
Broadcast Authentication in a Low Speed
Controller Area Network ?

Bogdan Groza and Pal-Stefan Murvay

Department of Automatics and Applied Informatics,
Politehnica University of Timisoara, Romania

bogdan.groza@aut.upt.ro,stefan.murvay@gmail.com

Abstract. Controller Area Network (CAN) is a communication bus that has no
cryptographic protection against malicious adversaries. Once isolated, the envi-
ronments in which CAN operates are now opened to intruders and assuring broad-
cast authentication becomes a concern. To achieve this, public key primitives are
not a solution because of the computational constraints, but symmetric primitives
can be used with time synchronization at the cost of additional delays. Here we
study several trade-offs on computational speed, memory and bandwidth having
the main intention to depict the lower bounds on the efficiency of such proto-
cols. For this purpose we use a wide spread controller from Freescale located
somewhat on the edge of the market capable of low speed, fault tolerant CAN
communication. To further improve the computations we also make use of the
XGATE co-processor available on the S12X derivative. The performance of both
hash functions and block ciphers is examined for efficient construction of the key
chains.

Keywords: authentication; broadcast; controller area network.

1 Introduction and related work

Controller Area Network or simply CAN is a communication bus initially developed by
BOSCH to be used by controller units in vehicular systems [5]. The initial specifications
are now superseded by ISO 11898 [6] while its area of application also extended outside
vehicles to automation applications in general. Although high performance buses were
developed in the last decade, such as FlexRay, because of its efficiency and reduced
cost CAN is still the most commonly used communication bus in automotives today.

Traditionally, in control systems in general and in automotives in particular, relia-
bility was a main concern but only with respect to natural phenomenons (electromag-
netic disturbances, thermal noise, etc.) or accidents of various causes but not in front
of Dolev-Yao adversaries. Thus CAN has very efficient mechanisms to deal with errors
and to recover afterwards. In fact, the probability of an undetected error on CAN is
extremely low, informally one undetected error occurs at about one thousand years for
each vehicle that operates eight hours a day with an error each 0.7s. For the interested

? This is a revised postproceedings version of the paper entitled Higher Layer Authentication
For Broadcast In Controller Area Networks presented at SECRYPT’11

2 Bogdan Groza and Pal-Stefan Murvay

reader, an in-depth study of the performance of CAN error detection mechanism was
done by Charzinski in [3].

However, in the last decade, industrial control systems and automotives become
opened to malicious adversaries as well and a significant part of the security commu-
nity focused on this kind of issues. A recent comprehensive book for security and in
particular cryptographic security in automotives is [10] but a high amount of papers
were published since then.

In this context, of malicious adversaries that can manipulate messages over the net-
work, CAN does not have intrinsic support for any kind of security. Indeed, such kind
of security is not needed if one sees CAN as operating in a secure perimeter. But, it is
very likely that soon CAN like networks will operate in environments that are opened
for intruders. Recent research showed current automobiles to be unexpectedly vulner-
able to external adversaries [8] and it is likely that many other environments in which
CAN operates are not completely isolated from the outside world. Security in front of
such adversaries can be achieved by implementing this at the application level. In fact
such improvements happened in the past, for example when deterministic delays were
needed on the CAN bus with the development of Time Triggered CAN [7]. Still, to best
of our knowledge there is no implementation available to assure authenticity in CAN
networks. Thus, the main intention of this paper is to develop a higher layer implemen-
tation and to study several trade-offs to increase its efficiency. We analyze this both at a
theoretical level by introducing the corresponding formalism and by designing an effi-
cient protocol and at a practical level by following an efficient implementation. This is
done on S12X microcontrollers from Freescale, a family of microcontrollers commonly
used in the automotive industry, with the use of the XGATE co-processor available on
S12X derivatives to speed up cryptographic functions.

As for the cryptographic mechanism that can be employed for this purpose, public-
key cryptography is not the solution because of both the computational and commu-
nication overhead. As messages are short in CAN networks, usually fitting in the 64
bits of data carried by one CAN frame, using a public-key primitive such as the RSA
will require thousands of bits and cause a significant overhead. Elliptic curves will sig-
nificantly reduce the size of the messages, but still the computational overhead is too
much to assure small authentication delays. While the computational overhead can be
alleviated by dedicated circuits, such as ASICs and FPGAs, this will largely increase
the cost of components, an issue that is largely avoided by manufacturers.

In contrast, symmetric primitives were efficiently employed for authentication in
constrained environments such as sensor networks [15], [11], [12]. Due to the broadcast
nature of CAN, protocols similar in nature to the well known TESLA protocol [16], [14]
can be used in this context as well. There is an extensive bibliography related to the
TESLA protocol. Its history can be traced back to Lamport’s scheme which uses one-
way chains to authenticate users over an insecure network [9]. The work of Bergadano
et al. [2] proposes several variants of one-way chain based protocols, with or without
time synchronization. Previous work which inspired this family of protocols is the Guy
Fawkes protocol from [1]. The context which is more related to our setting here is that
of the application of such protocols in sensor networks. In particular, several trade-offs

Broadcast Authentication in a Low Speed Controller Area Network 3

for sensor networks were studied by Liu and Ning in [11], [12] and several variants of
the protocols are presented by Perrig as well in [16], [14] .

