
1

Highly Efficient Authentication for CAN by
Identifier Reallocation with Ordered CMACs

Bogdan Groza, Lucian Popa and Pal-Stefan Murvay

Abstract—Most of the existing works on securing the CAN
bus are using the limited data-field of CAN frames to embed
a cryptographic payload. Only very few works have suggested
the use of the identifier field since identifiers are critical for
the arbitration procedure and changing them at random would
interfere with message priorities. To preserve priority on the
bus, in this work we use an ordered CMAC buffer. In this
way, we can authenticate the identifiers of CAN frames and
check that the sender is a legitimate node while arbitration
on the bus remains unaltered. Moreover, we determine that
for real-world scenarios the achieved security level is very
close to the length of the ID field despite the constraints from
ordering. This procedure easily circumvents replay attacks and
fuzz testing on the bus, which were exploited by many recent
works. We prove the feasibility of our approach by testing
practical implementations on automotive-grade microcontrollers
and CAN-bus traffic allocations from a high-end vehicle. The
computational requirements are some of the lowest achievable
for securing CAN, with a dozen CMAC-AES computations being
sufficient for extracting a table of one hundred identifiers.

I. INTRODUCTION AND MOTIVATION

The Controller Area Network (CAN) is a bus designed by
BOSCH in the 80’s. Special care was taken to ensure its
reliability and keeping its cost low, but there were no intentions
in adding security at the time of its design. Hence, a plethora
of attacks on modern vehicles were recently reported, e.g.,
[5], [21], most of them due to the insecurity of the CAN bus.
Embedding cryptographic payloads in CAN data-fields is one
of the most common approaches for securing the CAN bus.
This procedure is pursued by many works, e.g., [13], [29],
[30], [3], etc., as well as by recent industry recommendations
[2]; a brief overview can be found in [10].

Current standards [2] recommend 24-28 bits for the cryp-
tographic authentication tag computed via a MAC (Message
Authentication Code), the instantiation recommended by the
standard is CMAC-AES, and 0–8 bits for the freshness pa-
rameter (according to the Security Profiles in chapter 7.10
from [2]). This is not much, and arguably it is insufficient
for security needs, but it is all that that can be embedded
without compromising more than 50% of the data-field. Not
surprising, there are several approaches that try to optimize
signal allocation in CAN frames in order to optimize the
allocation of security bits, e.g., [18], [19], [33]. Recent ap-
proaches have also tried to limit the use of the data-field
by using time-covert authentication channels but the security

Bogdan Groza, Lucian Popa and Pal-Stefan Murvay are with the Fac-
ulty of Automatics and Computers, Politehnica University of Timisoara,
Romania, Email: bogdan.groza@aut.upt.ro, lucian.popa.lp@gmail.com, pal-
stefan.murvay@aut.upt.ro

Fig. 1. Basic depiction of the CAN bus

level is even more drastically limited to 1 or several bits
per frame [11], [35] which is insufficient for current needs.
Similar problems related to a security level that is hard to
determine are drawback for proposals that rely on physical
signal characteristics [7], [8], [16] or network delays [6]
(for example clock-skews can be faked as shown in [26],
while voltage characteristics may be even more prone to
unpredictable changes in bus impedance due to temperature,
adding additional nodes on the bus, etc.). Thus relying on
cryptographic authentication seems the only clear way to get
a reliable security bound.

Figure 1 shows a basic depiction of the CAN bus, which
is a two wire broadcast bus. In the depiction, each ECU is in
possession of a cryptographically generated ID table on which
we will discuss more later. The main problem in securing CAN
comes from the data-field of CAN frames which is limited
to 64 bits (even more, most of these bits are already in use
in practical implementations). The CAN frame begins with
a start of frame (SOF), it has an identifier (ID) of 11 (or
29 bits in extended frames) used in the arbitration procedure,
a control field (CTL), a data-field of up to 64 bits, a CRC,
an acknowledgment bit (ACK) and finally the end-of-frame
(EOF) which marks the end of the frame.

In this work we exploit the identifiers of CAN frames and
use them as an authentication tag to identify senders. This does
not exclude regular authentication of the data-field, mandated
by recent standards, e.g., [2], but rather complements it. Such
a procedure garners at least two advantages. First, as the data-
field carries only a limited amount of authentication bits, by
using all the bits from the ID (as additional security bits)
we immediately increase the security level of data carried by
CAN frames. Second, by essentially encrypting the ID, we
keep the IDs hidden from a malicious adversary thus keeping
the sender anonymous. Notably, most standardized CAN-based
higher-layer protocols do encode the identity of senders in
the ID field. The ISO 15765-2 protocol, also known as ISO-



2

TP, uses the CAN frame ID to transmit either the address of
the message source or a unique identifier associated to the
transmitter-receiver pair [15]. Some of the most commonly
known uses of ISO-TP is for message transmission using the
UDS (Unified Diagnostic Serviced) and OBD-2 (On-Board
Diagnostics) diagnostic protocols. A similar approach is em-
ployed by the J1939 family of protocols, used in commercial
vehicles (i.e. trucks, buses, agricultural machines and even
marine navigation), in which the message source address is
encoded as part of the ID field [25]. According to the J1939
specification, each node/functional unit is uniquely assigned a
source address to enable transmitter identification. Other CAN-
based protocols employed in industrial control networks also
use the frame ID for sender identification. One such example
is the DeviceNet protocol which identifies transmitter nodes
by so-called MAC IDs transmitted in the identifier field [24].
Thus, encoding sender identification information in the ID
leaves CAN vulnerable to privacy attacks as the sender of
the message can be identified by adversaries. Consequently,
the protocol that we propose also helps in keeping the sender
anonymous in front of eavesdroppers and the IDs can be
uniquely re-mapped to their original values by genuine nodes
from the network (allowing only genuine nodes to correctly
identify senders).

To keep arbitration intact on the bus, we use a sorted
CMAC-AES buffer, which is in principle a form of order-
preserving encryption, a well-known and understood cryp-
tographic primitive, see [1], [4]. Rather than using an en-
cryption function however, we use a Message Authentication
Code (MAC), i.e., CMAC-AES, for compliance with existing
standards in automotive security, e.g., [2]. The extension from
order-preserving encryption to order-preserving MACs is how-
ever straight-forward since mutatis-mutandis both encryptions
and MACs are cryptographic one-way functions. That is, rather
than using the output of an encryption function Ek(m) we
use the output of a MAC function MAC k(m) (here k stands
for a symmetric key and m for a message). To save on
computational time we split the CMAC outputs in arrays of 11
or 29 bits (according to the identifier length). If computational
power is not a main limitation, e.g., if hardware support is
available, one can use a single CMAC computation for each
ID.

