
Experimenting with the secure control of a robot over TCP/IP

Bogdan Groza, Toma-Leonida Dragomir
Politehnica University of Timisoara, Faculty of Automatics and Computers, Romania,

bogdan.groza@aut.upt.ro, toma.dragomir@aut.upt.ro

Abstract

An authentication protocol, based on cryptographic

techniques, is implemented and used in the
communication necessary for the control of a mobile
robot over a public network. The robot is connected
via an 802.11 wireless network to a local computer;
however the control of the robot is done from a remote
host over TCP/IP and in this way the information
involved in the control scenario may be exposed to
several security risks. The application fits in the
context of a remote controlled system and the interest
in using cryptographic techniques in this area has
drastically increased in the last years. Instead of using
standardized solutions, such as the SSL, we use as a
new approach an authentication protocol based on
one-way chains. The advantage of this approach is
that only simple cryptographic primitives, such as hash
functions and message authentication codes, are
needed. Experimental results are presented, and the
results show that it is feasible to use such a protocol
since transfer rates and computational overhead are
kept at the desired level for the control scenario. An
analysis of the performance of the protocol based on
the line utilization rate is done. Also, we give a partial
solution for the treatment of communication delays.

1. Introduction

As pointed out by many recent papers the use of
cryptography in the field of control systems is a major
challenge, as these systems need to communicate over
public networks where information is exposed to
adversaries [5], [6]. The difficulty in using
cryptographic techniques in control systems is twofold,
first from the requirements over the equipments and
second from the involvement in the dynamics and
accuracy of the control system itself. Therefore, the
first problem that must be solved is that the use of
cryptography requires computational power or
communication resources that may not be available.
For this purpose different protocols were proposed,
such as for example [20] which can be used to assure
cryptographic security on the communication line
between Supervisory Control and Data Aquisition

(SCADA) equipments. As for the second kind of
problems, the issue that must be solved is that
communication over the public networks, or over any
unreliable network, can introduce communication
delays, or even uncertainties regarding the arrival of
commands and responses. For this purpose several
control techniques were developed that can deal with
such kind of uncertainties, an example is in [13].

Our interest is the first type of concern, namely the
development of efficient cryptographic protocols,
which require low computational power. We avoid the
use of standardized solutions, such as the TLS or SSL
as we are not interested in an encrypted
communication line to assure the confidentiality of the
information and instead we are interested in assuring
the authenticity of information. It is commonly
acknowledged that in industrial control systems
authenticity is much more important than
confidentiality as information can not be used as long
as there is no guarantee over its source and freshness.
For this purpose we propose and use a class of
authentication protocols based on one-way chains
which significantly differs from the SSL paradigm.
The merit of this approach is first as an experiment
from which we can draw certain conclusions on the
efficiency of such protocols. And second, the use of
such a protocol does not require an asymmetric
encryption function, as the SSL. Therefore this
approach can be used where asymmetric encryption
has to be avoided and only simple one-way functions
are affordable.

This paper extends our previous result from [10]. In
addition to [10] we will also make an analysis of the
protocol performance based in line utilization rate.
More, we will give a potential solution for the
treatment of communication delays which are caused
by the unreliability of the network.

The paper is organized as follows. In section 2 we
describe the application setting, and in section 3 a
solution for dealing with delays is outlined. The
cryptographic protocol is presented in section 4.
Implementation details are in section 5, while in
section 6 we give some experimental results. Section 7
holds a performance analysis for the protocol while
section 8 holds the conclusions of our paper.

2. Application setting

An X80 robot connected to a local computer via a
WiFi 802.11 communication link is used. Several
relevant technical details about the robot are resumed
in what follows; the manufacturer website can be
found at [21] for more details on this device.

The robot stands on two wheels with 18 cm
diameter, each of them connected to a 12V DC-motor
that can be controlled independently. The built-in
commands allow three types of control for the two DC
motors: open loop Pulse-Width Modulation (PWM),
closed loop position control and closed loop velocity
control. The regulators for the wheels are of
proportional–integral–derivative type (PID), the values
for the PID parameters, i.e. the , ,P I Dk k k values, can
be set by the use of built-in commands. We have used
for the PID the values that are also used in the demo
application given by the producer.