In the case of the industrial controllers, some of the constraints are similar. For
example, computational power is also low and, although high speed microcontrollers
are also available on the market, low speed microcontrollers are preferred to reduce
costs. But while low computational power gives some similarities, other constraints
are different. For example, energy consumption is a relevant issue in sensor networks,
but usually for control units inside a car this is not a main concern since they do not
strongly rely on small batteries. On the other side, a different constraint here, that is not
so prevalent in sensor networks, is the size of the message which is limited to 64 bits on
a CAN frame. Indeed, larger messages can be split in smaller messages but the overhead
inflicted by the structure of the CAN frame is around 50%. This becomes prevalent in
the case of one-way chain based protocols, where hash-functions are used to compute
the chain elements and thus to send an element of the chain will require at least two
exchanged messages (assuming the simplest hash function outputs 128 bits). To this,
one will need to add the message authentication code as well, which again requires
at least two exchanged messages, etc. Thus, at least four CAN frames are needed to
transmit just the security elements of one frame of useful information. Still, the most
critical part, in automotive communication and control systems in general, where this
protocol is mostly used, are the authentication delays, i.e., how fast a packet can be
deemed as authentic. For this purpose, the most relevant constraint to which we want
to give a positive answer is the authentication delay. In particular we must assure that a
node, if the bus is not taken by a higher priority message, is able to transmit the message
and the message can be checked for authenticity as soon as possible. This condition
is initially limited by the computational power, but as checking for authenticity can
happen only as soon as the disclosure delay expires and the next element of the chain
is committed, this also depends on the structure of the chain which is determined by
the amount of memory, and also on the bandwidth. Using too large chains means too
much time in the initialization stage and large amounts of memory, while too short
chains means either high authentication delays or too frequent re-initializations, etc.
Depicting an optimum in this context is not straight forward and we study this in detail
in what follows. In particular, we used in our scheme several levels of one way chain.
While three levels of one-way chains were reported to be closed to optimal in sensor
networks, due to memory constraints and to reduce initialization in some situations we
used more levels. This is because of both the time horizon of the protocol and of the
duration of the disclosure interval. In sensor networks the disclosure interval was in the
order of tens or hundreds of milliseconds, while here, to increase communication speed
we want to reduce this as much as possible. Of course, we are finally limited by the bus
speed at 128 kbps and by the synchronization error, which in fault-tolerant CAN will
not allow us to drop the disclosure delay under several milliseconds. Practical examples
are given in the experimental results section.

The paper is organized as follows. Section 2 gives an overview of the protocol,
starting from several details of the CAN protocol to the examination of the influence
of chain lengths, structure and timings on performance. In section 3 we present ex-
perimental results concerning the implementation of the proposed protocol on S12X

4 Bogdan Groza and Pal-Stefan Murvay

microcontrollers. This includes experimental results for the implementation of crypto-
graphic primitives on the XGATE co-processor. Section 4 holds the conclusions of our
paper.

2 The protocol

From an upper view the design paradigm is the following. Memory, computational
speed and bandwidth give bounds on the length of the chains that can be used and
the number of levels. This, along with the synchronization error, further bounds the
authentication delay, as messages cannot be authenticated faster than the disclosure de-
lays. Further, to improve on the delays, we allocate equidistant timings in order to avoid
a non-uniform load on the CAN bus. Indeed, since initialization packets must have the
highest priority, if timings are non-uniform, there will be periods when more chains
need to be initialized and thus the bus will be heavily loaded by initialization packets.
Before getting to the description of the protocol we briefly enumerate in what follows
some relevant aspects of the CAN bus.

2.1 Short description of the CAN protocol

We are not interested here in typical aspects of the protocol such as error detection,
synchronization, etc., so we will not mention them. CAN bus has a broadcast nature.
Nodes are connected by a two wire bus topology, as shown in Figure 1, and access to
the bus is gained with priority based on a message identifier which forms the first part
of a frame. This identifier has 29 bits in extended frames and 11 bits in standard frames.
The structure of the CAN frame consists in the arbitration field (the identifier), 6 bit
control field, 0-64 bits of data, 15 bit CRC and a 2 bit acknowledgement. Additionally
1 bit marks the start of frame and 7 bits mark its end. Few words on arbitration are in
order. The way of arbitrating is by judging the winner based on the state of a particular
bit, namely recessive bits (value 1) are overwritten by dominant bits (value 0). So, if
the case, all nodes can start to write a message at the same moment on the bus, but,
whenever a node writes a recessive bit and reads a dominant one it means that it lost
the arbitration and will stop, otherwise it can continue. After each 6 consecutive bits
of identical values a stuffing bit of different value is added. The body of a message
can have at most 8 bytes and is followed by a 15 bit CRC. In the worst case a frame
can have 154 bits out of which only 64 bits are of actual useful information. Thus, the
overhead is high from the basic design of the protocol, in the worst case exceeding 50%.
But this is needed to achieve reliability as mentioned before. Two kinds of CAN nodes
are commonly available on the market: fault tolerant low-speed nodes which operate at
128kbps and high-speed nodes that work up to 1Mbps.

