
Analysis of a password strengthening technique and its practical use

Bogdan Groza
Department of Automatics and Applied Informatics

Politehnica University of Timisoara, Faculty of Automatics and Computers
Timisoara, Romania

bogdan.groza@aut.upt.ro

Abstract— Besides commonly used password strengthening
techniques such as salting or repeated applications of a one-
way function on the password, we account a less common
procedure: the truncation of the output from a one-way
function on the password. This technique is used in a
Norwegian ATM and a similar method is part of an
authentication protocol from Anderson and Lomas which
makes use of collision-full hash functions. We depict a
probabilistic bound on the probability of guessing the
password in the Anderson-Lomas protocol and we propose
some improvements on the protocol. Further, the improved
protocol proves to be a good solution for a password based
authentication between two devices that authenticate in the
absence of a previously known secret or of a trusted third
party. The protocol proves to have all the desired properties
for this scenario.

Keywords-authentication; password; protocol;

I. INTRODUCTION
Although passwords offer the weakest level of security,

they are still the most used authentication factor. This is
because they can be easily memorized by humans and further
used for authentications without requiring the possession of
additional devices such as smart-cards, mobile phones etc.
that can be used to compute one-time password or at least
store randomly generated keys.

The main disadvantage of passwords is their lack of
entropy which makes them vulnerable against exhaustive
searches over the password space. Thus, an adversary can
built a dictionary of passwords and search in it for the correct
one if the protocol reveals all information necessary for the
verification. Even more, in some situations, when
randomness is absent in hiding the password, the adversary
can save some of his computational time and use pre-
computed dictionaries. These attacks are more severe, as a
search over a pre-computed dictionary can be done in no-
time by using binary search.

In order to overcome dictionary attacks, the first solution
was introduced by Bellovin and Merrit [5] and since then
several modern solutions with provable security appeared
[4], [6]. However, in practice only elementary improvements
for strengthening passwords are used, from which the most
common are salting and repeated applications of a one-way
function. These techniques are known as folklore and used
for a long time; a research account of some password
strengthening techniques is available in [1].

Besides salting and repeated applications of a one-way
function, in this paper we account an interesting mechanism
that can be used to increase password security: the truncation
of the output from a one-way function on the password. This
technique can be used to eliminate some attacks as an
adversary cannot decide which is the correct password based
on a single truncated output. The technique was initially
proposed by Anderson and Lomas in a key-exchange
protocol [2]. Further, a similar procedure was used in
practice in a Norwegian ATM. In this paper we make an
analysis of the probability for an adversary to find the
password in this case and further we propose some
modifications that can improve the protocol security. The
step-by-step verification procedure that we introduce
decreases the number of disclosed bits from a protocol run.
Although the proposed improvement requires more
communication sessions, it is more efficient with respect to
the security level which matters most. We also propose an
interesting scenario in which the improved protocol can be
used: an authentication between two devices, in the absence
of a previously known secret or of a trusted third party, by
the use of a very low entropy password.

The paper is organized as follows. Section 2 discusses
along the lines of password strengthening techniques: salting,
multiple applications of a one-way function and truncation.
Section 3 makes an analysis of guessing in the presence of
truncation of the output from a one-way function on the
password that is used in the Anderson-Lomas and the
Norwegian ATM protocol. Further, section 3 proposes some
improvements on this and introduces a practical scenario in
which the protocol can be used. Section 4 holds the
conclusions of our paper.

