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Abstract 

 
An authentication protocol, based on cryptographic 

techniques, is implemented and used in the 
communication necessary for the control of a mobile 
robot over a public network. The robot is connected 
via an 802.11 wireless network to a local computer; 
however the control of the robot is done from a remote 
host over TCP/IP and in this way the information 
involved in the control scenario may be exposed to 
several security risks. The application fits in the 
context of a remote controlled system and the interest 
in using cryptographic techniques in this area has 
drastically increased in the last years. Instead of using 
standardized solutions, such as the SSL, we use as a 
new approach an authentication protocol based on 
one-way chains. The advantage of this approach is 
that only simple cryptographic primitives, such as hash 
functions and message authentication codes, are 
needed. Experimental results are presented, and the 
results show that it is feasible to use such a protocol 
since transfer rates and computational overhead are 
kept at the desired level for the control scenario. An 
analysis of the performance of the protocol based on 
the line utilization rate is done. Also, we give a partial 
solution for the treatment of communication delays. 
 
1. Introduction 
 

As pointed out by many recent papers the use of 
cryptography in the field of control systems is a major 
challenge, as these systems need to communicate over 
public networks where information is exposed to 
adversaries [5], [6]. The difficulty in using 
cryptographic techniques in control systems is twofold, 
first from the requirements over the equipments and 
second from the involvement in the dynamics and 
accuracy of the control system itself. Therefore, the 
first problem that must be solved is that the use of 
cryptography requires computational power or 
communication resources that may not be available. 
For this purpose different protocols were proposed, 
such as for example [20] which can be used to assure 
cryptographic security on the communication line 
between Supervisory Control and Data Aquisition 

(SCADA) equipments. As for the second kind of 
problems, the issue that must be solved is that 
communication over the public networks, or over any 
unreliable network, can introduce communication 
delays, or even uncertainties regarding the arrival of 
commands and responses. For this purpose several 
control techniques were developed that can deal with 
such kind of uncertainties, an example is in [13].  

Our interest is the first type of concern, namely the 
development of efficient cryptographic protocols, 
which require low computational power. We avoid the 
use of standardized solutions, such as the TLS or SSL 
as we are not interested in an encrypted 
communication line to assure the confidentiality of the 
information and instead we are interested in assuring 
the authenticity of information. It is commonly 
acknowledged that in industrial control systems 
authenticity is much more important than 
confidentiality as information can not be used as long 
as there is no guarantee over its source and freshness. 
For this purpose we propose and use a class of 
authentication protocols based on one-way chains 
which significantly differs from the SSL paradigm. 
The merit of this approach is first as an experiment 
from which we can draw certain conclusions on the 
efficiency of such protocols. And second, the use of 
such a protocol does not require an asymmetric 
encryption function, as the SSL. Therefore this 
approach can be used where asymmetric encryption 
has to be avoided and only simple one-way functions 
are affordable. 

This paper extends our previous result from [10]. In 
addition to [10] we will also make an analysis of the 
protocol performance based in line utilization rate. 
More, we will give a potential solution for the 
treatment of communication delays which are caused 
by the unreliability of the network.  

The paper is organized as follows. In section 2 we 
describe the application setting, and in section 3 a 
solution for dealing with delays is outlined. The 
cryptographic protocol is presented in section 4. 
Implementation details are in section 5, while in 
section 6 we give some experimental results. Section 7 
holds a performance analysis for the protocol while 
section 8 holds the conclusions of our paper. 



 
2. Application setting 
 

An X80 robot connected to a local computer via a 
WiFi 802.11 communication link is used. Several 
relevant technical details about the robot are resumed 
in what follows; the manufacturer website can be 
found at [21] for more details on this device. 

The robot stands on two wheels with 18 cm 
diameter, each of them connected to a 12V DC-motor 
that can be controlled independently. The built-in 
commands allow three types of control for the two DC 
motors: open loop Pulse-Width Modulation (PWM), 
closed loop position control and closed loop velocity 
control. The regulators for the wheels are of 
proportional–integral–derivative type (PID), the values 
for the PID parameters, i.e. the , ,P I Dk k k  values, can 
be set by the use of built-in commands. We have used 
for the PID the values that are also used in the demo 
application given by the producer. 

The robot is equipped with the following type of 
sensors: ultrasonic sensors, infrared range sensors, 
human detection sensors, temperature sensors. For our 
application we have used only the three ultrasonic 
sensors from the front of the robot. Also, the robot has 
a video camera which provides images at a resolution 
of 352x288 pixels; the producer indicates a rate of at 
most 4 fps for the webcam (in our application we 
acquired new images from the robot at a rate of  1 fps). 
The camera is attached to a mobile head which can be 
moved vertically and horizontally by a servo-motor. 
Other devices are attached to the robot, such as a 
microphone and a speaker; further details can be found 
in the technical documentation from [21]. 