The robot is equipped with the following type of
sensors: ultrasonic sensors, infrared range sensors,
human detection sensors, temperature sensors. For our
application we have used only the three ultrasonic
sensors from the front of the robot. Also, the robot has
a video camera which provides images at a resolution
of 352x288 pixels; the producer indicates a rate of at
most 4 fps for the webcam (in our application we
acquired new images from the robot at a rate of 1 fps).
The camera is attached to a mobile head which can be
moved vertically and horizontally by a servo-motor.
Other devices are attached to the robot, such as a
microphone and a speaker; further details can be found
in the technical documentation from [21].

As depicted in figure 1 the robot is connected to a
local computer, which plays the role of the local
controller, via a wireless router. This computer also
plays the role of a server and accepts a connection
from a remote host. The communication between the
robot and the application from the local computer is
done via a software gateway, provided with the X80
installation kit. The producer indicates that commands
can be sent to the robot over this wireless link at rates
exceeding 10 Hz. The robot has a web-interface which
can be easily used to configure the robot. Since the
wireless connection between the robot and the local
computer supports WEP security, we are not interested
in assuring the security on this side. What we are
interested is to assure the security in the
communication between a remote computer and the
local computer to which the robot is connected. For
this purpose we build a client application which we run
on a notebook in order to connect over TCP/IP to the

server and send commands to the robot. The client
application plays the role of a remote controller. In
such a scenario the use of cryptography is needed since
packets between the client and the server travel over
public networks and can be easily intercepted and
modified by malicious adversaries. Details on the
client and server applications are given in section 4.

In figure 2 a view over the application as a control
system is presented. The main purpose of the
application is to control the movements of the robot
between some target points. The control is based on
the information that is received from the environment
via the above mentioned sensors. For the tests that
were done in section 5 the control was done manually
from the application interface by letting the robot to
perform some basic movements, however any discrete
control algorithm can be implemented as well. The
objective of the paper was the development of the
secure communication protocol and not of the control
algorithm who can be further implemented in an
abstract function from the source code.

Figure 1. Application setting

Figure 2. Application setting as a control
system

3. Dealing with communication delays

An important issues in the proposed control
scenario are the communication delays introduced by
the communication over TCP/IP. Here we give a
partial treatment on this issue.

The structure depicted in figure 3 corresponds to a
remote control system where the delays of the

commands and responses are depicted as se τ− and
' se τ− respectively. These delays may be different, first

because they can have different causes and second
because the size of the command and responses may be
different as well. These delays make the
correspondence () ()'u t u t τ= − and () ()' 'y t y t τ= − .

Let { }1 min , 'τ τ τ= and { }2 max , 'τ τ τ= . We can
observe that when the communication starts, for 1t τ<
there is no communication between the two sides,
while for []1 2,t τ τ∈ there is only a partial
communication, either some commands, either some
responses were received. Only for 2t τ> there is a
complete full-duplex communication, both commands
and responses are received, with the particular delays.

Figure 3. Application setting as a control
system in the presence of delays

Figure 4. Application setting as a control
system with signal generators for dealing with
delays

In order to deal with the inactivity periods []10,τ

and []1 2,τ τ we can use the structure depicted in figure
4 in which G and G’ are two auxiliary generators to
compensate delays. In this case ''u and respectively

''y will be the commands and responses in the case
when there is no signal. The G and G’ generators may
have multiple purposes: to initialize the remote
controller in a predictive state for the process, to set
the controlled process in a particular point, to predict
the state of the controller etc. The dotted line in figure
4 denotes that the generators and the remote controller

must be synchronized in some way and subsequently
they have to work synchronously.

This treatment solves only the problems related to
initialization, further, different delays can appear as
well on the communication channel and the same
generators can be used to take action in the case when
there are some time-outs. In the absence of control
signals, commonly used values for this purpose in the
G generator are “zero control” and “last available
command”.