II. WEAKNESSES AND IMPROVEMENTS OF SOME
PASSWORD BASED PROTOCOLS FROM PRACTICE

A. Compensating low-entropy with salting and repeated
applications of a one-way function
Windows provides a good practical example of how

wrong it is to forget about salting passwords. All Windows
OS versions prior to Vista store user passwords as the
lmhash, which consist in splitting the password of at most 14
chars in two values that are used to encrypt with DES the
constant “KGS!@#$%”, i.e. 1("KGS!@#$%") ||pwDES

2 ("KGS!@#$%")pwDES . In this case, besides dictionary

2009 Third International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3668-2/09 $25.00 © 2009 IEEE

DOI 10.1109/SECURWARE.2009.52

292

guesses, in which an adversary compares the password to
entries in the dictionary, pre-computed dictionary attacks are
feasible as the encryption is deterministic. These pre-
computed dictionary attacks can be done even in a more
specialized form known as rainbow tables, being efficient
when cracking large amounts of passwords. Rainbow tables
are distributed freely over the Internet and can be computed
by using the advantage of grid systems or distributed
computation communities. Free rainbow tables are available
on the web to crack large amounts of Windows passwords.

To avoid pre-computed dictionary attacks, in UNIX OS
salt is added to the passwords. Even more, passwords are
hashed multiple times, making an adversary spent more time
to find passwords by exhaustive search. It is also notable that
in the traditional DES based crypt command from UNIX the
encryption algorithm was also modified by the salt in order
to block the potential use of standard cryptographic
hardware.

In this context, it is also useful to mention the technique
from Abadi et al. [1] that consists in concatenating a value to
the password before hashing and delete this value afterwards.
This means that the password is hashed as (,)H pw r and if
r is unknown the system must verify all values of r before
accepting a password. Now, if r has an appropriate size (for
example 20 bits) the system will not need to much time to
confirm the correct password but the adversary time needed
to test many wrong password will increase proportionally.
Finally, this has the same effect as the repeated application
of a one-way function on the password.

B. Hiding passwords by truncating one-way functions
outputs: the Norwegian ATM and Anderson-Lomas
protocols
 There is a more subtle way of hiding passwords than

salting or repeated applications of a one-way function. The
main idea is that the password can be hidden by truncating
the output from the one way function computed on the
password.

An interesting example is from a Norwegian ATM
authentication system, which was shown to be flawed after a
trial from an honest user who lost a credit card from which
money were subtracted [8]. Each credit card stores on it a 16
bit verification value that is the result of a 16 bit truncation
from a DES encryption of the PIN with a key K known only
by the bank and the ATM’s, i.e. each card stores

() 16KDES PIN⎢ ⎥⎣ ⎦ . We simplified this here because the DES
is not computed directly on the PIN and other information
such as the account number is also encrypted, but since the
password is the one on which we are interested, other details
are not relevant. Now, if an adversary has a stolen card and
wants to find the PIN, the main problem is that even if it
makes an exhaustive search against the 562 possible DES
keys (which was feasible at that time and nowadays DES can
be cracked in less than a week), since the value from the card
is truncated to 16 bits it will get roughly 402 correct DES
keys which can further validate any PIN code. However,
these false DES keys can be discarded if the adversary gets

more honest credit cards from the same bank or changes its
PIN code. This is because each new PIN provides him a new
16 bit value and by testing DES keys each such value
reduces the number of correct DES keys by a factor of 162 .
Thus, finding the correct DES key can be done after roughly
4 honest cards issued to the adversary and the PIN from the
stolen card can be further found by testing against the 16 bit
value from this card.

The same truncation is used in a protocol proposed by
Lomas and Anderson where the collision-full hash functions
proposed by Gong [7] are used to authenticate a key
exchanged with Diffie-Hellman.

Diffie-Hellman-Merkle Key-Exchange

A B→ : αγ

B A→ : βγ

Anderson Lomas

A B→ : ()(), mod 2 ,mH H pw αβ αβγ γ

B A→ : ()()(), mod 2 ,mH H H pw αβ αβγ γ

Here αγ , βγ , αβγ are the usual Diffie-Hellman

parameters and () ()(,) mod 2 ,m
kf x H H k x x= is the

collision-full hash function. The collision-full hash has the
property that for a target image ()kf x if one knows x it is
easy to find collisions in the first variable, i.e.