A. Proposal overview and related works

Figures 2 and 3 give an overview of the result. We preserved
the periodicity of the original IDs recorded in a high-end
vehicle, then re-mapped and re-constructed the traffic on our
laboratory setup. Figure 2 shows the re-map when working
in the 11-bit ID space. The left picture shows a higher
agglomeration of IDs in the lower side. This is expected
since higher priority IDs are sent more often on the bus and
accumulate faster. This will however decrease the entropy of
high priority IDs making them less secure. On the right side
of Figure 2 we show the result after applying one small bias
in the probability distribution that allows more space for high
priority IDs (the lower part of the figure). In this way, high
priority IDs will get a better security level. More details on this

will be given in the experimental section. Figure 3 shows the
allocation in the 29-bit identifier space. Part (i) of the figure
shows the allocation of all 88 IDs, this looks more random
compared to the 11-bit space as there is more space to allocate
the IDs. Part (ii) of the figure is easier to interpret. Here we
show only the evolution of 6 of the IDs (there are 2 IDs in the
lower end that are not fully visible). While the values of the
IDs are changed at random each 100ms, note that the order
between the IDs is still preserved. Subsequently, in parts (iii)
and (iv) we show the effects of applying a 1-bit and 2-bit bias.
This leaves more room for high priority IDs which are lower
valued and allocated in the lower part of the distribution as
depicted in the image.

Only very few works have focused on using the ID field for
authentication. Perhaps the earliest of them is [12]. Three more
recent works that have also investigated the use of the identifier
fields to enhance the security of CAN are [14], [32] and
[31]. Interestingly, none of these works calls for the relation
with order-preserving cryptographic functions. Moreover, [14]
focuses on the ID-hopping technique as a mean to prevent
DoS attacks rather than to assure authenticity of the senders.
In both [12] and [31] additional bits from the ID are used
to keep arbitration intact, this is distinct from our procedures
which take advantage of the entire ID field and are based on
the output of an AES-CMAC function. The work in [32] is
very close to ours but the main difference is that [32] relies
on a more complex hardware implementation, we keep our
entire implementation in software and show that it is quite in-
expensive in computational terms. Our main contribution is in
providing a faster solution, that can be efficiently implemented
at the software layer with the help of binary sorted trees or
doubly linked lists, to generate ordered AES-CMACs by which
the original ID table can be efficiently remapped. The proposed
solution requires only several CMAC-AES computations and a
binary sorted tree for generating a fresh ID table. As we show
in the experimental section this can be done in essentially
hundreds of microseconds for a high number of IDs, in
this way securing a larger communication cycle (hundreds
of milliseconds or even seconds according to specific needs).
Moreover, [32] analyzes the security of their solution in terms
of Shannon entropy. As we later discuss the minimum entropy
is the desired metric for establishing a security bound as
Shannon entropy may be somewhat misleading as it gives
a higher value than the actual security level in front of a
guessing adversary. We also contribute with a detailed analysis
of the experimental data, based on well-known security metrics
such as guessing probability and min entropy, and provide
computational and bandwidth results on automotive-grade
controllers for real-world in-vehicle traffic. We add two more
flavours to our solution: destroying illegitimate frames on-the-
fly by fast searching for genuine IDs in a binary sorted tree
and an efficient solution for biasing the ID distribution such
that higher priority IDs will get a higher entropy.

Briefly, our protocol, which we’ll now generically name
CAN-TORO, i.e., CAN Transmitter authentication by ORdered
One-way functions, and later discuss explicit CMAC-AES
instantiations on it, has the following advantages:
• highly efficient in terms of computational requirements



3

(i) all 88 IDs (11-bit) (ii) all 88 IDs (11-bit, 1-bit bias)

Fig. 2. View of ID re-mapping in the 11-bit space during the first 3s of runtime (IDs updated at 100ms)

(i) all 88 IDs (29-bit) (ii) detailed view over 6 IDs (29-bit)

(iii) all 88 IDs (29-bit, 1-bit bias) (iv) all 88 IDs (29-bit, 2-bit bias)

Fig. 3. View of ID re-mapping in the 29-bit space during the first 3s of runtime (IDs updated at 100ms)

(e.g., less than a dozen CMAC-AES computations for an
ID table of 100 IDs),

• very easy to implement in software, it calls only for stan-
dard CMACs and a binary sorted tree (alternatively, with
small performance penalties, we also use a doubly-linked
list to avoid recursion lowering stack requirements),

• flexible in implementation, any cryptographic one-way
function is suitable for the computation of the ID table
(we keep the AES-CMACs instantiation to align our work
with existing standards),

• requires no bits from the data-field of CAN frames which
is already limited to 64 bits,

• frame priority is kept unchanged despite randomization
of the ID field in CAN frames,

• security level is close to the maximum number of bits
in the ID field, despite preserving order in the freshly
generated ID table,

• the entropy (which is the security level) of the IDs can be
easily biased (by simply using bit masks) to give higher
priority IDs an increased entropy,

• illegitimate IDs can be detected on-the-fly and the cor-
responding frame destroyed before completion by legit-
imate nodes (this is facilitated by a quick search in a
binary sorted tree of IDs which is performed in less than



4

t

cycle i

IDd(i) IDc(i) IDa(i)IDb(i)

cycle i+1
Ord(CMACk(SID,i,0))

11/29 bit

Ord(CMACk(SID,i,0))

IDa

IDb

IDc

IDd

Ord(CMACk(SID,i,0))

Ord(CMACk(SID,i,0))

IDd(i+1) IDc(i+1) IDa(i+1)IDb(i+1)

Ord(CMACk(SID,i+1,0))

11/29 bit

Ord(CMACk(SID,i+1,0))

IDa

IDb

IDc

IDd

Ord(CMACk(SID,i+1,0))

Ord(CMACk(SID,i+1,0))

Fig. 4. ID reallocation with order preserving CMACs and arrival on the bus

Ord(CMACk(SID,i,0))

128 bit

Ord(CMACk(SID,i,1))

Ord*1

Ord(CMACk(SID,i,2))

128 bit 128 bit

11 bit

Ord*2

11 bit

ID*
a ID*

b ID*
c ID*

d ID*
e

Ord*3

11 bit

Ord*4

11 bit

Ord*5

11 bit

ID*
f

Ord*5

11 bit

ID*
f

Ord*6

11 bit

Fig. 5. Overview of ID reallocation by ordered CMACs

a micro-second by high-end controllers in our setup).
Of course, no protocol is without shortcomings. As we

later discuss, an adversary that has access to the bus and
can unplug nodes may use correctly generated IDs to inject
frames. To avoid this, regular authentication of the data-field
as per AUTOSAR standard [2] cannot be excluded. However,
it is worth noting that this type of adversary will require
physical access to the bus and the ability to perform physical
modifications of the bus topology, which is less convenient.
Replay of existing IDs is possible if the ID table is not
refreshed too often, a reason for which we also recommend
intrusion-detection systems based on frame periodicity (e.g.,
[28], [22], [11] or any other type of IDS, e.g., [34], [23]) to
be in place. It would be out-of-scope for the current work to
merge all these approaches.

II. CONCEPT AND PROTOCOL DESIGN

In this section we illustrate the main concept then we give
specific details on the protocol that we design and implement.