4. The cryptographic protocol

One-way chain based authentication protocols were
initially proposed by Lamport [14] in order to
authenticate a user to a remote system while avoiding
the weaknesses of password based authentication.
However, the practical use of Lamport’s scheme in the
S-Key system proposed in [12] resulted in an insecure
system which has several weaknesses [15]. Later, one-
way chains were used to assure the authenticity of
information that is broadcasted to large number of
receivers by using elements of one-way chains as keys
for Message Authentication Codes (MAC) [17], [16],
[1]. The solution proposed by Perrig et al. [17] has the
great merit that MAC codes can be used for sending
information to multiple receivers although the same
authentication key is used. This is due to the use of
time synchronization since otherwise MAC codes
require a distinct secret shared key between the sender
and each receiver which leads to an inefficient protocol
due to the large number of keys. The same could be
achieved by the use of digital signatures; however
digital signatures can be from hundreds to thousand
times more computational intensive then a MAC.
Therefore, due to its computational efficiency, this
protocol was also used in constrained environments
with low computational power and communication
abilities such as wireless sensor networks [16]. Also an
analogous solution was proposed in [1] which avoids
the use of time synchronization by requiring a response
from the client. As pointed out in [11] this solution can
be relevant in the context of a control system, due to
the nature of such a scenario which is essentially based
on a feed-back between the controller and the
controlled process. In what follows we will study the
practical implementation of such a protocol.

 More motivation on the use of this class of
protocols may be useful. The most important thing is
that at the core of such protocols only a simple one-
way function can be used; in our case a hash function.
This is significantly different from the SSL paradigm,
which uses the hybrid encryption paradigm (the use of

a public key to encrypt a secret key, that is later used
for the encryption of the messages) and requires the
use of an asymmetric encryption mechanism.
Therefore the proposed protocol may be used in the
absence of such an encryption mechanism. Also, as
pointed out by the TESLA protocol [17], simple MAC
codes can be used to authenticate information for a
large number of receivers by using the same key;
therefore a solution based on one-way chains is largely
scalable. However, in this paper we will not use a
protocol based on time-synchronization, and all that
we use is a protocol based on challenge response. This
is first because we do not need a large number of
receivers, and all that we need is a one-to-one
communication, and second because it is expected that
the time-synchronization based protocol while largely
scalable, will have a fixed send-receive rate. In
contrast, the challenge-response based protocol will
give flexible rates and an increase in performance.
Therefore, we leave the implementation of the protocol
based on time synchronization as future work.

The structure of the communication sessions for the
protocol is as follows:

Session i
A → B : ()

, 1 ,, ,
A ii k i A ic MAC c k

+

B → A : ()
, 1 ,, ,

B ii k i B ir MAC r k
+

Here A and B are the communication participants. A

plays the role of the controller, in our application it is
also the role of the client which can command the
robot remotely, while B plays the role of the controlled
process, which in our application is also the server to
which the robot is connected. The messages exchanged
are ,A ic , ,B ir which represent the command and the
response respectively, and MAC is a message
authentication code. The keys for each entity are
denoted by ,entity ik , here { },entity A B∈ , and is

computed as (), ,0
n i

entity i entityk Hash k−= where ,0entityk is

some secret random value generated by each entity,
Hash is a hash function and n is the number of
communication sessions which must be chosen in
advance, details on the protocol can be found in [9],
[11]. It is easy to observe that the keys form a hash
chain. For the efficient computation of such a chain
several optimization techniques were proposed [4], [7],
[18]. However, we did not use them in our application
as they are intended for constrained environments and
the computation and storage of the entire chain was not
a problem on the computers that we used.

We note that the only attack that an adversary can
launch on this protocol is to delay packets, for this
purpose the server application will halt the robot if no
authentic packet is received after a delay of 1 second.
Even when new commands are not sent from the
controller to the controlled process, the application still
communicates over the previously described protocol,
by sending blank command packets; this is needed also
to update the information that is received from robot
sensors on the remote controller’s side.