() ()' , 'k kf x f x k k= ≠ , but if one knows k it is infeasible
to find collisions in the second variable, i.e.

() ()' , 'k kf x f x x x= ≠ . As for the notation (),H x y in the
original paper from Anderson and Lomas [2] the hash
function is used over the concatenation of the two variables
while later papers from different authors also interpret this as
a hash function keyed on the first variable. Finally, in this
context any of the interpretations can be used.

Thus, it is acknowledged in [2] that if Adv plays as man-
in-the-middle and impersonates B he knows αβγ but
further he cannot find pw since there remain 2k m− correct
passwords after Adv gets the response from A . It is easy to
see the similarities between the Norwegian ATM and the
Anderson-Lomas protocol, in what follows we are interested
on computing some bounds on the probability of finding the
password in these cases.

III. ANALYSIS AND IMPROVEMENTS ON THE ANDERSON-
LOMAS PROTOCOL

A. Probabilistic bounds on guessing the password
Let us define guessAdv as the event that the adversary

successfully guesses the password. Ideally speaking, this

293

probability must be negligible, but in practice it depends on
the entropy of the passwords. If one considers passwords on
k bits and the target password is uniformly distributed
among them we have Pr[] 2 k

guessAdv −= .
First we want to show that using any truncated hash on

the password and the Diffie-Hellman key is sufficient for the
man-in-the-middle adversary in the Anderson-Lomas
protocol while a collision-full hash is more than necessary
(in particular we can renounce to the hardness of finding a
collision in the second argument). Assume that H is a
collision-free hash function. For functions (),f pw x =

()(), mod 2 ,mH H pw x x and (),g pw x =

()(), mod 2mH H pw x it is easy to show that finding pw

from a set of inputs-outputs () (){ }, | ,f i i i iL x y y f pw x= =

or from a similar set () (){ }, | ,g i i i iL x y y g pw x= = ,
happens with the same probability if the sets have the same
size, i.e. f gL L= . To prove this, assume by contradiction

that it is harder for Adv to correctly identify pw from fL

than from gL when f gL L= . This means that there are

more collisions in fL than gL . However, observe that given

any pair (),i ix y from fL it holds

()', , 'i if pw x y pw pw= ≠ if and only if

() (), mod 2 ', mod 2m m
i iH pw x H pw x= . This is easy to

prove since if we assume that
() (), mod 2 ', mod 2m m

i iH pw x H pw x≠ it follows that the
hash function has collisions which is a contradiction. But
this means that the collisions in fL occur if and only if the

same collisions occur in gL . Therefore pw can be correctly
recovered from fL if and only if it can be correctly

recovered from gL .
This means that in the Anderson-Lomas protocol the

man-in-the-middle attack works with the same strength even
if we do not use the collision-full hash function and we
simply use a hash function with a truncated output as
follows:

Truncated Hashing

A B→ : (), mod 2mH pw αβγ

B A→ : ()(), mod 2mH H pw αβγ

Now we want to give a probabilistic measure for the

event guessAdv . Obviously, if there are candn candidate
passwords and the correct password is randomly distributed
between them, it holds:

1Pr[]guess
cand

Adv
n

= (1)

Now we want to establish how Pr[]guessAdv varies with
protocol runs when Adv impersonates the honest users and
knows the Diffie-Hellman key. This will be done by
estimating the number of candidate passwords that remain
after some protocol runs. We will consider the general case
of a pseudorandom function of two arguments

{ } { } { }: 0,1 0,1 0,1k l mf × → with k m> (this includes the
hash function from Anderson-Lomas, as well as the DES
encryption from the Norwegian ATM). Further, we assume
that the correct password is { }0..1 kpw∈ and the adversary

knows pairs (), , , 1,i ir f pw r i q= (where ir is some random

value) and can compute () { }, , 1, , 0,1 k
if p r i q p= ∀ ∈ . We

want to establish how Pr[]guessAdv varies after testing
candidate passwords against the q outputs for the correct
password. Let collp be the event that the output of f on
some candidate password and some additional input ir
collide with the target, i.e. () (), ,i if pw r f p r= . Since f is

pseudorandom we have 1Pr[]
2coll mp = and after testing

against all the pairs (), , , 1,i ir f pw r i q= the probability for a

password to collide on all q targets is 1Pr[]
2q coll mqp − = .