A. Concept in a nutshell

We assume that communication over the CAN bus is done
in cycles of duration ∆, this is consistent with real-world
deployments since most of the CAN frames have a fixed

periodicity. If this is not the case, for on-event frames, the
IDs will be mapped based on the same procedures and along
with the cyclic IDs. The IDs of on-event frames will simply
remain unused in communication cycles where the on-event
frame does not occur. The IDs are to be shifted/changed in
each communication cycle. For practical reasons, we consider
the cycle length ∆ to be set to 100ms - 1s, more discussions
on this follow in the experimental section. In each cycle, the
new IDs are derived via an order-preserving CMAC. Any
other cryptographic primitive can be used for this purpose.
The values of the original IDs, stored in an ID table, are to
be mapped to fresh values stored in another ID table.

This concept is suggested in Figure 4. We consider four
IDs, i.e., IDα, α ∈ {a, b, c, d}, in descending order of their
priority, i.e., IDa has the highest priority. The IDs arrive on
the bus in the same order both in cycle i and cycle i+ 1. This
happens even if they are sent exactly at the same time, i.e., a
collision which is solved by the CAN arbitration mechanism,
since the ordered CMACs by which they are mapped to the
new identifiers will return IDs that are in identical order.

Figure 5 explains how we compute the order-preserving
CMAC buffer in session i. To implement an order-preserving
CMACs, we split the blocks that are output by CMAC in
11-bit blocks (or 29-bits in case of extended identifiers), we
eliminate all duplicates and sort them in ascending order. In
this depiction, we consider the case when a single output of
the CMAC construction (128-bit in length for CMAC-AES)
is not sufficient to generate all IDs and we simply compute
the function three times by adding a counter i = 0, 1, 2,
i.e., CMACk(SID, i, 0), CMACk(SID, i, 1), CMACk(SID, i, 2)
(here we use SID to denote the session identifier which is
a random value to avoid replay of the same communication
cycles). This is the approach from our practical instantiation in
the experimental section where we use a counter that allows us
to generate any number of IDs. In Figure 5 two 11-bit blocks
of the first CMAC, i.e, b1,2, b1,1, will be the new values for
ID∗b and ID∗c (here ∗ is a placeholder to denote this is a fresh
ID). The first 11-bit block of the second CMAC, i.e., b2,1 is the
new value for ID∗a, etc. For ID∗f , block b3,1 has collided with



5

b2,3 and it is discarded while b2,2 is kept for ID∗f . Note that
the IDs at the bottom of the figure are kept in their original
order a, b, c..., f - it is only the output of the CMACs that is
sorted (after being split in 11-bit blocks).

B. Algorithms for ordered authentication of the identifiers

To build the ID table, we call for three algorithms that are
outlined in Figures 6 and 7 and 8. We now explain these
algorithms in detail.

Algorithm 1 in Figure 6, extracts identifiers of length idlen
from the buffer. First, in line 2, the algorithm checks if there
are enough bits in the buffer and if not it updates the crypto-
buffer accordingly, i.e., OWF (k, SID, counter) is appended
to the buffer by the call to update buffer(). For AUTOSAR
compliance, in our implementation we use the CMAC-AES
(and later as a speed-up a hash function) for the instantiation
of the one-way function. Then, the algorithm takes the current
position in the buffer pos and builds two indexes, i.e., the left
and right indexes lindex , rindex . If these are the same, then
idlen bits are extracted only from the left position (the right
position is the same) otherwise lcount bits are extracted from
the left and rcount bits from the right. This is done by the
branch on line 5. Then the current position in the buffer pos
is incremented with the length of the ID idlen in line 16.

Algorithm 2 in Figure 7 is responsible for sorting the
extracted IDs. This is done by using a binary search tree.
The algorithm instantiates the first ID with a random value
(line 2), then it loops for the remaining n− 1 IDs, each time
generating a new ID and placing it to the left or right of a
leaf node (the branches in lines 10 and 12). If the generated
ID already exists in the tree, then it will be regenerated (the
branch in line 13 deals with this situation). We skip more
details on Algorithm 2 since binary search trees are a well
known structure in programming. Finally Algorithm 3 in the
same figure performs a depth-first search on the binary tree
in order to extract the IDs in an ID table. This is done by
recursion on the left branch (line 2), followed by extraction of
the ID then by recursion on the right branch (line 4).

To avoid recursion (which may cause problems related to
stack size), alternatively, we have also used a doubly linked list
implementation. The runtime is somewhat slower compared to
the binary sorted approach, but it does not require recursion
when extracting the IDs (these are already sorted in the doubly
linked list). The algorithm is presented in Figure 8. Algorithm
4 simply loops for all of the n IDs (line 2), each time
generating fresh bits for the current ID. Then in line 9 it
parses the list until the current ID is larger or equal to the
newly generated ID (or the end of the list is reached). If it is
equal (line 12) then a new value must be selected. Otherwise,
the newly generated ID is inserted before the first value that
was larger than it (possibly changing the first ID in the list in
line 20). If the end of the list is reached and no ID larger than
it was found (line 24) then the new ID is simply added at the
end of the list.

We now discuss the expected run time of the ID allocation
algorithm. The algorithm loops through the output of a one-
way function which can be modelled as a random oracle. The

Algorithm 1 Identifier bit extraction (32-bit architecture)

1: procedure NEXTBITS()
2: while buflen∗32 < idlen +pos +1 do update buffer(cryptobuf )
3: end while
4: lindex ← pos/32
5: rindex ← (pos + idlen)/32
6: if lindex = rindex then
7: lcount ← pos%32
8: val ← cryptobuf [lindex ]� (32−idlen−lcount)
9: val ← val&((1� idlen)−1)

10: else
11: lcount ← pos%32
12: rcount ← (pos + idlen)%32
13: val ← cryptobuf [lindex ]&((1� 32−lcount)−1)
14: aux ← cryptobuf [rindex ]� (64−idlen+lcount)
15: aux ← aux&((1� (idlen−(32−lcount)))−1)
16: val ← (val � (idlen−32+lcount))|aux

17: pos ← pos + idlen
18: return val
19: end procedure

Fig. 6. Algorithm for extraction of identifier bits

probability of selecting an i-th ID that collides with any of
the rest of i − 1 distinct IDs is: pcol = i−1

σ . Where σ is the
total number of IDs, i.e., σ ∈ {211, 229}. Consequently, the
average runtime of the identifier selection algorithm can be
approximated as:

Tav =

n∑
i=1

 ∞∑
j=1

j

(
1− i− 1

σ

)(
i− 1

σ

)j−1 (1)

This relation sums over all the identifier space, i.e., i = 1..n.
For each ID it sums over the number of steps j multiplied by
the probability to get no collision in the current step, i.e.,(
1− i−1

σ

)
, times the probability to get a collision with the

previous i − 1 identifier values in all previous j − 1 steps,
i.e.,

(
i−1
σ

)j−1
. For practical purposes, in our implementation

with ≈ 100 IDs in an 11-bit ID space there are roughly 2-3
selections which should be repeated as they result in collisions.
This results in an average of 103 steps for 100 IDs and since
the output of CMAC-AES is of 128 bits, if we cut slices
of 11 bits, it all reduces to 9 AES computations. For 29-
bit identifiers, the number of expected collisions is close to
0, but due to the larger ID field about 22 AES computations
are required. These requirements are quite low given that an
AES computations cost in the order of dozen micro-seconds.
Experimental values on the runtime are given in the next
section.