We now proceed by giving details on the
commands and responses structure from our
application. The command message has the following
structure: the first byte indicates the command code;
each command has a unique identification number
which corresponds to the number of the built-in
command from the documentation of the robot [21]. A
second byte follows which gives the response code; we
used only the value 128, which indicates in our
application that a response as described in what
follows is needed. Another 14 bytes are appended
which represent the values for cmd1, cmd2, cmd3,
cmd4, cmd5, cmd6, time - this follows the general
structure for a command that is sent to the robot
according to the documentation of the robot.

As for the responses from the server which hosts
the robot, each response packet includes the following
information: the values of the 3 sonar sensors and the 2
encoders from the wheels, each of these values has 2
bytes, and the value of the last image acquired from the
camera on the robot head, which consists in 76086
bytes. A first byte in the response message indicates
the type of the response, this byte corresponds to the
response requested in the command, and for the
moment only responses with this structure were used.
A second byte is reserved for future use, just for
symmetry with the structure of the command message.
This leads to a size of 76092 bytes for each response
value.

The following is the detailed structure of the
messages from the authentication protocol:

Session i
A → B :

()6i i 1c cmdcode ,cmd ,time−= , ()
, 1 ,,

A ik i A iMAC c k
+

B → A :
()3 2i 1 1r sonar ,encoder ,image− −= ()

, 1 ,,
B ik i B iMAC r k

+

It is easy to observe that the protocol introduces a

delay of 1 session for the authentication, this means
that the values received in session i can be checked
for authenticity only in session 1i + , when the

corresponding key of the MAC is received. This
disadvantage must be accepted since this is the only
way to avoid the use o a secret key between the two
participants. The alternative solution, which uses time
synchronization as in [16], [17], introduces as well an
authentication delay equal to the key disclosure period.

It should be also stated, that such a protocol
requires an initialization stage in which the values of

,0Ak and ,0Bk are securely exchanged between the two
entities – these values are not confidential, however
each entity must be ensured that the values originate
from the respective communication participant and that
they are new.

Basically, any key exchange protocol can be used
for this purpose; in particular we have used a digital
signature. We underline that indeed this signature is a
public key primitive; however digital signatures can
also be computed by using symmetric functions.
Digital signatures that are built on symmetric
primitives are also called one-time signatures, their use
in practice is limited mostly because they do not offer
the same flexibility as number theoretic based
signatures such as RSA or DSA. Still, one can
implement a digital signature based on simple one-way
functions, therefore we underline that this protocol can
be based entirely on one-way functions. Also as future
work we intend to use such signatures on some low
computational power microcontrollers for the
implementation of a similar protocol.

5. Implementation details

 A client-server application was developed. The
client application can be used to connect over TCP/IP
to the server application hosted on the same computer
to which the robot is linked via the application
gateway offered by the producer. The client is able to
command the robot remotely, by sending commands
(the basic movements are implemented: forward,
backward and turns to left or right). Also, the images
that are collected from the robot are sent to the client.
We underline that all this information is send with the
authentication protocol described in section 3.
Therefore al information is authentic and packets
cannot be corrupted in transit by adversaries. The
control flow used in the application is depicted in
figure 5. In order to prevent time-outs, a Redundant
Command Generator and a Redundant Response
Generator are used to issue a command or a response.

We choose C# as the environment to implement our
application. The robot SDK available from the
producer was intended to be used in VC++ or Visual
Basic 6. We avoid the use of VB 6.0 since it is out of

date and also we avoided the use of VC++ since it
leads to more work in the implementation. Instead, we
choose to implement the application in C#.

Wait for
Command

time-out Redundant
Command
Generator

Send
Command to

Robot

command received

Wait for
Response

command-send

Send
Response to

Controller

time-out

Redundant
Response
Generatorresponse received

response computed

Send
Command to

Robot

Wait for
Response

command sent

response received

response sent

Send
Command to

Robot

Figure 5. Control flow for the protocol

Using the ActiveX control offered by the producer

in C# is fairly easy, however the control crashed
several times when sensor readings are done, therefore
the use of try/catch structures was needed. Rather late
we found that there is a different software package that
can be used to communicate with the X80 robot hosted
at [22]. This seems to give better results than the one
from the producer and although we didn’t use it here
we plan to use it in some forthcoming applications for
potential improvements.