As depicted in figure 1 the robot is connected to a 
local computer, which plays the role of the local 
controller, via a wireless router. This computer also 
plays the role of a server and accepts a connection 
from a remote host. The communication between the 
robot and the application from the local computer is 
done via a software gateway, provided with the X80 
installation kit. The producer indicates that commands 
can be sent to the robot over this wireless link at rates 
exceeding 10 Hz. The robot has a web-interface which 
can be easily used to configure the robot. Since the 
wireless connection between the robot and the local 
computer supports WEP security, we are not interested 
in assuring the security on this side. What we are 
interested is to assure the security in the 
communication between a remote computer and the 
local computer to which the robot is connected. For 
this purpose we build a client application which we run 
on a notebook in order to connect over TCP/IP to the 

server and send commands to the robot. The client 
application plays the role of a remote controller. In 
such a scenario the use of cryptography is needed since 
packets between the client and the server travel over 
public networks and can be easily intercepted and 
modified by malicious adversaries. Details on the 
client and server applications are given in section 4.  

In figure 2 a view over the application as a control 
system is presented. The main purpose of the 
application is to control the movements of the robot 
between some target points. The control is based on 
the information that is received from the environment 
via the above mentioned sensors. For the tests that 
were done in section 5 the control was done manually 
from the application interface by letting the robot to 
perform some basic movements, however any discrete 
control algorithm can be implemented as well. The 
objective of the paper was the development of the 
secure communication protocol and not of the control 
algorithm who can be further implemented in an 
abstract function from the source code.  

 
 

 
 
Figure 1. Application setting 

 
 

 
 

Figure 2. Application setting as a control 
system 

 
 

3. Dealing with communication delays 
 

An important issues in the proposed control 
scenario are the communication delays introduced by 
the communication over TCP/IP. Here we give a 
partial treatment on this issue. 

The structure depicted in figure 3 corresponds to a 
remote control system where the delays of the 



commands and responses are depicted as se τ−  and 
' se τ−  respectively. These delays may be different, first 

because they can have different causes and second 
because the size of the command and responses may be 
different as well. These delays make the 
correspondence ( ) ( )'u t u t τ= −  and ( ) ( )' 'y t y t τ= − . 

Let { }1 min , 'τ τ τ=  and { }2 max , 'τ τ τ= . We can 
observe that when the communication starts, for 1t τ<  
there is no communication between the two sides, 
while for [ ]1 2,t τ τ∈  there is only a partial 
communication, either some commands, either some 
responses were received. Only for 2t τ>  there is a 
complete full-duplex communication, both commands 
and responses are received, with the particular delays.  

 

 
 

Figure 3. Application setting as a control 
system in the presence of delays 

 
 

 
 

Figure 4. Application setting as a control 
system with signal generators for dealing with 
delays 

 
In order to deal with the inactivity periods [ ]10,τ  

and [ ]1 2,τ τ we can use the structure depicted in figure 
4 in which G and G’ are two auxiliary generators to 
compensate delays. In this case ''u  and respectively 

''y  will be the commands and responses in the case 
when there is no signal. The G and G’ generators may 
have multiple purposes: to initialize the remote 
controller in a predictive state for the process, to set 
the controlled process in a particular point, to predict 
the state of the controller etc. The dotted line in figure 
4 denotes that the generators and the remote controller 

must be synchronized in some way and subsequently 
they have to work synchronously. 

This treatment solves only the problems related to 
initialization, further, different delays can appear as 
well on the communication channel and the same 
generators can be used to take action in the case when 
there are some time-outs. In the absence of control 
signals, commonly used values for this purpose in the 
G generator are “zero control” and “last available 
command”. 
 
4. The cryptographic protocol 
 

One-way chain based authentication protocols were 
initially proposed by Lamport [14] in order to 
authenticate a user to a remote system while avoiding 
the weaknesses of password based authentication. 
However, the practical use of Lamport’s scheme in the 
S-Key system proposed in [12] resulted in an insecure 
system which has several weaknesses [15]. Later, one-
way chains were used to assure the authenticity of 
information that is broadcasted to large number of 
receivers by using elements of one-way chains as keys 
for Message Authentication Codes (MAC) [17], [16], 
[1]. The solution proposed by Perrig et al. [17] has the 
great merit that MAC codes can be used for sending 
information to multiple receivers although the same 
authentication key is used. This is due to the use of 
time synchronization since otherwise MAC codes 
require a distinct secret shared key between the sender 
and each receiver which leads to an inefficient protocol 
due to the large number of keys. The same could be 
achieved by the use of digital signatures; however 
digital signatures can be from hundreds to thousand 
times more computational intensive then a MAC. 
Therefore, due to its computational efficiency, this 
protocol was also used in constrained environments 
with low computational power and communication 
abilities such as wireless sensor networks [16]. Also an 
analogous solution was proposed in [1] which avoids 
the use of time synchronization by requiring a response 
from the client. As pointed out in [11] this solution can 
be relevant in the context of a control system, due to 
the nature of such a scenario which is essentially based 
on a feed-back between the controller and the 
controlled process. In what follows we will study the 
practical implementation of such a protocol.  