C. Protocol design

We assume that all controllers ECUl, l = 1..n are in posses-
sion of a master secret key k which is used for cryptographic
authentication and for computing the identifier table. We
formally define our protocol entitled CAN-TORO, i.e., CAN
Transmitter authentication by ORdered One-way functions as
the following set of actions for each ECU:

1) UpdateID(T,SID) is the procedure triggered on each
node ECUj , j = 1..n during cycle i − 1 to update the



6

Algorithm 2 Building the ordered identifier table

1: procedure BUILDIDTABLE()
2: first ← new(ID); first .val ← NextBits()
3: for i = 1, i < n, i← i+ 1 do
4: thisid ← new(ID)
5: repeat
6: thisid .val ← NextBits()
7: isnew ← true; aux ← first
8: repeat
9: last ← aux

10: if aux .val > thisid .val then aux ← aux .LID
11: else
12: if aux .val < thisid .val then aux ← aux .RID
13: elseisnew ← false

14: until isnew = false ∨ aux =⊥
15: if aux =⊥ then
16: if last .val > thisid .val then last .LID ← thisid
17: elselast .RID ← thisid
18: until isnew = true
19: end for
20: end procedure

Algorithm 3 Extract IDs

1: procedure EXTRACTIDTABLE(thisid )
2: if thisid .LID 6=⊥ then ExtractIDTable(thisid .LID)

3: IDTable[index ]← thisid .val ; index ← index + 1
4: if thisid .RID 6=⊥ then ExtractIDTable(thisid .RID)

5: end procedure

Fig. 7. Algorithms for building the identifier table by sorting identifiers in a
binary tree and extraction by depth-first recursion

Algorithm 4 Building the ordered identifier table

1: procedure BUILDIDTABLE()
2: for i = 0, i < n, i← i+ 1 do
3: thisid ← new()
4: thisid .LID ←⊥
5: thisid .RID ←⊥
6: thisid .val ← NextBits()
7: isnew ← true
8: aux ← first
9: while aux .val < thisid .val ∧ aux .RID 6=⊥ do

10: aux = aux .RID
11: end while
12: if aux .val = thisid .val then
13: isnew ← false
14: else
15: if aux .val > thisid .val then
16: auxlid ← aux .LID
17: thisid .LID ← aux .LID
18: aux .LID ← thisid
19: thisid .RID ← aux
20: if aux .LID =⊥ then
21: first ← thisid
22: else
23: auxlid .RID ← thisid
24: else
25: thisid .LID = aux
26: aux .RID = thisid
27: end for
28: end procedure

Fig. 8. Algorithms for building the identifier table by sorting identifiers in
doubly linked list (avoiding recursion)

ID table for the forthcoming communication cycle i, i.e.,
triggered at cycle ∆i, by running Algorithm 3 in Figure
7,

2) SendID(IDj ,m) is the procedure triggered at cycles δj
(here δj is the cycle at which IDj is sent) on a sender
node ECUl, l ∈ [1..n] for a frame with identifier field IDj
at which ECUl retrieves the authenticated identifier ID∗j
and broadcasts message (ID∗j ,m) on the bus,

3) ReceiveID(ID∗j ,m) at which each receiver ECUl, l = 1..n
upon receiving a CAN frame containing ID∗j ,m verifies
that ID∗j exists in the authenticated identifier table and
accepts the frame if so, otherwise reports an intrusion.

We also assume that a SendSync(i,SID,∆) procedure exists
by which a master node signals a new cycle on the bus by
sending a default packet with the data-field containing current
cycle number SID at cycles ∆. We assume a default ID
for the frame carrying this data and a regular MAC-based
authentication of this frame to avoid adversarial interventions.
Due to the non-destructive arbitration of CAN, more ECUs
can send the SendSync message on the bus at the same
time. As we later discuss in the experimental section, the
procedures required by UpdateID to update the ID table are
called sequentially for part of the IDs during the inter-frame
space (IFS) when a sender node is not busy. Frames with
IDs that do not comply with the IDs from the table can be
destroyed by error flags, we skip formalism for this step but
provide experimental results later.

D. Security discussion

The proposed mechanism for authenticating the identifiers
of CAN frames offers security in front of injection attacks,
i.e., adversaries that plug on the bus and inject malicious
frames, which are the most common attacks on the CAN bus.
If a frame ID is sent more than once in a communication
cycle, then an adversary may record the genuine ID and
replay it. Such an attack may be easily traced by an Intrusion
Detection System (IDS) that accounts for frame periodicity.
There are many lines of work dedicated to this, e.g., [28],
[22], [11], and such an approach is out of scope for the
current paper. Our protocol may also directly circumvent
such attacks by reducing the length of the communication
cycles. Finally, the proposed mechanism can be circumvented
if nodes are physically unplugged and an adversary acts as a
man-in-the-middle by using the genuine identifiers to inject
frames with its own content (this is a shortcoming for related
solutions that authenticated the ID alone or only the senders).
However, this attack can be easily circumvented by following
the aforementioned AUTOSAR specification [2] that demands
24-28 bits for authentication and freshness parameter. Our
solution does not exclude this mechanism but complements
it by adding more security in the ID field. While we do not
specifically evaluate the authentication of the data-field as per
AUTOSAR specification [2], our experiments from the forth-
coming section also present performance results on several
automotive-grade controllers. In particular, for Infineon TC224
and TC297, the AES-CMAC computation is in the order of
16− 55µs which is a modest computational requirement. Our



7

(i) (ii) (iii)

Fig. 9. Entropy variation for 11-bit IDs: effects of priority on 25 (i), 50 (ii)
and 100 IDs (iii)

Fig. 10. Entropy variation for 11-bit IDs: effects of priority and number of
IDs n = 25..100

mechanism requires even less than this since a dozen AES-
CMAC computations are sufficient for securing a table of 100
IDs. This is good evidence that the proposed mechanism along
with AUTOSAR recommendation would integrate well in real-
world systems. We now discuss the expected security level for
our mechanism.