As for the cryptographic primitives involved, we
have used all the hash functions and message
authentication codes available in .NET in order to
achieve comparative results: RIPEMD, MD5, SHA1,
SHA256, SHA384, SHA512. The following classes
were used: MD5CryptoServiceProvider,
RIPEMD160Managed, SHA1Managed,
SHA256Managed, SHA384Managed,
SHA512Managed, HMACMD5, HMACRIPEMD160,
HMACSHA1, HMACSHA256, HMACSHA384,
HMACSHA512.

We note that the computation of SHA1 with the use
of SHA1CryptoServiceProvider is significantly slower
than for SHA1Managed. Experimental results
regarding the computational performance of these
primitives can be found in the following section. The
communication was implemented over the standard
TCP sockets available in the System.Net.Sockets
namespace.

6. Experimental results

Some experimental results are mandatory in
establishing the communication and computational
performance of the protocol. First, some results on the
cryptographic primitives involved are needed. The
results from tables 1 and 2 show the computational
time, expressed in seconds, for hash functions and
message authentication codes. The computational time
is estimated by computing the function for 610 times
and then computing the arithmetic mean (in every
iteration the new input of the function is the previous
output).

Hash
Function

CPU Intel
T2300@1.66Ghz

CPU Intel
E6750@2.66Ghz

MD5 69.37 10 s−× 65.15 10 s−×

RIPEMD160 62.81 10 s−× 61.56 10 s−×

SHA1 62.03 10 s−× 61.40 10 s−×

SHA-256 63.28 10 s−× 61.87 10 s−×

SHA-384 69.53 10 s−× 64.21 10 s−×

SHA-512 69.68 10 s−× 64.37 10 s−×

Table 1. Computational time for some hash
functions in .NET

H-MAC Intel
T2300@1.66Ghz

Intel
E6750@2.66Ghz

MD5 621.25 10 s−× 611.56 10 s−×

RIPEMD160 69.68 10 s−× 65.15 10 s−×

SHA1 622.18 10 s−× 611.87 10 s−×

SHA-256 610.78 10 s−× 65.78 10 s−×

SHA-384 635.78 10 s−× 615.93 10 s−×

SHA-512 635.93 10 s−× 616.09 10 s−×

Table 2. Computational time for some MAC
Codes in .NET

For the experimental results regarding the protocol

the same hash function that is used for the computation
of the session keys, i.e. the one-way chain, was also
used for the computation of the HMAC. However, the
application is flexible and allows the use of distinct

functions for the computation of the key chain and the
MAC.

In [6], [8] some terminology for evaluating the
performance of communication over Internet for
industrial systems is explained. These definitions,
adopted by NIST (National Institute of Standards and
Technology) and ODVA (Open DeviceNet Vendor
Association), originate from [2], [3]. We will measure
the communication performance by using the Round
Trip Time (RTT), which is the time necessary to
compute a command by the controller, send it to the
controlled process and receive the desired response. In
our application this implies the execution of the 10
steps that are suggested in figure 6. The use of RTT for
measuring the performance of the protocol is needed as
other metrics such as the response latency or the action
latency from [8] will not be enough relevant for the
efficiency of the performance of the protocol. In table
3 the average number of packets per second is given
and also the average closed loop latency resulted from
the previous value (the values are taken for the first 1
minute of run).

Hash

Function for
keys and

MAC

Output
Length
(in bits)

Packets/Second
(Average Value)

Round
Trip Time

MD5 128 64 0.016 s

RIPEMD160 160 56 0.017 s

SHA1 160 61 0.016 s

SHA-256 256 56 0.017 s

SHA-384 384 52 0.019 s

SHA-512 512 50 0.020 s

Table 3. Communication statistics for different
hash functions and MAC codes

For example in the worst case the closed loop
latency is at 0.02 seconds, this is for the SHA512
cryptographic function. We also note that the
minimum and maximum number of packets sent over
each second can vary a lot, and therefore we
considered just the average values for the entire run-
time. These results were achieved in a LAN, but the
application can be tested as well on any other network
that supports TCP/IP communication.