2.2 Overview of the authentication protocol

We use time synchronization and multiple levels of one-way chains in order to authen-
ticate the broadcast from a particular node. The generic structure of the key chains is
depicted in Figure 2. Packets arriving on the communication bus are depicted as well,

Broadcast Authentication in a Low Speed Controller Area Network 5

XGATE

S12X

XGATE XGATE

TJA1054T TJA1054T TJA1054T

S12X S12X

Fig. 1: Fault tolerant CAN bus topology with S12X controllers and TJA1054 transceivers

the dotted lines from an element of the chain to the packet denotes that the element was
used as a key, and for the re-initialization packets in particular one element of the key
chain was also used as a message. Packet Pi is sent to initialize a chain from level i. In
what follows we will use the following notations:

– L - number of chain levels,
– λi, i = 0..L - length of the chain on level i,
– δi, i = 0..L - disclosure delay on level i,
– B - bus speed, normalized to packets per second (one packet can carry one key),
– M - available memory (measured in elements of the key chain that can be stored),
– S - computational speed (number of keys that can be computed per second),
– T - time horizon of the protocol,
– t - time as integer value, a subscript indicates particular details.

Based on these notations in the next section we discuss the optimal allocation of the
broadcast parameters.

In principle we need two distinct protocols: an initialization protocol and a broad-
cast protocol. The role of the initialization protocol is to allow each unit to commit
its initialization values and to achieve time synchronization with other participants.
This part of the protocol can rely on more expensive operations required by public-
key cryptography. In this stage we consider that each principal will authenticate itself
by using a public key certificate that is signed by a trusted authority. Initial authen-
tication based on public-key infrastructure is important to assure composability. This
ensures that different components, from potentially different manufacturers, can be as-
sembled in one system and is a common demand of the market today. For example, in
a different context (that of communication alone), the latest state-of-the-art protocol,
FlexRay, has communication segments that are preallocated such that different com-
ponents from different providers can be bind into a system. Thus we require that each
node must store the public key of a trusted authority. The initialization protocol must
also ensure time synchronization. This is done with respect to a central node, which
will play the role of a communication master. As usual, synchronization between two
nodes is loose and it requires a handshake and counting the round trip time until it is
below a tolerance margin. This is usually achieved in two protocol steps as follows:
A→ B : NA;B→ A : SigB(tB,NA). Here NA denotes a nonce generated by principal A
and tB denotes the current time at principal B when sending its response. However, in
our scenario a digital signature costs tens, or hundreds milliseconds, which will result

6 Bogdan Groza and Pal-Stefan Murvay

in a high tolerance margin that will further require an even larger disclosure delay. Be-
cause of this, instead of a digital signature we will use a message authentication code
which is several orders of magnitudes faster, in particular in our experiments the round-
trip-time was less than 2 milliseconds. Afterwards, the round trip time εAB becomes the
synchronization error. If the nonce was sent by A at time t0 and now A’s clock points to
t1 then A knows that the time on B side is in the interval [tB + t1− t0, tB + t1− t0 + εAB].
Further, the initialization values for the chains can be shared between each node and the
central node who can broadcast them to all communication participants. We will not
insist on details of the initialization protocol which is done in the initial phase with no
constraints.

0

1

2

1

2

t

P2P2P2P1

key

value

2

value

key

value

key

level 0

level 1

level 2

P1 P0P2

value

Initial Setup

2

Fig. 2: Basic structure of the key chains and packets as they are dropped on the bus

2.3 Optimal allocation of key chain lengths and levels

For brevity we consider a homogeneous network with nodes that have equal computa-
tional abilities, thus the same computational delays and lengths for the chains can be
handled by all of them. Otherwise, the protocol can be scaled according to the compu-
tational abilities of each client, but we want to keep the model as simple as possible.

To formalize the optimal allocation of chain lengths and levels, different to previous
work, we use a tolerance relation to define the lengths of the chains and the disclosure
delays at each level. The tolerance relation is formed by vectors which are defined as
initialization values for each communication participant.

Definition 1. We say that a set of pairs < λi,δi > forms tolerance relation with re-
spect to memory, computational speed, bandwidth and time, denoted as < Λ,∆ >M,S,B,T
if the following constraints hold:

∑
i=0,L

λi = λ0 +λ1 + ...+λL ≤M (1)

Broadcast Authentication in a Low Speed Controller Area Network 7

λ0 + (λ0 +1) ·λ1 +(λ0 +1) · (λ1 +1) ·λ2 + ... (2)

+ (λ0 +1)...(λL−1 +1)λL = ∑
i=0,L

λi

i−1

∏
j=0

(λ j +1) =
L

∏
i=0

(λi +1)−1≤ B ·T

λ0 + (λ0 +1) ·λ1 +(λ0 +1) · (λ1 +1) ·λ2 + ... (3)