Therefore in average the number of candidate passwords will
be:

() 2 11 2 1 Pr[] 1
2

k
k

cand q coll mqn p −
−= + − ⋅ = + (2)

Here 1 stands for the fact that there will be at least one

collision, and this is with the correct password. This gives
the following probability for the adversary to guess the
correct password:

2Pr[]
2 2 1

mq

guess mq kAdv =
+ −

 (3)

B. Further guessing informations
The calculus for relation (3) has taken into account only

the values provided by A to Adv . However if Adv plays as
man-in-the-middle besides the correct values provided by
A , Adv may further try to give a correct response to B . If

he gives a correct response then Adv learns two more input-
output pairs for the function computed on the secret.
However, Adv can give the correct answer only with

294

probability 2 m− which should be negligible in practice since
otherwise Adv can successfully impersonate A . On the
other hand, with probability 1 2 m−− , Adv gives the wrong
answer to B and in the case that B will not reply he learns
that the value does not match the correct password. Now, if
the password space is 2x he can further exclude 2x m−
passwords, however this is a reduction of the password space
with a factor of 1 2 m−− which is again negligible compared
to the reduction by a factor of 2 m− that results from the
response provided by A . Therefore, it seems to be little
point for Adv to play the role of A to B as it is very likely
that B detects its presence while he learns almost nothing
about the password. This means that it is sufficient to
approximate the number of candidate passwords based only
on the responses from A . Nevertheless this shows that Adv
does not have good chances in defeating the protocol if he is
the initiator of the protocol.

Still, in the best case it is desirable for a protocol to let
Adv test only one password in each protocol run (i.e., in

each on-line attack). However, in this protocol, after each run
as the initiator, Adv can exclude about 2x m− passwords as
previously shown. Therefore we can consider that the
protocol is not optimal against on-line attacks.

C. On the optimal choice of m
 In the original proposal from Anderson and Lomas [2]

there is a discussion on the optimal choice of m and the
recommend value is / 2m k= . Indeed, we may consider that
after the first response from A to Adv there are two ways
of attacking the protocol: first by guessing the password
from the response of A (which happens with probability
2m k−) and second by giving the correct response to B
which happens with probability 2 m− . If one wants to
minimize the probability of both the attacks the optimum
choice will be indeed / 2m k= .

Still, choosing such a large m will lead very fast to the
correct value of the password, forcing to stop the protocol
quickly in the case of an attack or otherwise the password
will be guessed. It may be useful to further improve on this
by dynamically adjusting m . For example, one may choose
to reduce m to half after each wrong response from the other
party (which indicates the potential presence of the
adversary). This will force to stop the protocol after about

2log k unsuccessful runs as m cannot be further reduced. At
this point Adv may have successfully find the password
with probability 12− . The only advantage is that the
probability of guessing increases more smoothly to 12− .
Note however that now the probability that Adv gives a
correct response to A also gets double each time m is
reduced by half. So more likely such an improvement will
not help much. Pr[]q collp − for this case will be:

1

1

1 2
2

...
2 4 2

1Pr[] 2

2

q

q

q

m
q coll m m mm

p −

−

−⋅

−
+ + + +

= = (4)

Further, this relation can be used in (2) to compute
Pr[]guessAdv . In figure 1 at the end of this section there are
comparative plots for the variation of Pr[]guessAdv with
protocol runs and the case of the dynamic adjustment for m
is outlined as well.