3. Receive new packet from the
controller

4. Test the session key and if correct
establish the authenticity of the

previous command

Remote Controller Remote Controlled Process

9. Receive new packet from the
controlled process

1. Build packet for session i

2. Send packet to the controlled
process

7. Build packet for session i

8. Send packet to the controller

,ic ()
, 1 ,,

A ik i A iMAC c k
+

,ir ()
, 1 ,,

B ik i B iMAC r k
+

5. Send the last authentic command
to the X-80 Robot

10. Test the session key and if
correct establish the authenticity of

the previous response

6. Receive latest response from the
X-80 Robot

Figure 6. Flowchart of the steps involved in
one round trip (for session i)

The results from table 3, point out that it is the size

of the hash functions and MAC that influences the
communication performance. It is easy to observe that
in table 1 the computational time for the SHA-256
function and the corresponding MAC is lower than for
MD5 while in table 3 the best communication
performance was achieved with the MD5 function due
to its reduced output size. Therefore a reduced size for
the output of the hash function is preferable, however
MD5 is known for several weaknesses [19], and it is
unlikely that in the future it will give a sufficient level
of security. However, even for the use of the SHA-512
which gives the largest output, we still get an average
value of 50 packets per second which is much more
than the speed of the robot (for example the robot can
get at most 4fps while we are sending an average of 50
fps). This finally shows that using cryptographic
security is feasible for applications.

7. Performance analysis

A performance analysis for the protocol, based on
the line utilization ratio, is useful in order to establish
the performance of the protocol. First, the time
required for one communication session, which
consists in sending a command and receiving a
response, is the following:

session

r c c c c r r r
ver comp send prop ver comp send prop

T

t t t t t t t t= + + + + + + +
 (1)

Here, ,r c

ver vert t is the time to verify the response and
the command, ,c r

comp compt t is the time to compute the

command and the response, ,c r
send sendt t is the time to

send the command and the response, while ,c r
prop propt t is

the propagation time for the command and the
response. As the protocol is symmetric on both sides,
and time values in each pair are close, fortunately we
can do some simplifications: r c

ver ver vert t t ,
c r

prop prop propt t t , c r
comp comp compt t t ,

c r
send send sendt t t= ≈ . More, as the computation and the

verification of a MAC code require almost the same
amount of time we have:

r c c r
comp ver ver ver comp compt t t t t− . Therefore (1) leads

to:

4 2 2session comp ver send propT t t t−= ⋅ + ⋅ + ⋅ (2)

Now, from this entire time interval sessionT the line is

utilized only for the fraction of time when the
command and responses are actually sent, i.e.:

c r

send send sendT t t= + (3)

By using the same approximations as previously we

get:

2send sendT t≈ ⋅ (4)

Now the line utilization can be easily defined by

using (2) and (4) as:

2
4 2 2

send send

session comp ver send prop

T t
U

T t t t−

⋅
= =

⋅ + ⋅ + ⋅

2
send

comp ver send prop

t
t t t−

=
⋅ + +

 (5)

By reducing with sendt we further get:

1
2

1 prop comp ver

send send

U
t t
t t

−

=
⋅

+ +
 (6)

Practical examples with particular data can be

useful; therefore we proceed with an analysis for three
types of networks: Wide Area Network (WAN), Local
Area Network (LAN) and Wireless Area Network
(WLAN):

 Assume for the WAN a link distance of 10 km
and the speed over optical fiber close to the speed of
light 83 10 /m s× . We get that propagation time is

3
4

8

10 10 0.33 10
3 10propt s s−×

= = ×
×

. At data rates of 1 Gbps

and for a packet of 32 Kb (we consider this as the
average size for the command and response packets)

we have
3

6
9

32 10 32 10
1 10sendt s s−×

= = ×
×

. Now

20.01 10prop

send

t
t

× , let 610 10comp vert s−
− = × and we have

2
0.625comp ver

send

t
t

−⋅
= . It follows from (7) that 0.38U

and the line is only 38% of the time utilized for the
actual communication, the rest of the time the line is
free.