+ (λ0 +1)...(λL−1 +1)λL−λ0− ...−λL =
L

∏
i=0

(λi +1)−1−
L

∑
i=0

λi ≤ S ·T

Relation (1) gives the memory bound, i.e., the sum of the lengths of the chains
cannot exceed the total memory. Relation (2) and (3) are bounds on bandwidth and
computational time, i.e., the total number of elements of the one-way chain cannot ex-
ceed the available bandwidth for transmission and cannot require more computational
time than available over protocol lifetime T . Values λ0,λ1, ...,λL are subtracted from
relation (2) to get (3) since the first key chain on each level is computed in the ini-
tialization stage. Indeed, relations (2) and (3) can be further refined for the disclosure
delays on all up to the last level since the re-initialization of each chain should be done
in the disclosure delay of the previous level. We introduced this definition to keep our
presentation formal, but it is obvious that defining good tolerance relations is a matter
of good engineering.

Remark 1. Relations (2), (3) correspond to the case when all chains are commit-
ted in the initialization stage and each element from each level commits a new chain
from all levels below. This can be modified to the case when only the keys on the first
level are committed in the initialization stage and further each element on each level
commits a new chain only on the first level below. This will give cleaner tolerance re-
lations: ∑i=1,L ∏ j=0,i λ j = λ0 · λ1 + ...+ λ0 · λ1 · ... · λL ≤ S · T and ∑i=0,L ∏ j=0,i λ j =
λ0 +λ0 ·λ1 + ...+λ0 ·λ1 · ... ·λL ≤ B ·T . While in this way the number of commitments
will be constant 1, the lifetime of the protocol will be reduced as fewer chains are com-
mitted. Otherwise, the number of commitments increases, but at most to the number of
levels (usually 3 or 4) which should be easily supported on the bus. This appears to be
preferable since it improves the protocol lifetime.

Remark 2. The general relation between chain lengths and disclosure delays will
now be the following: δi = δi−1/(λi +1), i > 0. Intuitively, this also means that it must
be feasible to compute and send λi chain elements in time δi−1. Thus λi can also be
defined as a function of δi−1 considering the computational power of the device.

Remark 3. Given a tolerance relation < Λ,∆ >M,S,B,T with respect to time, space
and bandwidth the disclosure delay and the computational overhead have an inverse
variation. Thus: the minimal disclosure delay is achieved if chains are of equal size, i.e.,
λi = M/L, while the minimal computational and communication overhead is achieved
if upper level chains are smaller, i.e., λ0 < λ1 < ... < λL. This is intuitively since the
product of two values whose sum is fixed is maximal if the two values are equal and
minimal if one of the values is 1. For example, assume x+y = z then ∀k≥ 1,z/2 ·z/2 >
(z/2−k) ·(z/2+k) = z2/4−k2. Now, to achieve the minimum delay, the product of the

8 Bogdan Groza and Pal-Stefan Murvay

chain lengths λ0 ·λ1 · ... ·λL must be maximal. If we split this product exactly into the
half left and half right terms, assuming an even number of terms which is wlog, then
the maximum product is achieved if: the left and right terms are maximal and equal,
and so on. To achieve minimal bandwidth and computational requirements we need
λ0 ·λ1+ ...+λ0 ·λ1 · ... ·λL to be minimal. This can be written as λ0 ·(λ1+ ...+λ1 · ... ·λL)
and as right term cannot be equal to 1 the left term must be in order to minimize the
product and so on. Thus, the optimum choice of lengths with respect to delays, is to
have all chains of equal size. For the purpose of generality, as well as for the fact that in
practice small variations between chain lengths may occur when the amount of available
memory is not directly divisible with the number of levels, we will keep the following
exposition for the case when chains are of arbitrary sizes.

2.4 Optimal allocation of timings

By optimal allocation of the key disclosure time we want to achieve minimal delays
for sending messages and authenticating them. Of course, the authentication delay is
bounded by the disclosure delay, i.e., packets cannot be authenticated sooner than the
disclosure delay from the last level. This bound was already fixed by the tolerance
relation. However, the straight forward mechanism suggested in Figure 2, in which
chains are re-initialized successively, causes more overhead at the disclosure time of
keys from upper layer chains (since at this time all chains from lower levels need to be
re-initialized as well). To overcome this, we define a procedure which we call equidis-
tant timing by which all packets are disclosed at periods of time separated by equal
delays. More, we will use chains from upper levels to authenticate information packets
as well and not only forthcoming key chains. Thus, we will normalize the disclosure
time to:

δnorm =
T

∏
L
i=0 (λi +1)−1

(4)

This relation comes from the assumption that each tip of a chain is committed by
a MAC code but once it is not released until the precise time when it can be already
used for authentication. If the tip of the chain is also sent with the MAC code, then
the denominator will be ∏

L
i=0 λi−1. In the forthcoming scheme, keys on all levels are

released at δnorm intervals. Of course, if we use relation (4), δnorm is equal to δL but we
prefer to use this notation to avoid confusion with a generic scheme in which this may
not happen, i.e., not all keys are released at δnorm but only the keys from the chain on
level L.