Let the size of the ID space be σ where σ ∈ {211, 229}
and the number of IDs in the network be n. If order of the
IDs must be preserved, then it is obvious that the ith ID is
not uniformly distributed in [0..σ) because it is preceded by
higher priority IDs and succeeded by lower-priority IDs. The
probability of the i-th ID to have a value x can be computed
as:

Pr
[
IDi = x|x ∈ [0..σ)

]
=

(
x− 1

i− 1

)(
σ − x
n− i

)(
σ

n

)−1
(2)

Here
(
n
k

)
denotes the binomial coefficient, i.e., n!

k!(n−k)! . In
the above relation,

(
σ
n

)
denotes the number of ways for picking

n identifiers from the ID space of size σ. This term divides all
occurrences with identifier i on position x, i.e.,

(
x−1
i−1
)(
σ−x
n−i
)
,

in order to obtain the probability that the i-th ID is on position
x. Let pi(x) denote the previous probability, then the entropy
of the ID (which defines its security level, i.e., the number of
bits to be forged by an adversary) can be computed as:

H(IDi) =

σ−(n−i)∑
x=i

−pi(x) log2 pi(x) (3)

(i) (ii) (iii)

Fig. 11. Guessing probability of an adversary for each ID in case of 25, 50,
100 IDs

(i) (ii) (iii)

Fig. 12. Minimum entropy for each ID in case of 25, 50, 100 IDs

.
Note that summation starts from x = i since at least i− 1

values need to be allocated to smaller IDs and it stops at σ−
(n− i) since there are n− i values for greater IDs. Figure 9
gives a graphical depiction on the variation of the ID entropy.
In the right-most plot the variation of entropy in case of n =
100 IDs is shown. The entropy tops around 8.5 bits. Lower and
higher priority IDs have a somewhat lower entropy at around
6 bits. Figure 10 translates the previous image to a 3D view in
case of n = 25..100 IDs. Again, the lower and higher priority
IDs have a slightly decreased entropy. The entropy increases
if the number of IDs is lower, this is explainable as there is
more room to allocate the IDs. We confirm these values by
practical measurements over 106 extractions of the ID table.

The security level suggested by the entropy is not entirely
correct with respect to adversary’s capabilities. The best
chances an adversary has is to guess the ID by using the
value with the maximum probability from the distribution of
the ID. But since the IDs are sorted, the distribution is non-
uniform and some values have higher probability than others.
In this respect, Shannon entropy, i.e., H(IDi) in relation (3),
is problematic since it sums over the entire distribution of the
ID. This issue is well known in information security and to
circumvent this issue, the minimum entropy is used as a metric,
see for example [27], [9]. To define it, the maximum guessing
probability of an adversary must be first defined as:

εadv (IDi) = Max
{

Pr
[
IDi = x|x ∈ [0..σ)

]}
(4)

Form which the minimum entropy follows as:

Hmin = log2

1

εadv (IDi)
, i = 1..n (5)

Figure 11 shows the probability of success for an adversary
in forging an ID and Figure 12 shows the minimum entropy
of each ID. The plots are again for the case 25, 50 and 100
IDs.

For a crisper depiction of the guessing probability, min
entropy and Shannon entropy, in Table I we provide values
computed by simulation in case of 9 IDs on 11-bit and 29-
bit out of n = 100 IDs. We selected the first three, last three
and the three IDs in the middle to show that the distribution is
non-uniform. For 11-bit IDs the values are computed based on



8

TABLE I
EXAMPLE OF GUESSING PROBABILITY, MIN ENTROPY AND SHANNON ENTROPY FOR SEVERAL IDS IN A DISTRIBUTION WITH n = 100 IDS

ID no. 1 2 3 49 50 51 98 99 100

εadv 4.6×10−2 1.9×10−2 1.3×10−2 4×10−3 4×10−3 4×10−3 1.4×10−2 1.9×10−2 4.8×10−2

11-bit Hmin 4.4 5.7 6.1 7.7 7.7 7.7 6.1 5.7 4.3
H 5.7 6.6 6.9 8.7 8.7 8.7 6.9 6.6 5.7

εadv 1.8×10−7 6.8×10−8 5.0×10−8 1.4×10−8 1.4×10−8 1.4×10−8 5.0×10−8 6.8×10−8 1.8×10−7

29-bit Hmin 22.3 23.7 24.2 25.9 26.0 26.0 24.2 23.7 22.3
H 23.8 24.6 24.9 26.7 26.7 26.7 24.9 24.6 23.7

experimental data, for 29-bit IDs, since the space is too large,
we computed the values synthetically based on approximations
of the previous equations for guessing probability, min entropy
and Shannon entropy. The variation compared to standard
entropy is around 1 bit which suggests a security level that
decreases by one bit. The situation is similar for 29 bit IDs,
a case in which the security level is much higher (clearly, we
recommend the use of extended identifiers for increasing the
security level of the scheme).

III. EXPERIMENTS

In this section we first test the computational requirements
of the proposed ID allocation algorithm then we test the
protocol over a real-world ID allocation.

A. Experimental setup and computational results

The development boards that we use are an NXP S12XF512
Starter Kit and two Infineon Application Kits TC224 and
TC297. The S12XF512 microcontroller can operate at a max-
imum frequency of 100MHz and has a memory of 512KB of
Flash and 32KB of RAM respectively. The TC224 microcon-
troller operates at 133MHz and has 1 MB of Flash and 88 KB
of RAM. The TC297 microcontroller has a maximum oper-
ating frequency of 300MHz and has 8 MB of Flash and 768
KB of RAM. As a measure of computational abilities, Table
II illustrates the duration of computing MD5, HMAC-MD5
and CMAC-AES on each of the three employed platforms
using a 64 bit input and a 128 bit key. These costs dozens
microseconds on high-end cores and around 1-3 milliseconds
on low end cores. In both cases they are affordable.

TABLE II
COMPUTATIONAL TIME FOR CRYPTO PRIMITIVES (MS)

Cryptographic
function

Infineon TC224 Infineon TC297 Freescale S12XF

MD5 0.015 0.007 0.755
HMAC-MD5 0.030 0.015 3.126
CMAC-AES 0.055 0.016 1.383

On all controllers, we have measured the duration of gen-
erating the fresh ID table by CMAC-AES. The function was
applied over 32-bit blocks concatenated to a 32-bit counter
(the cycle identifier). We assumed a fixed secret key that is
known by all nodes.

Table III shows computational results for building the ID
table using binary sorted trees. Results are depicted both for

Fig. 13. Experimental setup with the TC224 board, external CAN Transceiver,
breadboard and PicoScope for bus monitoring

the high-end Infineons where several hundred microseconds
(or even less) are needed to update the ID table and for the
low-end Freescale S12 where several milliseconds are needed.
We depict both results for CMAC-AES for compatibility with
existing standards, but also for a HMAC-MD5 which can be
a faster instantiation. While MD5 is known to have collisions,
this will not be of concern for this scheme since collisions
cannot be computed in real-time as required for breaking the
protocol. Moreover, we depict the case of a single MD5 com-
putation which should be twice as fast as the HMAC-MD5. In
this case we compute MD5 over the concatenation of the key
with the message. This construction suffers from concatenation
attacks, but again they are not feasible on the current scheme
since the message has a fixed length. We keep the MD5 based
instantiations as a bottom line for performance in terms of
software implementation. Significant speedups can be achieved
if hardware support is used. Such hardware already exists in
many automotive-grade controllers and improvements should
thus be within immediate reach. If the ID table is to be updated
each 100ms, the computations can be easily handled by both
low-end and high-end cores. All cryptographic methods used
in our implementation were integrated from the wolfSSL
software library which is available on GitHub.