 Assume for the LAN a link distance of 100 m
and the speed over copper media as 82 10 /m s× . We
get that propagation time is

6
8

100 0.5 10
2 10propt s s−= = ×
×

. At data rates of 100

Mbps and a packet of 32 Kb we have
3

3
6

32 10 0.32 10
100 10sendt s s−×

= = ×
×

. Now

31.56 10prop

send

t
t

−× , let 610 10comp vert s−
− = × and we have

32
62.5 10comp ver

send

t
t

− −⋅
= × and therefore it follows from

(7) that 0.94U .
 Assume for the WLAN a link distance of 30 m

for the and the speed close to the speed of light
83 10 /m s× . We get that propagation time is

7
8

30 10
3 10propt s s−= =
×

. At data rates of 10 Mbps and

for a packet of 32 Kb (we consider this as the average
size for the command and response packets) we have

3
3

6

32 10 3.2 10
10 10sendt s s−×

= = ×
×

. Now 631 10prop

send

t
t

−× ,

let 610 10comp vert s−
− = × then we have

32
6.25 10comp ver

send

t
t

− −⋅
= × . Therefore it follows from (7)

that 0.99U and the line is 99% percents of time
utilized.

Let us now assume that in general the time to
compute a cryptographic function takes the average
value of 610 10 s−× , this assumption is correct with
respect to tables 1 and 2. As seen from the examples
above the propagation time varies between 710 s− to

40.33 10 s−× while the data rate varies between 10
Mbps for a wireless network to 1 Gb for optical fiber
which means that for a packet of 32 Kbits the
transmission time is between 33.2 10 s−× and

632 10 s−× . Let us consider that the propagation time
7 410 ,0.33 10propt − −⎡ ⎤∈ ×⎣ ⎦ and the transmission time

6 332 10 ,3.2 10sendt − −⎡ ⎤∈ × ×⎣ ⎦ , the plot in figure 3
illustrates the variation of the line utilization under
these variations.

0.00001

0.00002

0.00003

Propagation Time

0.001

0.002

0.003

Send Time

0.9

0.95Utilization

0.00001

0.00002

0 00003

Propagation Time

Figure 7. Variation of line utilization

The plot from figure 7 let us see that line utilization

is low in the case when propagation time is high and
send time is low, usually this happens on long
communication lines. We can state the following two
conclusions for the case when the line utilization is

low. First, since the line is not utilized other processes
can communicate over the same line, thus the protocol
does not consume the entire bandwidth of the network.
Second, larger packets can be sent on the line without
significantly reducing the packet rates.

8. Conclusions

The use of cryptographic security in industrial
control systems is an obvious demand. In this paper an
authentication protocol based on cryptographic
techniques for a remote controlled system was
proposed and implemented. The experimental results
from our application show that implementing
cryptography is feasible, and leads to satisfactory
transfer rates for the addressed scenario.

The main objective of this paper was to establish
the influence of the computational time and
communication overhead induced by the use of
cryptography on the speed of the commands and
responses sent between the remote controller and the
remote controlled process. As a conclusion on this, we
remark that the computational time is not a problem on
currently used computers and the communication
overhead induced by the use of cryptography is in the
order of several hundred bits per packet. As the
simplest message authentication code requires at least
128 bits, and over long term, to increase security level,
it is likely that 256 bits will be needed, we believe that
such an overhead must be accepted. At least, for our
scenario the use of message authentication codes of
even 512 is acceptable.

The performance analysis from section 7 lets us
conclude that over long distances with large
propagation delays the line is not heavily utilized and
other processes can communicate over the same line as
well. Also, larger packets can be sent on the line
without significantly reducing the packet rates.

Since the X-80 robot is a slow process, where time
constraints are not a great issue, as future work the use
of such an authentication protocol in a more restrictive
environment, where time constraints are a serious
issue, may be more interesting to address. The
proposed protocol is generic and therefore it can be
used in other control scenarios as well without major
modifications.

Acknowledgements: This work was partially
supported by national research grant PNCDI PN II -
940/2008.

9. References

[1] F. Bergadano, D. Cavagnino, B. Crispo,
“Individual Authentication in Multiparty Communications”.
Computer & Security, Elsevier Science, vol. 21 n. 8, 2002,
pp.719-735.