In what follows we need to establish three things: i) which is the disclosure time
for a particular key k (Definition 4), ii) given a particular time t which key must be
disclosed, or which is the last key that was disclosed upon t (Remark 4) and iii) given
a particular packet, containing authentication information, what condition must be met
on the receiver’s side to deem this packet as on-time (Definition 5).

To determine all these, the easiest way to decide is by writing the time with respect
to the vectors of the tolerance relation which is established by the next definition.

Definition 2. Given a discrete time value t by t<Λ,∆> =< t0...tL > we denote the de-
composition of t with respect to the lengths of the chains (λ0,λ1, ...,λL) and normalized

Broadcast Authentication in a Low Speed Controller Area Network 9

time (δnorm) as a basis. In this way, each element from t<Λ,∆> gives the last element that
was released on the corresponding level. That is, given t ′ = tmodδnorm we write:

t = t0 · (λ1 +1) · ... · (λL +1) ·δnorm + ...+ tL−1 · (λL +1) ·δnorm + t0 ·δnorm + t ′

= δnorm · ∑
i=0..L

ti · ∏
j=i+1..L

(λ j +1)+ t ′ (5)

Sender’s perspective. For the moment we consider the case of a single sender. Let
tstart denote the time at which the broadcast was started and assume that it is started
by the communication master which is also responsible for time synchronization. Thus
tstart is the exact time at which the broadcast started (no drifts for the sender).

Definition 3. Let τleft = τ0τ1...τi−1 denote a vector of i positive integers such that
each element on position i is less or equal to λi. Given a tolerance relation <Λ,∆>M,S,B,T ,
an indexed key Kτ is a key entailed by a vector τ. An indexed key chain K<Λ,∆> is a
collection of indexed keys, derived as follows: having a fixed fresh seed Kmaster, a key
derivation process K D and a one-way function F , then ∀i ∈ [0,L],τi ∈ [1,λi], given
K

τleft|0|0 = K D(Kmaster,τleft):

K
τleft|τi|0 = F (K

τleft|τi+1|0) (6)

Definition 4. Let DT (Kτ) denote the disclosure time of the indexed key Kτ. Given
a broadcast started at tstart the disclosure time of this key is:

DT (Kτ) = tstart +δnorm · ∑
i=0..L

τi · ∏
j=i+1..L

(λ j +1) (7)

Definition 4 allows the creation of chains with the structure from Figure 2 while
definition 5 allows keys to be released at equal time intervals δnorm.

Remark 4. The key released by the sender at time tcurrent given a broadcast started
at tstart is Kt<Λ,∆>

where t = tcurrent− tstart. This means that the key is from level l, where
l is the first non-zero index from right to left and the position of the key on the key chain
from level l is tl .

Reinitialization packets and efficiency. To avoid a non-uniform bus load, as dis-
cussed previously, re-initialization packets will be dropped equidistantly in the δnorm
intervals. Otherwise, packets carrying data must be delayed until all re-initialization
packets are sent. This is because re-initialization packets must have priority on the bus,
otherwise the protocol will succumb an will require a new initialization stage which is
even more expensive. Thus we can also use as an efficiency criteria the maximum delay
until a new CAN frame can be send. For the basic scheme the maximum delay fluctu-
ates with the number of initialization packets. This delay can be easily established for
the basic scheme. Let zi(x) denote the number of consecutive zeros in vector x starting
from the rightmost position. At discrete time value t, given t<Λ,∆> the delay until the
next packet can be sent is:

delay = max[0,z((t− tstart)<Λ,∆>)] (8)

10 Bogdan Groza and Pal-Stefan Murvay

Indeed, the number of consecutive zeros at the end of the time value denotes how
many chains need to be initialized at that particular time. This value becomes constant
for the equidistant scheme and data packets are delayed by at most one packet.

To complete the view on efficiency, we should also define the overhead induced by
the authentication mechanism. The overhead has two distinct components, the authen-
tication overhead which is the overhead inflicted by the authentication keys that are
released on the bus, and the re-initialization overhead which is the overhead inflicted
by the re-initialization material, i.e., MAC codes that commit the key chains. Indeed, to
this one may want to add the overhead induced by the message authentication codes,
MACs, associated to each data packet that is send over the bus. We will not take this
into account because this is application dependent, not protocol dependent, indeed in
some applications the size of the data packets can be small, and thus adding a MAC to
each data packet will greatly increase the overhead. In other applications it may be the
reverse, and data packets can be large while the MAC will not significantly increase the
overhead. Based on these we can also define the total overhead inflicted by the protocol.

Remark 5. Given a tolerance relation < Λ,∆ >M,S,B,T the authentication and re-
initialization overheads and the bus load induced by the protocol is: OHauth = B−1 ·
∏

L
i=0 (λi +1)− 1 (as given in relation (2), the right term of the product covers all

key released on the bus), OHreinit = B−1 ·∑L
i=1(∏

i−1
j=0 (λ j +1)− 1) (the right term of

the product gives al the key chains that are committed on the bus) and OHtotal =
OHauth +OHreinit .

One may note that if the authentication delay is bigger the overhead also becomes
lower since fewer elements of the chain are sent. Also, the re-initialization overhead
increases with the number of levels. We give concrete examples for these in the experi-
mental results.