Table IV shows computational results for building the ID
table using doubly linked lists. This approach has the advan-
tage of removing recursion. Computational penalties exist but
they are not high as the time to compute a full table of 100
IDs is kept at around 1ms.



9

TABLE III
COMPUTATIONAL TIME FOR GENERATING THE ID TABLE USING BINARY SORTED TREES (MS)

Infineon TC224 Infineon TC297 Freescale S12
Cryptographic function ID bits 25 IDs 50 IDs 100 IDs 25 IDs 50 IDs 100 IDs 25 IDs 50 IDs 100 IDs
MD5 11 0.100 0.157 0.295 0.086 0.140 0.271 3.576 6.468 13.410
MD5 29 0.151 0.280 0.524 0.120 0.222 0.422 5.100 11.330 26.320
HMAC-MD5 11 0.157 0.243 0.460 0.112 0.178 0.346 9.872 23.100 46.660
HMAC-MD5 29 0.251 0.464 0.863 0.164 0.302 0.567 22.570 45.420 95.120
CMAC-AES 11 0.260 0.397 0.678 0.129 0.198 0.347 4.618 10.870 23.780
CMAC-AES 29 0.432 0.802 1.487 0.186 0.334 0.618 10.360 20.970 44.480

TABLE IV
COMPUTATIONAL TIME FOR GENERATING THE ID TABLE BY DOUBLY

LINKED LISTS (MS)

Infineon TC224
Cryptographic function ID bits 25 IDs 50 IDs 100 IDs
MD5 11 0.170 0.296 0.542
MD5 29 0.200 0.320 0.674
HMAC-MD5 11 0.271 0.424 0.737
HMAC-MD5 29 0.300 0.478 1.000
CMAC-AES 11 0.421 0.591 1.003
CMAC-AES 29 0.480 0.810 1.600

B. Destroying frames with malicious IDs

We have also put to test the idea of destroying malicious
frames. This concept has been previously explored in [20] and
[17]. In order to read the ID bits from each CAN message
(before actually receiving the whole message) we monitor
the TC224 RX pin which is connected to the RX pin of
the external CAN transceiver as shown in Figure 13. Before
reading the message ID, we perform a loop which waits for
the start bit to be sent on the bus (a dominant bit). After the
start bit, we read 14 RX-pin states, with 2µs delay between
each read out, corresponding to the bit states on the bus when
using a 500 kbps bit rate. Based on the bits read, we rebuild
the 11-bit ID by filtering out stuffing bits (if they are present).
Having the fresh ID table, we use the binary sorted tree to
search for each ID extracted from the bus. If the message
identifier is not found in the ID reallocation tree, the bus is
forced to a dominant level using the TC224 TX pin which is
connected to the external CAN transceiver TX pin.

The time for checking the ID in the table is very fast, it
varies from 0.162µs to 0.850µs with an average of 0.555µs
(in case of 90 IDs in the table). After the check, we wait for
the end of frame bits on the bus (7 consecutive recessive bits).
Next, we return to the first loop again and wait for the start bit
of a new CAN message. A plot with a frame being destroyed
on the bus (after a failed ID check) is shown in Figure 14.
Note that the first two genuine frames are successfully sent
on the bus.

C. Bus results from traffic logs

The bus traffic allocation that we use corresponds to a
trace with 88 IDs that we recorded in a high-end vehicle.
The bus speed was set at 500 kbps. This is a high number
of IDs, usually nodes are placed in subnetworks that have
several dozens of IDs. We endeavored to test our ID allocation
mechanism in this case as representative for a worst-case

scenario. The original IDs are on 11 bits, we kept the same
cycle time for them when experimenting with the trace. When
broadcasting traffic with newly allocated IDs, we kept an inter-
frame space (IFS) of at least 250µs. During the IFS the nodes
can compute all or a part of the new ID table. Generally, in our
implementation the ID table was updated with 5–10 new IDs
during the IFS, until all the 88 IDs were filled. The fresh ID
table was always ready at 100ms, 200ms, 250ms, 500ms or 1s
(depending on the experiment). In order to verify the messages
transmitted on the bus for each experiment and to log all the
information we used a PicoScope 5000 Series connected to
the CAN differential lines. Bus data was analyzed with the
oscilloscope software which is available for free. This allowed
us to check the interpretation of each CAN frame and store
the log for offline analysis.

Figure 15 shows the ID allocation for the first 3 seconds of
runtime. First, the original IDs are shown in (i), the pattern in
which they appear is obvious and they can be easily forged by
an adversary. Then we show the IDs re-allocated by ordered
CMACs in the 211 address space with ∆ = 100ms update in
(ii) and ∆ = 500ms update in (iii). On the 11-bit identifier
map (ii) the IDs are somewhat clustered at the bottom of the
figure (this is because of the reduced space for allocating the
IDs). We move to the 229 address space in (iv) and (v), with
updates each 500ms and 100ms respectively. For the 29-bit
map at 100ms the distribution is very close to the random
allocation in (vi) which we use only for comparison as priority
is not preserved by it. Note that while the six pictures look
entirely distinct, the CAN bus traffic is actually identical in
all pictures, i.e., (ii)–(v) all reduce to (i) after re-mapping
the IDs with the correct identifier table (this operation can be
easily performed by all genuine nodes that are in possession
of the table). As stated, the security level is around 6–9 bits
for standard identifiers and 24-27 bits for extended identifiers.
For obvious security reasons, we recommend extended 29-bit
identifiers which significantly increase the security level.

ID filtering issues and solutions. The proposed mechanism
may impede regular ID filtering that is performed by CAN
controllers. This mechanism was designed on CAN such that
nodes will not be disturbed by frames that are out of scope
for their tasks. This problem may be easily circumvented by
performing filtering at the software layer after the IDs are
mapped to their original values. This would only require some
bit operations on the IDs (a logical AND may be sufficient)
that is fast to perform and should not cause concerns. If ID
filtering must be preserved at the hardware layer, then at least
part of the ID bits should be left unchanged to be used for



10

Fig. 14. Two genuine frames followed by an unrecognized ID that is destroyed by dominant bits (PicoScope plot)

(i) original aloc. (ii) 500ms update 11-bit (iii) 100ms update 11-bit

(iv) 500ms update 29-bit (v) 100ms update 29-bit (vi) random allocation 29-bit

Fig. 15. IDs arriving on the bus during the first 3 seconds of runtime: (i) original ID allocation, (ii) re-allocated by ordered CMACs on 11-bit with
∆ = 500ms update and (iii) re-allocated by ordered CMACs 11-bit at ∆ = 100ms update, (iv) re-allocated by ordered CMACs 29-bit at ∆ = 500ms
update, (v) re-allocated by ordered CMACs 29-bit at ∆ = 100ms update, and (vi) random allocation (identical traffic in all six pictures)

filtering. This would however lower the security level.