D. A further improvement on the Anderson-Lomas
protocol
The main problem in the Andreson-Lomas is that when

Adv plays the role of B , A discloses the value of
(() mod 2 ,)m

pwH MAC αβ αβγ γ which lets Adv reduce the

password space by a factor of 2m . We now improve on this
by proposing a step-by-step verification procedure for which
we show that it reduces the probability that Adv finds the
correct password. A and B compute the regular values (or
even the same value) and disclose only a fixed number of
bits in each round. Ideally for security, only 1 bit should be
disclosed; however, this increases the number of sessions.
For example, A and B can compute

1 2... r sv v v v ⋅= () mod 2m
pwMAC αβγ= and 1 2... r sw w w w ⋅= =

() () mod 2m
H pwMAC αβγ then proceed to the following step-

by-step verification:

Step-by-step Verification

Session 1..i r=
A B→ : ()1 1... i si sv v ⋅− ⋅ +

B A→ : ()1 ... i si sw w ⋅− ⋅

Now, if Adv plays the role of B then in session 1 he

receives s bits from A and afterwards he will get to session
2 only if he responds correctly to A in session 1. Assuming
that the password is unknown to Adv this happens with
probability Pr[] 2 s

corrAdv −= . We can compute the
probability that Adv stops in some session 1..i k= , i.e. the
event that Adv is correct up to session i denoted i corrAdv − ,
as:

11 1Pr[] 1
2 2

i

i corr s sAdv
−

−
⎛ ⎞ ⎛ ⎞= ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5)

We now want to compute the average number of bits
which Adv gets after one protocol run. In the first session if
Adv plays the role of B he gets s bits from A , afterwards

he will get another 2 s⋅ for any correct answer. Therefore
the average number of bits Adv gets from A is:

295

1

1

1 12 1
2 2

ir

A s s
i

av s i s
−

=

⎛ ⎞ ⎛ ⎞= + ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑

1

1

1 12 1
2 2

ir

s s
i

s s i
−

=

⎛ ⎞ ⎛ ⎞= + ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑ (6)

By elementary computations we can compute
()

()

2 1

2
1

1

1

k kk
i

i

k x k x x
i x

x

+ +

=

⋅ − + ⋅ +
⋅ =

−
∑ and by replacing in the

previous relation this gives:

()2 2 1 1
2

1 2

r s s

A s

r r
av s s

− ⋅ ⋅ ⋅ − + −
= + ⋅ ⋅

−
 (7)

However we should not forget what happens if Adv
plays the role of A towards B . Adv can give B a correct
response with probability 2 s− , but different to the case of
the Anderson-Lomas protocol, this may not be negligible
anymore. Therefore, the average number of bits received
from B is:

1

1 12 1
2 2

ir

B s s
i

av i s
=

⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑ (8)

By adding Aav and Bav , in one protocol run if Adv

plays the man-in-the-middle he will get the following
average number of bits:

av ≈
()2 2 1 1

4
1 2

r s s

s

r r
s s

− ⋅ ⋅ ⋅ − + −
+ ⋅ ⋅

−
 (9)

In (9) for simplicity we have omitted the last term from

the sum in Bav which is negligible. Further, the average
number of bits can be replaced in relation (3) where the
probability was computed for the case when m bits were
disclosed, giving:

2Pr[]
2 2 1

av q

guess av q kAdv
⋅

⋅=
+ −

 (10)

Basically the effect of the step-by-step verification is the
same as if in the original protocol the size of m will be
reduced to the average value from (9) and the protocol is run

/m av times. However the advantage of the step-by-step
verification is that one does not need to repeat the hash
computations required by each protocol run. Figure 1 shows
the plots done in Mathematica for the variation of probability
for guessing based on the number of protocol runs on all the

cases of the protocol that were analyzed. We underline that
by using the step-by-step verification procedure there is no
need to truncate the hash since the probability for Adv to get
all bits from the image of the hash is negligible anyway.

