using the top level chain. Now an
adversary that has intentionally broken the communication
between S and R can use the newly committed tips to forge
a signature. Because of this, reusing parts of the public keys
should be avoided.

III. EXPERIMENTAL RESULTS

In order to confirm our theoretical results we made some
tests on a 16-bit automotive microcontroller. The Freescale
microcontroller (MC9S12XDT512) from the S12X family
has 512Kbytes of flash memory and 20Kbytes of RAM.
One special feature of this family is the presence of an
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incorporated co-processor called XGATE which was built to
reduce the load of the S12X CPU by serving interrupts and
software requests. The architecture schematic of the S12X
chip can be seen in Figure 4.

For an improvement of the overall performance of the
implemented protocols we took advantage of two features
available on the chip. On one hand we used a true random
number generator (TRNG) implemented with the on-chip
analog to digital converter (ADC). On the other hand we
used the XGATE co-processor, which can execute operations
in parallel to the main S12 CPU at twice the bus speed. This
was used to compute cryptographic primitives. Additionally
we observed that the operating bus frequency of the micro-
controller can be pushed beyond the 40 MHz limit stated
by the datasheet without affecting its functionality. We were
able to successfully use a maximum frequency of 80 MHz
at which the microcontroller was stable.

A. Communication over the CAN bus

CAN bus has a broadcast nature, nodes are connected by
a two wire bus topology, as shown in figure 5. Access to
the bus is gained with priority based on a message identifier
which forms the first part of a frame and has 29 bits in
extended frames and 11 bits in standard frames. Other parts
of the CAN frame include: a 6 bit control field, 0-64 bits
of data, 15 bit CRC and a 2 bit acknowledgment, 1 bit
marks the start of frame and 7 bits mark its end. Thus, at
most 8 bytes of data can be placed in a CAN frame and
they are followed by the 15 bit CRC. Two kinds of CAN
nodes are commonly available on the market: fault tolerant
low-speed nodes which operate at 125kbps and high-speed
nodes that work up to 1Mbps. In our application setting
the S12 development boards are equipped with the Phillips
TJA1054 fault tolerant CAN transceiver which allows a sped
of 125Kbps.

B. Random number generation

In order to save some computational time, which would
have been lost on deriving key material from a master key
or by implementing a pseudo-random number generator, we
implemented and used a TRNG. As a source of high entropy
we rely on a commonly used signal in random number
generation: white noise. White noise is defined by Brown
[4] as a stationary random process having a constant spectral
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Figure 5. Generic CAN Bus topology
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Figure 6. Schematics of the white noise generator that we implemented

density function. This means that the signal contains equal
power for each frequency in a fixed bandwidth which will
assure that the values are uniformly distributed over the
output voltage domain. By sampling the momentary values
of the white noise signal we can use the parity of these
values to generate random bits.

We have built a white noise generator based on the
avalanche noise on a Zener diode caused by the breakdown
phenomenon. This appears when the Zener diode is used
in reverse polarity mode bringing the PN junction in the
reverse breakdown mode. The magnitude of the generated
noise was in the order of milli-volts so it had to be amplified.
The amplification was done in two steps (with a gain of 11 in
the first step and 16 in the second) to bring the voltage level
of the signal in the order of several volts. The schematics
of the white noise generator used can be seen in Figure 6.

The white noise signal obtained in this way was used
as input for one of the ADC channels available on the
MC9S12XDT512 microcontroller. This channel was con-
figured as an 8 bit ADC channel making continuous con-
versions. The parity bit of the conversion result could be
used as the random bit but in our case the random bits
generated from white noise were biased. The tendency was
to generate a zero more often than a one. To solve the bias
problem we implemented the simple de-skewing technique
proposed by Von Neumann in [20]. Thus we considered pairs
of consecutive bits and depending on their values a different
action was taken. If the two bits in the pair are identical they



RNG Test result
Passed Possibly weak Poor Failed

White noise 23 2 1 8
RNG CSP 22 2 5 5
.Net Random 24 4 0 6
/dev/urandom/ 23 1 1 9
BBS 22 1 5 6

Table II
DIEHARDER STATISTICAL TEST RESULTS

were discarded, a pair of ”10” is interpreted as ”1” while the
pair ”01” is interpreted as ”0”. This method removes the bias
problem with a drawback in the generation speed. The speed
achieved by this generator was around 2744 bytes/second for
a 40 MHz bus frequency and 7835 bytes/second for 80 MHz.