[2] S. Bradner, “Benchmarking Terminology for
Network Interconnection Devices”, RFC 1242, 1991.

[3] S. Bradner, J. McQuaid, “Benchmarking
Methodology for Network In-terconnection Devices”, RFC
2544, 1999.

[4] D. Coppersmith and M. Jakobsson, “Almost
Optimal Hash Sequence Traversal”, Proceedings of the Fifth
International Conference on Finan-cial Cryptography, pp.
102-119, 2002.

[5] D. Dzung, M. Naedele, T.P. Hoff, M. Crevatin,
“Security for Industrial Communication Systems”,
Proceedings of the IEEE, vol. 93, no. 6, 2005.

[6] J. Falco, J. Gilsinn, K. Stouffer, “IT Security for
Industrial Control Sys-tems: Requirements Specification and
Performance Testing”, NDIA Homeland Security
Symposium & Exhibition, 2004.

[7] M. Fischlin, “Fast Verification of Hash Chains”,
The Cryptographers Track at the RSA Conference, pp. 339-
352, 2004.

[8] J. Gilsinn, “Real-Time I/O Performance Metrics
and Tests for Industrial Ethernet”, ISA Automation West,
2004.

[9] B. Groza, “Using one-way chains to provide
message authentication without shared secrets”, Second
International Workshop on Security, Pri-vacy and Trust in
Pervasive and Ubiquitous Computing (SecPerU 2006), IEEE,
2006.

[10] Groza B., Dragomir T.L., Using a Cryptographic
Authentication Protocol for the Secure Control of a Robot
over TCP/IP, IEEE-TTTC International Conference on
Automation, Quality & Testing, Robotics, AQTR 2008
(THETA 16).

[11] B. Groza, T.-L. Dragomir, "On the use of one-way
chain based authenti-cation in secure control systems",
Second International Conference on Availability, Reliability
and Security, pp. 1214-1221, IEEE Comp. Soc., 2007.

[12] N. Haller, C. Metz, P. Nesser, M. Straw, “A One-
Time Password Sys-tem”, RFC 2289, Bellcore, Kaman
Sciences Corporation, Nesser and Nesser Consulting, 1998.

[13] O. C. Imer, S. Yuksel, T. Basar, “Optimal control
of lti systems over unreliable communication links”,
Automatica, (42), 2006.

[14] L. Lamport, “Password Authentication with
Insecure Communication”, Communication of the ACM, 24,
770-772, 1981.

[15] C.J. Mitchell and L. Chen, “Comments on the
S/KEY User Authentica-tion Scheme”, ACM Operating
Systems Review, pp. 12-16, 1996.

[16] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D.
Tygar, “SPINS: Security Protocols for Sensor Network”,
Proceedings of Seventh Annual Interna-tional Conference on
Mobile Computing and Networks MOBICOM, 2001.

[17] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “The
TESLA Broadcast Au-thentication Protocol”, In
CryptoBytes, 5:2, Summer/Fall, pp. 2-13, 2002.

[18] Y. Sella, “On the Computation-Storage Trade-offs
of -Hash Chain Tra-versal”, Proceedings of the Seventh
International Conference on Finan-cial Cryptography, pp.
270-285, 2003.

[19] Xiaoyun Wang, Hongbo Yu, “How to Break MD5
and Other Hash Func-tions”, Advances in Cryptology -
EUROCRYPT 2005, 24th Annual In-ternational Conference
on the Theory and Applications of Cryptographic
Techniques, pp. 19-35, 2005.

[20] A. K. Wright, J. A. Kinast, J. McCarty, “Low-
Latency Cryptographic Protection for SCADA
Communications”, Applied Cryptography and Network
Security, Second International Conference, ACNS, pp. 263-
277, 2004.

[21] Dr. Robot Inc., Developer and manufacturer of
mobile robotics technol-ogy, http://www.drrobot.com/.

[22] X80 WiRobot, page maintained by T. Taylor
http://sky.fit.qut.edu.au/%7Etaylort2/X80/.