E. A potential application
We outline a particular scenario that can benefit from

such a password strengthening technique: an interaction
between two mobile devices handled by users who choose
weak passwords. One may consider that the two devices are
for example mobile phones and two users want to share
content between them. As there is no previously shared key
between the devices and a trusted third party does not exist,
the only way is for the users to verbally agree on a password
that is set on both devices. However, this is not enough, since
if the password is weak and the protocol exposes information
that makes the password guessable, or even more gives the
opportunity to search it via a pre-computed dictionary, there
will be no security for the communication.

Using the improved protocol is efficient and has at least
two merits. First is that pre-computed dictionary attacks are
not feasible as the Diffie-Hellman key exchange assures
fresh random information each time. Second, and more
important, a potential adversary playing as man-in-middle
will be quickly detected since it will fail to give the correct
response with high probability. Finally, if the adversary plays
as man-in-the-middle, it can not recover the password and
will get more passwords that correspond to the captured
values. Further, the two participants are warned that they are
under attack and they will choose a new password.

For example, one can consider that the password has 20
bits (which is not much) and choose 10m = in the original
Anderson-Lomas protocol. This will lead to a probability of

102− for Adv to bypass the authentication and with
probability 101 2−− his tentative will be detected. More, if
the proposed step-by-step verification is used one can set

20m = , which is the same size as the password and means
that there is no truncation, but if 10r = , 1s = then Adv
gets only 5 bits in average and the probability for giving a
correct response is only 202− , i.e., less than one in a million.

2 4 6 8 10 12

0.2

0.4

0.6
0.8

1

m=kê2
m-dynamic

step-by-step

Figure 1. Probability that Adv guesses the password (x-axis depicts the
number of man-in-the-middle attacks on the protocol and y-axis the

guessing probability).

296

IV. CONCLUSIONS
Users tend to choose weak passwords; still there are a

number of improvements that can be used in practice to
increase their strengths. Since passwords continue to be used,
password strengthening techniques are playing an important
role in security. Some techniques are quite ingenious as the
truncation from the Norwegian ATM or Anderson-Lomas
protocols. We showed that further improvements can be
done on the Anderson-Lomas protocol and we made a
precise analysis on the probability of guessing the password.
Further we proposed the use of this protocol as a solution for
a practical scenario where two users choose weak passwords
to authenticate two mobile devices, the practical
implementation of the protocol for a real-world scenario
remains as potential future work for us.

ACKNOWLEDGMENT
This work was partially supported by national university

research council CNCSIS grant PNCDI PN II - 940/2009.

REFERENCES
[1] M. Abadi, T. Lomas, R. Needham, Strengthening passwords, SRC

Technical Note 1997 – 033, Digital Equipment Corporation, Systems
Research Center, 1997.

[2] R. J. Anderson and T. M. A. Lomas. Fortifying key negotiation
schemes with poorly chosen passwords. Electronics Letters, July
1994.

[3] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. On password-based
authenticated key exchange using collisionful hash functions. In Proc.
First Australasian Conf. on Information Security and Privacy, volume
1172 of LNCS, Springer, 1996.

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key
exchange secure against dictionary attacks. In Proc. Int'l. Conf. on the
Theory and Application of Cryptographic Techniques (EuroCrypt),
volume 1807 of LNCS, Springer, 2000.

[5] S. M. Bellovin and M. Merritt. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In Proc. IEEE
Symposium on Security and Privacy, 1992.

[6] O. Goldreich and Y. Lindell. Session-key generation using human
passwords only. In Proc. 21st Ann. Int. Cryptology Conf., volume
2139 of LNCS, Springer, 2001.

[7] L. Gong. Collisionful keyed hash functions with selectable collisions.
Information Processing Letters, 1995.

[8] K. J. Hole, V. Moen, A. N. Klingsheim, and K. M. Tande. Lessons
from the Norwegian ATM system. IEEE Security and Privacy, 2007.

297