D. Biasing the ID distribution

A potential shortcoming of the ID distribution is that the
highest priority IDs get the lowest entropy and thus the
lowest security level. Similarly, low priority IDs will get low
entropy but this may be less important as they likely carry less
significant messages. The entropy is the highest for IDs in the
middle of the distribution.

If low entropy for high priority IDs causes concerns, then
this can be fixed by at least two approaches. One straight-
forward solution is to simply map high priority IDs that
need more security to values in the middle of the distribution
(middle-valued ID get the highest entropy). This will decrease
their priority however, and if this is undesired, another ap-
proach is to bias the distribution of the IDs.

In principle, we want to change the cumulative distribution
function (CDF) of the ID distribution. One way to do this is
to flip a bit b and if b = 0 leave the newly generated ID

unchanged, else, if b = 1, simply set the most significant bit
(MSB) of the ID to 1. Let Pr[b = 1] = ξ then approximately
ξ percent of the IDs will be shifted above 210, which leaves
more room for high priority IDs (located in the lower part of
the distribution). The computational time will slightly increase
since there will be slightly more collisions and more fresh
values for the IDs need to be generated. The probability that
the i-th ID is not biased can be computed by summing over
the probability mass function of n independent Bernoulli trials
with success probability ξ:

Pr
[
¬biased

]
=

n∑
j=i

(
n

j

)
ξj(1− ξ)n−j (6)

This requires that at least i of the IDs where not biased.
As can be seen in part (i) of Figure 18 (which depicts the
probability of an ID not being biased for a ξ = 0.25, ξ = 0.5,
ξ = 0.75), the probability cuts sharply around the expected
value ξn.



11

Fig. 16. Histogram distribution for ID1, ID10, ID50, ID90 and ID100

Fig. 17. Histogram distribution with biased selection for ID1, ID10, ID50, ID90 and ID100

For this reason, we can get a rough approximation of the
entropy by simply considering that for all IDs smaller than
ξn, their entropies are upper bounded by the entropy of ξn
IDs distributed in a space of size σ (this is defined in relation
(2) and the same holds for relation (3), (4)). For IDs that
are higher than ξn, their entropies are lower bounded by
the entropy of n IDs distributed in the σ/2` space, where
` denotes the bits in the mask. In parts (ii), (iii) and (iv) of
Figure 18 we show the effects of biasing on entropy, guessing
probability and minimum entropy of each ID. These values
are only rough estimations based on the previous reasoning,
but with a bias ξ = 0.25 and a bit mask of ` = 1 bit the
entropy of higher priority IDs is roughly increased by 1-bit.
Various distributions can be tested, our intention here was just
to give a brief overview of this procedure.

For a better understanding on the variation of guessing
probability, min entropy and Shannon entropy we now discuss
simulation results obtained for 100 IDs in case of the uniform
and biased distributions. Figure 16 shows the histogram dis-
tribution for the first ID, middle ID (50) and last ID out of
100 IDs (in descending order of priority) in case of the regular
distribution from the previous section. While the distribution of
the middle ID is Gaussian for the first and last it is biased to the
left and right side respectively (the entropy that we determined
experimentally is close to the theoretical one, i.e., 6-9 bits).
When extending the identifier space to 29-bits, the same
computations yield around 24–27 bits of entropy which is quite
high. We also show the results for the biased distribution in
Figure 17. It can be easily seen that in contrast to Figure 16,
all the IDs are shifted to the right. The distribution of ID1 and
ID10 is wider (for ID1 it is 4 times wider as it expands to 200
rather than 50 in the normal case). In contrast, the distribution
of ID50, ID90 and ID100 is now narrower and shifted to the
right. The plots in the introductory section, i.e., Figures 2 and
3, give a clear overview of what happens in the ID allocation
during 3 seconds of runtime. Based on experimental results,
by using the previously defined relations, we determined that
the entropy of the first ID increases with roughly 2 bits.

IV. CONCLUSION

We provide a highly efficient software mechanism for
authenticating sender nodes on the CAN bus. The mechanism
requires several hundred micro-seconds to generate a fresh

(i) (ii)

(iii) (iv)

Fig. 18. Probability of an ID not being biased (ξ = 0.25, ξ = 0.5, ξ = 0.75)
and rough estimation of entropy (ii), adversary advantage (iii) and minimum
entropy (iv) in case of a biased distribution (ξ = 0.25) for 100 IDs

ID table and IDs that are not genuine can be verified in
less than a micro-second and destroyed by dominant bits (all
these are done from the software layer). By garnering 8-9
bits of entropy from 11-bit identifiers and 24-27 bits from
extended 29-bit identifiers and still preserving the order of
the IDs on the bus we are close to the maximum security
level that can be achieved by using the identifier field. A
biased distribution of the IDs can be used in order to increase
the entropy of IDs that carry more important messages. Our
mechanism can easily complement security specifications in
existing standards and increase the security level which is
quite weak due to the limited payload of CAN frames. The
computational requirement are almost insignificant, several
CMAC-AES being sufficient to generate a large ID table,
e.g., less than 10 computations are needed for a table of 100
identifiers. The life-time of such an identifier table depends on
specific security needs, e.g., from dozens of milliseconds to
seconds. Our experimental results show that the procedure is
feasible both on low-end and high-end microcontrollers. The
mechanism does not impede existing proposals for intrusion-
detection systems based on frame IDs since the randomized
IDs can be easily re-mapped to the original values.



12

Acknowledgement. This work was supported by a grant
of Ministry of Research and Inovation, CNCS-UEFISCDI,
project number PN-III-P1-1.1-TE-2016-1317, within PNCDI
III (2018-2020).

REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 563–574. ACM,
2004.

[2] AUTOSAR. Specification of Secure Onboard Communication, 4.3.1
edition, 2017.

[3] G. Bella, P. Biondi, G. Costantino, and I. Matteucci. Toucan: A protocol
to secure controller area network. In Proceedings of the ACM Workshop
on Automotive Cybersecurity, pages 3–8. ACM, 2019.

[4] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption
revisited: Improved security analysis and alternative solutions. In Annual
Cryptology Conference, pages 578–595. Springer, 2011.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In
USENIX Security Symposium. San Francisco, 2011.

[6] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for
vehicle intrusion detection. In 25th USENIX Security Symposium, 2016.

[7] K.-T. Cho and K. G. Shin. Viden: Attacker identification on in-vehicle
networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1109–1123. ACM, 2017.

[8] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee. Voltageids: Low-
level communication characteristics for automotive intrusion detection
system. IEEE Transactions on Information Forensics and Security, 2018.

[9] B. Espinoza and G. Smith. Min-entropy as a resource. Information and
Computation, 226:57–75, 2013.