Figure 3 shows the influence of chain length on bus overhead and disclosure de-
lays. Plots are given for three and four levels of key chains. We note that the delays
drop rapidly by increasing the number of levels, but in the same manner the overhead
increases (at 100% the bus is locked and communication halted). Figure 3 shows the
variation of memory requirements with the number of chain levels, which is the same
as the initialization time. All plots are taken for a time range of 24 hours, the delay is
fixed to 5 ms.

Receiver’s perspective. We consider the case of a sender S with synchronization
error εS and a receiver R with synchronization error εR . Now we define the security
condition that must be met by all packets that contain authentication information, i.e.,
MAC codes, produced with an indexed key Kτ.

Definition 5. Given synchronization errors εS and εR for sender and receiver, an
authentication packet indexed by τ must discarded unless:

Trec(P)≤DT (τ)+ εS + εR (9)

Here Trec(P) denotes the estimated time on the sender’s side computed by the re-
ceiver when packet P arrives. If the sender is also responsible for time synchronization
then εS = 0.

Protocol description. We can now summarize previous notions in one definition
for the entire protocol.

Broadcast Authentication in a Low Speed Controller Area Network 11

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

Bus OH H4 levelsL

Delay

H4 levelsL

Delay H3 levelsL

Bus OH H3 levelsL

(i)
1 2 3 4 5 6 7

2000

4000

6000

8000

Memory and

InitializationTime

(ii)

Fig. 3: Delay and overhead variation with chain length (i) and memory, initialization time and
re-initialization packets variation with number of levels (ii)

Definition 6. Given tolerance relation <Λ,∆>M,S,B,T , an indexed key chain K<Λ,∆>

and the two roles sender and receiver denoted by S , R each with synchronization er-
rors εS , εR with respect to a common clock, protocol Broadcast[S ,R ,< Λ,∆ >M,S,B,T
,K<Λ,∆>] is formed by the following two rules for the two roles:

1. S sends Kτ at DT (Kτ) and the message M and its corresponding MAC(Kτ,M) in
any empty time-slot with the condition that MAC(Kτ,M) is released no latter than
DT (Kτ)+ξ,

2. R discards all MAC(Kτ,M) received later than DT (Kτ)+ εS + εR and deems au-
thentic all other messages for which MAC(Kτ,M) can be verified with an authentic
key. A key K

τleft|τi|0 is authentic only if K
τleft|τi|0 = F (K

τleft|τi+1|0) and K
τleft|τi|0 is a

previously received/computed authentic key.

Here ξ denotes a tolerance margin until the sender can send a MAC with a particular
key. Indeed, sending MACs too close to the disclosure time may be useless because the
receiver may have to discard them if the security condition cannot be met. Thus ξ must
be fixed as initial parameter for the protocol and it must hold that εS +εR << ξ. In time
interval [DT (Kτ),DT (Kτ)+ξ] the sender can safely disclose any kind of data packet,
but not MACs.

Broadcast[S ,R ,< Λ,∆ >M,S,B,T ,K<Λ,∆>] is a secure broadcast authentication pro-
tocol. The security of this family of protocols is well established, the informal argument
is that the adversary cannot construct MAC(Ki,M), until Ki is released. As function F
is one-way he cannot derive Ki from F (Ki) and by the time Ki is released any MAC
with Ki that is further received will be discarded. Formal proofs for such protocols can
be found in [14], [2].

2.5 The case of multiple senders

The case of k senders can now be easily derived from the previous formalism. To pre-
serve the equidistant time schedule we use the nominal disclosure time δnorm and divide
it by the number of senders k. Let us define the next sender delay as:

12 Bogdan Groza and Pal-Stefan Murvay

δnext =
δnorm

k
(10)

Definition 7. Let DT (Kτ) denote the disclosure time of an indexed key by the by
the kth sender. Given a broadcast started at tstart we have:

DT (Kτ,k) = DT (Kτ)+ k ·δnext (11)

The security conditions which has to be verified by receivers must also add the
k ·δnext term to the disclosure time of the k-th sender.

3 Application setting and experimental results

As stated, for the implementation of the previously described protocol, we used a
Freescale 16-bit automotive grade microcontroller (MC9S12XDT512) from the S12X
family on SofTec Microsystems ZK-S12-B development board. One special feature of
this family is the presence of an incorporated co-processor called XGATE which can be
used to increase the microcontroller’s data throughput [4]. We made use of this module
to increase the efficiency of our implementation by assigning it the task of computing
the underlying cryptographic functions.

The S12X microcontrollers used in our experiments have 512kbytes of FLASH
memory and 20kbytes of RAM. Both FLASH and RAM memories are banked as a
consequence of the 16 bits wide address bus which is not sufficient to access all memory
locations. Thus, a total of 8kbytes of RAM space can be used for continuous allocation
while the rest of the RAM can be accessed in 4kbyte windows. The amount of RAM
memory that can be used for storing key chains is relevant as it determines the maximum
number of chain levels and their lengths.