To assess the randomness of the generated random number
sequence we used several test batteries: NIST [19] and
Dieharder [3]. Multiple sequences were generated in con-
secutive runs (and also with different controllers on different
development boards) and compared to find the number of
identical bits. Here we also used for comparison the results
obtained for three other RNGs: the Linux cryptographi-
cally secure PRNG (/dev/urandom), .Net RNGCryptoServi-
ceProvider and the Blum Blum Shub (BBS) PRNG. The
random number sequences tested were 25 Mbytes for each
RNG.

We summarize the test results in Table I and II. Table I
contains the pass rate of the NIST tests done over the 25
Mbytes sequences which were split in smaller chuncks.

In addition to these tests we also used some of the tests
provided by ENT [21] to evaluate if and how the generated
sequences converge to expected values. This evaluation
gives an image on the distribution of the random numbers
generated.

Comparing the results of the five RNGs we observed that
our implementation has a similar performance with that of
the other random number generators and even sometimes
exceeding their performances.

C. Computational performance

Using the main S12X CPU for computing cryptographic
primitives, communication and all other necessary opera-
tions would lead to a poor performance even if the mi-
crocontroller is overclocked at 80 MHz. To compensate for
the small frequency we had to reduce the load of the main
CPU and we did this by using the XGATE co-processor for
executing all cryptographic computations. When a hash for
example has to be executed, the main S12X CPU has to
issue a software request to the XGATE co-processors. Until
the computation is done on XGATE, the main CPU will be
free to execute other tasks.

Three well known hash functions have been implemented:
MD5, SHA1 and SHA-256. The execution speed for each
of these functions was tested both on the S12X CPU and

Hash function
Execution time

@ 40MHz @ 80MHz
S12X XGATE S12X XGATE

MD5 730µs 310.5µs 367.5µs 156.8µs
SHA1 2285µs 1000µs 1144µs 501µs
SHA-256 5480µs 3140µs 2740µs 1572µs

Table III
PERFORMANCE OF S12X AND XGATE IN COMPUTING HASHES.

Input length
Execution time

@ 40MHz @ 80MHz
S12X XGATE S12X XGATE

HMAC-MD5
64 5.39ms 2.310ms 2.695ms 1.154ms
128 6.02ms 2.580ms 3.010ms 1.288ms
256 7.27ms 3.110ms 3.635ms 1.558ms
512 9.78ms 4.185ms 4.890ms 2.090ms
1024 14.78ms 6.33ms 7.39ms 3.165ms

HMAC-SHA1
64 17.78ms 7.79ms 8.89ms 3.895ms
128 19.95ms 8.74ms 9.96ms 4.375ms
256 24.25ms 10.64ms 12.14ms 5.32ms
512 32.95ms 14.44ms 16.48ms 7.22ms
1024 50.4ms 22.05ms 25.15ms 11.04ms

HMAC-SHA256
64 43.1ms 24.80ms 21.55ms 12.42ms
128 48.4ms 27.90ms 24.20ms 13.94ms
256 59.0ms 34.00ms 29.55ms 17.00ms
512 80.1ms 46.2ms 40.05ms 23.15ms
1024 122.4ms 70.7ms 61.20ms 35.35ms

Table IV
PERFORMANCE OF S12X AND XGATE IN COMPUTING MACS.

XGATE. The results are presented in Table III for the
case of using the maximum documented frequency and the
overclocked one. The input for each hash function was equal
in length to each specific hash output.

As the overall authentication overhead is also affected by
the commitment of the public keys we also evaluate the
time needed to perform a MAC on S12X. We used HMAC
together with the three hash functions presented above and a
128 byte key. Table IV holds the execution time we obtained
for different message sizes.

D. Protocol performance

As shown in the previous section (Table III), the com-
putation of one MD5 is done in 156.8µs on XGATE at
a frequency of 80 MHz. With this speed, considering data
blocks of 64 bits with λ = 64 and µ = 47 (bounded
by the computational speed) we get a bus load of around
16% and approximately 286 bits can be authenticated in
one second. For a bus load of 50%, having λ = 21 and
µ = 147, the authentication speed increases to 652 bps.
To reach an authentication speed of 1000 bps we can use
λ = 10 and µ = 294 but at the cost of a bus load of 100%.
This may not seem much, but it allows a flexible tradeoff
between the length and the number of signed messages. For
example, in the first case, at a bus load of only 16% a number