[10] B. Groza and P.-S. Murvay. Security solutions for the controller area
network: Bringing authentication to in-vehicle networks. IEEE Vehicular
Technology Magazine, 13(1):40–47, 2018.

[11] B. Groza, L. Popa, and S. Murvay. INCANTA - intrusion detection in
controller area networks with time-covert cryptographic authentication.
In International Workshop on Cyber Security for Intelligent Transporta-
tion Systems (ESORICS’18 Workshops), 2018.

[12] K. Han, A. Weimerskirch, and K. G. Shin. A practical solution to achieve
real-time performance in the automotive network by randomizing frame
identifier. In Proc. Eur. Embedded Secur. Cars (ESCAR), pages 13–29,
2015.

[13] O. Hartkopp, C. Reuber, and R. Schilling. MaCAN-message authenti-
cated CAN. In 10th Int. Conf. on Embedded Security in Cars (ESCAR
2012), 2012.

[14] A. Humayed and B. Luo. Using id-hopping to defend against targeted
dos on can. In Proceedings of the 1st International Workshop on Safe
Control of Connected and Autonomous Vehicles, pages 19–26. ACM,
2017.

[15] ISO 15765-2:2016 Road vehicles — Diagnostic communication over
Controller Area Network (DoCAN) — Part 2: Transport protocol and
network layer services. Standard, ISO, Apr. 2016.

[16] M. Kneib and C. Huth. Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 787–800. ACM, 2018.

[17] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata. CaCAN - centralized authentication system in CAN
(controller area network). In 14th Int. Conf. on Embedded Security
in Cars (ESCAR 2014), 2014.

[18] C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli. Security-
aware mapping for CAN-based real-time distributed automotive systems.
In 2013 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), pages 115–121. IEEE, 2013.

[19] C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli. Security-aware
modeling and efficient mapping for CAN-based real-time distributed
automotive systems. IEEE Embedded Systems Letters, 7(1):11–14, 2015.

[20] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi. A
method of preventing unauthorized data transmission in controller area
network. In Vehicular Technology Conference (VTC Spring), 2012 IEEE
75th, pages 1–5. IEEE, 2012.

[21] C. Miller and C. Valasek. A survey of remote automotive attack surfaces.
Black Hat USA, 2014.

[22] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell.
Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: a data-driven approach to in-vehicle intrusion
detection. In Proceedings of the 12th Annual Conference on Cyber and
Information Security Research, page 11. ACM, 2017.

[23] J. Ning, J. Wang, J. Liu, and N. Kato. Attacker identification and
intrusion detection for in-vehicle networks. IEEE Communications
Letters, 2019.

[24] ODVA. The CIP Networks Library Vol. 3: DeviceNet Adaptation of CIP,
Edition 1.10, November 2010.

[25] J1939-21 – Data Link Layer. Standard, SAE International, Dec. 2010.
[26] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran.

Cloaking the clock: emulating clock skew in controller area networks. In
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, pages 32–42. IEEE Press, 2018.

[27] G. Smith. On the foundations of quantitative information flow. In
International Conference on Foundations of Software Science and Com-
putational Structures, pages 288–302. Springer, 2009.

[28] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based
on the analysis of time intervals of can messages for in-vehicle network.
In Information Networking (ICOIN), 2016 International Conference on,
pages 63–68. IEEE, 2016.

[29] Q. Wang and S. Sawhney. Vecure: A practical security framework to
protect the can bus of vehicles. In Internet of Things (IOT), 2014
International Conference on the, pages 13–18. IEEE, 2014.

[30] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee. A Practical Security
Architecture for In-Vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst.,
17(8):2248–2261, Aug 2016.

[31] S. Woo, D. Moon, T.-Y. Youn, Y. Lee, and Y. Kim. Can id shuffling
technique (cist): Moving target defense strategy for protecting in-vehicle
can. IEEE Access, 7:15521–15536, 2019.

[32] W. Wu, R. Kurachi, G. Zeng, Y. Matsubara, H. Takada, R. Li, and K. Li.
Idh-can: A hardware-based id hopping can mechanism with enhanced
security for automotive real-time applications. IEEE Access, 6:54607–
54623, 2018.

[33] Y. Xie, G. Zeng, R. Kurachi, H. Takada, and G. Xie. Security/timing-
aware design space exploration of can fd for automotive cyber-physical
systems. IEEE Transactions on Industrial Informatics, 15(2):1094–1104,
2018.

[34] Y. Yang, L. Wang, Z. Li, P. Shen, X. Guan, and W. Xia. Anomaly
detection for controller area network in braking control system with
dynamic ensemble selection. IEEE Access, 7:95418–95429, 2019.

[35] X. Ying, G. Bernieri, M. Conti, and R. Poovendran. Tacan: Transmitter
authentication through covert channels in controller area networks. In
Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems, pages 23–34. ACM, 2019.



13

Bogdan Groza is Professor at Politehnica Univer-
sity of Timisoara (UPT). He received his Dipl.Ing.
and Ph.D. degree from UPT in 2004 and 2008
respectively. In 2016 he successfully defended his
habilitation thesis having as core subject the design
of cryptographic security for automotive embedded
devices and networks. He has been actively involved
inside UPT with the development of laboratories
by Continental Automotive and Vector Informatik.
Besides regular participation in national and inter-
national research projects in information security, he

lead the CSEAMAN project (2015-2017) and currently leads the PRESENCE
project (2018-2020), two research programs dedicated to automotive security
funded by the Romanian National Authority for Scientific Research and
Innovation.

Lucian Popa started his PhD studies in 2018 at
Politehnica University of Timisoara (UPT). He grad-
uated his B.Sc in 2015 and his M.Sc studies in 2017
at the same university. He has a background of 4
years as a software developer and later system engi-
neer in the automotive industry as former employee
of Autoliv (2014 - 2018) and current employee of
Veoneer (2018 - present). His research interests are
in automotive security with focus on the security of
in-vehicle buses.

Pal-Stefan Murvay is Lecturer at Politehnica Uni-
versity of Timisoara (UPT). He graduated his B.Sc
and M.Sc studies in 2008 and 2010 respectively and
received his Ph.D. degree in 2014, all from UPT. He
has a 10-year background as a software developer in
the automotive industry. He worked as a postdoctoral
researcher in the CSEAMAN project and is currently
a senior researcher in the PRESENCE project. He
also leads the SEVEN project related to automotive
and industrial systems security. His current research
interests are in the area of automotive security.


	Introduction and motivation
	Proposal overview and related works 

	Concept and protocol design
	Concept in a nutshell
	Algorithms for ordered authentication of the identifiers
	Protocol design
	Security discussion

	Experiments
	Experimental setup and computational results
	Destroying frames with malicious IDs
	Bus results from traffic logs
	Biasing the ID distribution

	Conclusion
	References
	Biographies
	Bogdan Groza
	Lucian Popa
	Pal-Stefan Murvay