The maximum bus frequency that can be set using the PLL module is, according to
the data-sheet, 40MHz. We configured the PLL for frequencies beyond this specified
value and were able to go up to speeds of 80MHz. After assessing that the behaviour of
the microcontroller at this overclocked frequency is normal we used it in our tests and
compared the results with the ones obtained for 40MHz.

The on-chip CAN module implements version 2.0A/B of the CAN protocol and
supports a programmable bit-rate up to 1 Mbps. A limitation for the maximum achiev-
able CAN speed comes from the on board low speed fault tolerant transceiver which
can only run at speeds up to 125kbaud.

3.1 XGATE module

The XGATE module has a built in RISC core with instructions for data transfers, bit
manipulations and basic arithmetic operations. The RISC core can access the internal
memories and peripherals of the microcontroller without blocking them from the main
S12X CPU. The S12X CPU always has priority when the two CPUs access the same re-
source at the same time. To assure data consistency, the access priority can be controlled
by using the hardware semaphores available on the microcontroller.

Broadcast Authentication in a Low Speed Controller Area Network 13

Interrupts can be routed to the XGATE module in order to decrease the interrupt
load of the main S12X CPU. Additionally, up to 8 software triggered channels can be
used by the S12X CPU to request software execution on XGATE.

In order to obtain the maximum XGATE CPU speed, the code can be executed
from RAM. Because RAM is a volatile memory, XGATE code is being stored into the
FLASH memory and copied into RAM after each reset. Having a better RAM access
speed and a speed-optimized instruction set, a typical function can run up to 4.5 times
faster on XGATE than on the S12X CPU [13]. Because it was designed for quick ex-
ecution of small code requested by interrupts, the flash memory available for storing
XGATE code is limited. For controllers in the S12XD family this limit is 30 kbytes.

3.2 Implementation details

To decrease the communication overhead that could be introduced by computing cryp-
tographic primitives we assigned this task to the XGATE module. In order to evaluate
the computational performance of the microcontroller we measured the execution speed
of three hash functions: MD5, SHA1 and SHA-256. Measurements were done on S12X
and XGATE for different input lengths using both the maximum specified frequency
and the overclocked frequency. The measurements presented in tables 1 and 2 show
that on average the hash functions were performed approximately 2.12 times faster on
XGATE than on S12X. The overclocking also increases the speed with a factor of 2.

Table 1: Performance of S12X in computing MD5, SHA-1 and SHA-256.
Length
(bytes)

Execution time MD5 Execution time SHA1 Execution time SHA-256
@ 40MHz @ 80MHz @ 40MHz @ 80MHz @ 40MHz @ 80MHz

0 732µs 371µs 2.285ms 1.144ms 5.51ms 2.755ms
1 736µs 373µs 2.290ms 1.146ms 5.52ms 2.760ms
3 737µs 373µs 2.290ms 1.146ms 5.52ms 2.760ms

14 738µs 374µs 2.290ms 1.148ms 5.50ms 2.755ms
26 739µs 374.5µs 2.295ms 1.148ms 5.49ms 2.750ms
62 1414µs 717µs 4.510ms 2.255ms 10.86ms 5.44ms
90 1374µs 697µs 4.470ms 2.235ms 10.80ms 5.40ms

We chose MD5 for building the one-way chains which are needed by the protocol.
Due to the small disclosure delay we consider that using MD5 is safe for our scenario.
Each chain element will thus be a 128 bit value which is used to perform an HMAC
over the message that has be sent at a certain point in time.

One other possible method of building one-way chains is to use block ciphers as
hash functions. This can be done by always encrypting a fixed value (e.g. 0) using the
previously generated value as the encryption key: ki← Enc(ki−1;0). Table 3 shows the
performance obtained by S12X in computing some known block ciphers.

All cryptographic computations are done on the XGATE module following a soft-
ware request. For passing data between the two processing units, a common memory
area is used. Each time a hash needs to be computed, the S12X writes the input data in

14 Bogdan Groza and Pal-Stefan Murvay

Table 2: Performance of XGATE in computing MD5, SHA-1 and SHA-256.
Length
(bytes)

Execution time MD5 Execution time SHA1 Execution time SHA-256
@ 40MHz @ 80MHz @ 40MHz @ 80MHz @ 40MHz @ 80MHz

0 312.5µs 156.2µs 1.000ms 500µs 3.155ms 1.578ms
1 314.5µs 157.4µs 1.002ms 501µs 3.155ms 1.580ms
3 314.5µs 157.2µs 1.002ms 502µs 3.155ms 1.580ms

14 316.0µs 158µs 1.004ms 502µs 3.150ms 1.578ms
26 317.5µs 158.9µs 1.004ms 503µs 3.145ms 1.578ms
62 605µs 303µs 1.976ms 988µs 6.24ms 3.125ms
90 592µs 296.5µs 1.962ms 982µs 6.22ms 3.115ms

Table 3: Performance of S12X in computing symmetric primitives @ 80MHz.
Primitive name Block size Key size Rounds Execution time

Anubis 16 bytes 16 bytes 12 916µs
Blowfish 8 bytes 16 bytes 16 25.2ms

Cast5 8 bytes 16 bytes 16 321µs
Kasumi 8 bytes 16 bytes 8 129.4µs
Skipjack 8 bytes 10 bytes 32 116.2µs

Xtea 8 bytes 16 bytes 32 233.5µs

the common memory area and makes a software request to the XGATE module. While
the hash is being computed on the XGATE side, the main CPU is free to execute other
tasks such as, receiving messages or sending messages that have been already built. The
XGATE module can signal the end of the function execution by issuing an interrupt to
the S12X CPU.