Test RNG
White noise RNG CSP .Net Rand /dev/urandom/ BBS

Frequency 0.9880 0.9800 0.9840 0.9960 0.9840
Block Frequency 0.9880 0.9920 0.9880 0.9960 0.9960
Cusum Forward 0.9880 0.9840 0.9880 0.9960 0.9800
Cusum Reverse 0.9840 0.9920 0.9840 0.9920 0.9880
Runs 0.9960 1.0000 0.9960 0.9920 0.9840
Longest Run 0.9840 0.9840 0.9960 0.9880 0.9960
Rank 0.9920 0.9960 0.9960 0.9960 0.9880
FFT 0.9920 0.9880 0.9840 0.9920 0.9840
Non Overlp.Tpl. 0.9892 0.9885 0.9886 0.9886 0.9904
Overlapped Template 0.9880 0.9960 0.9840 0.9920 0.9920
Approx. Entropy 0.9960 0.9800 0.9840 0.9840 0.9880
Serial 1 0.9880 0.9720 0.9920 0.9920 0.9920
Serial 2 0.9840 0.9880 0.9920 0.9880 0.9960
Linear complexity 0.9760 0.9800 0.9840 0.9920 1.0000

Table I
THE PASSING RATE OF THE NIST STATISTICAL TESTS

of 47 messages of 8 bits can be signed in each second
which is enough to hold critical data from analog-to-digital
converters, etc., while 74% of the bus is free and can be
used for other non-critical tasks. This amount of messages
cannot be signed with a public key primitive such as the
RSA, which requires hundreds of milliseconds on S12. This
contrast shows the efficiency of the employed mechanism.

For implementing the HORS protocol we looked for a
suitable way of adapting it for devices with lower compu-
tational powers. We adapted our setup by adding a master
node which has the sole purpose of authenticating messages
that are broadcasted on the CAN bus. To allow this, each of
the other participants to the communication (which will be
called slave) has to share a secret key with the master. In this
way, when a slave wishes to send an authenticated message,
it will put one frame on the bus containing the message and
a counter, followed by another frame which will contain a
MAC computed using the preshared key over the message-
counter pair. The master checks the authenticity of the
message using the key associated with the sender ID and if
it succeeds it will send the HORS authentication information
to all nodes. We chose to use a master node because HORS
involves using a high number of key chains which would
need a considerable amount of memory for storing. Since the
bus nodes are constrained even in what regards the available
memory, the most cost effective solution would be to have
only one device with higher computational speed and storage
that plays the role of a master.

Even in this master-slave setup it is not an easy task to
find a suitable parameter combination that will consume as
little as possible from the slave constrained resources and in
the same time allow for a good communication speed. We
tested a setup that uses t = 1024 key chains of k = 48 bits
each as the signature chain and MD5 as our f function. The
result of the MD5 is split into k = 7 substrings of 10 bit
each (log2(t)). As the master node, we used a laptop (Intel
Core2Duo CPU T7700@2.4GHz) along with a CANcardXL

(PCMCIA device) and CANcab 1054mag to enable the PC
to communicate over CAN. Using these parameters in the
master-slave setup described above we were able to reach
an authentication delay of 30ms when setting the S12X
chip frequency to 40MHz without employing the XGATE
coprocessor. By increasing the frequency to 80MHz and
using XGATE to perform the cryptographic computations
this delay can be decreased to around 15ms. Alternatively,
this leads to 30–60 authentic packets each second while
the size of each packet is not bounded by any parameters
(different to the case of the EMS scheme) except for bus
speed.

IV. CONCLUSIONS

One-time signatures prove to be an efficient mechanism
for assuring immediate authentication in CAN networks.
This is more prominent in the case of messages with reduced
size. The main purpose of our work was to assess which
are the limitations of such a solution in CAN networks
and our experimental results showed up to several kilo-bits
of authenticated traffic can be achieved while the delay at
which messages are authenticated can be lower to tens of
milliseconds. In our experimental results the computational
performance was also boosted by the XGATE co-processor
which is two to four times faster than the regular S12 chip.
We also improved on this as one-time signatures require
fresh random values and we take them from hardware RNG,
thus avoiding a key derivation process or a software PRNG
which will require more computational time. As future
work we intend to make a full scale implementation of the
protocol described here both on the S12X controller and on
a high end automotive controller with better computational
speed and high speed CAN.
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