After protocol implementation, the total RAM memory left for storing key chains
can hold 1216 elements (16 bytes each). Having this upper limit for M, L and λ have to
be determined for best performances based on the bus speed and the desired disclosure
delay. If we consider packets of 16 bytes in size the measured bus speed for sending
packets is 578 packets/second (one packet each 1.730ms).

For example, if we decide to use three levels to assure authentication over a period
of one day with a speed of 578 packets/second, we would have 233 elements on each
level and the key disclosure time δ would be 6.8ms. The bus overhead for this situa-
tion is 25,2% and the time needed to initialize the key chains is approximately 700ms.
Increasing the number of levels to 5 leads to chains of 26 elements so less memory
is necessary and the time needed for initialization is reduced to 131ms. The cost of
these improvements is a bus overhead of 26.9%. The bus load grows exponentially with
the increase in the number of levels used while the disclosure delay depends on the
transmission speed and the total communication duration. The duration of the commu-
nication also affects the number of elements on each level which is upper bounded to
M/L (1216/L in our setting).

Broadcast Authentication in a Low Speed Controller Area Network 15

4 Conclusions

A protocol for assuring broadcast authenticity on the CAN bus was provided. By this
research we hope that we give a first analysis on the feasibility of such a solution in low
speed CAN. We studied different trade-offs in order to depict the optimal choice of pa-
rameters. In particular we concluded that the main limitation is the bus speed (limited to
128kbps in fault-tolerant CAN), followed by memory and last by computational power.
This is also due to the performance of the XGATE co-processor which is about two
times faster than the regular S12 processor. In some cases, to reduce memory consump-
tion and to shorten the initialization time, chains with more than three levels were also
efficient. The theoretical estimations are entailed by experimental results on the S12X
processor, a commonly used automotive grade microcontroller. Current and future work
includes extending the results on high end microcontrollers capable of high speed CAN
communication.

Acknowledgments. This work was supported by CNCSIS-UEFISCDI project num-
ber PNII-IDEI 940/2008 and by the strategic grant POSDRU 107/1.5/S/77265, inside
POSDRU Romania 2007-2013 co-financed by the European Social Fund - Investing in
People.

References

1. R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. Needham. A new
family of authentication protocols. SIGOPS Oper. Syst. Rev., 32:9–20, October 1998.

2. F. Bergadano, D. Cavagnino, and B. Crispo. Individual authentication in multiparty commu-
nications. Computers & Security, 21(8):719 – 735, 2002.

3. J. Charzinski. Performance of the error detection mechanisms in can. In Proceedings of the
1st International CAN Conference, pages 20–29, 1994.

4. Freescale. MC9S12XDP512 Data Sheet, Rev. 2.21, October 2009.
5. ISO. CAN Specification Version 2.0. Robert BOSCH GmbH, 1991.
6. ISO. ISO 11898-1. Road vehicles - Controller area network (CAN) - Part 1: Controller

area network data link layer and medium access control. International Organization for
Standardization, 2003.

7. ISO. ISO 11898-4. Road vehicles - Controller area network (CAN) - Part 4: Time triggered
communication. International Organization for Standardization, 2004.

8. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kan-
tor, D. Anderson, H. Shacham, and S. Savage. Experimental security analysis of a modern
automobile. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447 –462, May
2010.

9. L. Lamport. Password authentication with insecure communication. Commun. ACM,
24:770–772, November 1981.

10. K. Lemke, C. Paar, and M. Wolf. Embedded Security in Cars Securing Current and Future
Automotive IT Applications. Springer Verlag, 2006.

11. D. Liu and P. Ning. Efficient distribution of key chain commitments for broadcast authenti-
cation in distributed sensor networks. In Proc. of the 10th Annual Network and Distributed
System Security Symposium, pages 263–276, 2003.

16 Bogdan Groza and Pal-Stefan Murvay

12. D. Liu and P. Ning. Multilevel µtesla: Broadcast authentication for distributed sensor net-
works. ACM Trans. Embed. Comput. Syst., 3:800–836, November 2004.

13. R. Mitchell. Tutorial: Introducing the XGATE Module to Consumer and Industrial Applica-
tion Developers, March 2006. Freescale, 2004.

14. A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure source authentication for
multicast. In Network and Distributed System Security Symposium, NDSS ’01, pages 35–46,
2001.

15. A. Perrig, R. Canetti, D. Song, and J. D. Tygar. SPINS: Security protocols for sensor net-
works. In Seventh Annual ACM International Conference on Mobile Computing and Net-
works (MobiCom 2001), pages 189–199, 2001.

16. A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient authentication and signing of
multicast streams over lossy channels. In IEEE Symposium on Security and Privacy, pages
56–73, 2000.