 More motivation on the use of this class of 
protocols may be useful.  The most important thing is 
that at the core of such protocols only a simple one-
way function can be used; in our case a hash function. 
This is significantly different from the SSL paradigm, 
which uses the hybrid encryption paradigm (the use of 



a public key to encrypt a secret key, that is later used 
for the encryption of the messages) and requires the 
use of an asymmetric encryption mechanism. 
Therefore the proposed protocol may be used in the 
absence of such an encryption mechanism. Also, as 
pointed out by the TESLA protocol [17], simple MAC 
codes can be used to authenticate information for a 
large number of receivers by using the same key; 
therefore a solution based on one-way chains is largely 
scalable. However, in this paper we will not use a 
protocol based on time-synchronization, and all that 
we use is a protocol based on challenge response. This 
is first because we do not need a large number of 
receivers, and all that we need is a one-to-one 
communication, and second because it is expected that 
the time-synchronization based protocol while largely 
scalable, will have a fixed send-receive rate. In 
contrast, the challenge-response based protocol will 
give flexible rates and an increase in performance. 
Therefore, we leave the implementation of the protocol 
based on time synchronization as future work. 

The structure of the communication sessions for the 
protocol is as follows: 

 
 
Session i   
A → B : ( )

, 1 ,, ,
A ii k i A ic MAC c k

+
 

B → A : ( )
, 1 ,, ,

B ii k i B ir MAC r k
+

 

 
Here A and B are the communication participants. A 

plays the role of the controller, in our application it is 
also the role of the client which can command the 
robot remotely, while B plays the role of the controlled 
process, which in our application is also the server to 
which the robot is connected. The messages exchanged 
are  ,A ic , ,B ir  which represent the command and the 
response respectively, and MAC is a message 
authentication code. The keys for each entity are 
denoted by ,entity ik , here { },entity A B∈ , and is 

computed as ( ), ,0
n i

entity i entityk Hash k−=  where ,0entityk  is 

some secret random value generated by each entity, 
Hash is a hash function and n is the number of 
communication sessions which must be chosen in 
advance, details on the protocol can be found in [9], 
[11]. It is easy to observe that the keys form a hash 
chain. For the efficient computation of such a chain 
several optimization techniques were proposed [4], [7], 
[18]. However, we did not use them in our application 
as they are intended for constrained environments and 
the computation and storage of the entire chain was not 
a problem on the computers that we used. 

We note that the only attack that an adversary can 
launch on this protocol is to delay packets, for this 
purpose the server application will halt the robot if no 
authentic packet is received after a delay of 1 second. 
Even when new commands are not sent from the 
controller to the controlled process, the application still 
communicates over the previously described protocol, 
by sending blank command packets; this is needed also 
to update the information that is received from robot 
sensors on the remote controller’s side. 

We now proceed by giving details on the 
commands and responses structure from our 
application. The command message has the following 
structure: the first byte indicates the command code; 
each command has a unique identification number 
which corresponds to the number of the built-in 
command from the documentation of the robot [21]. A 
second byte follows which gives the response code; we 
used only the value 128, which indicates in our 
application that a response as described in what 
follows is needed. Another 14 bytes are appended 
which represent the values for cmd1, cmd2, cmd3, 
cmd4, cmd5, cmd6, time - this follows the general 
structure for a command that is sent to the robot 
according to the documentation of the robot.  

As for the responses from the server which hosts 
the robot, each response packet includes the following 
information: the values of the 3 sonar sensors and the 2 
encoders from the wheels, each of these values has 2 
bytes, and the value of the last image acquired from the 
camera on the robot head, which consists in 76086 
bytes. A first byte in the response message indicates 
the type of the response, this byte corresponds to the 
response requested in the command, and for the 
moment only responses with this structure were used. 
A second byte is reserved for future use, just for 
symmetry with the structure of the command message. 
This leads to a size of 76092 bytes for each response 
value. 

The following is the detailed structure of the 
messages from the authentication protocol: 

 
Session i  
A → B : 

( )6i i 1c cmdcode ,cmd ,time−= , ( )
, 1 ,,

A ik i A iMAC c k
+

 

B → A : 
( )3 2i 1 1r sonar ,encoder ,image− −= ( )

, 1 ,,
B ik i B iMAC r k

+
 

 
It is easy to observe that the protocol introduces a 

delay of 1 session for the authentication, this means 
that the values received in session i  can be checked 
for authenticity only in session 1i + , when the 



corresponding key of the MAC is received. This 
disadvantage must be accepted since this is the only 
way to avoid the use o a secret key between the two 
participants. The alternative solution, which uses time 
synchronization as in [16], [17], introduces as well an 
authentication delay equal to the key disclosure period. 

It should be also stated, that such a protocol 
requires an initialization stage in which the values of  

,0Ak  and ,0Bk  are securely exchanged between the two 
entities – these values are not confidential, however 
each entity must be ensured that the values originate 
from the respective communication participant and that 
they are new.  

Basically, any key exchange protocol can be used 
for this purpose; in particular we have used a digital 
signature. We underline that indeed this signature is a 
public key primitive; however digital signatures can 
also be computed by using symmetric functions. 
Digital signatures that are built on symmetric 
primitives are also called one-time signatures, their use 
in practice is limited mostly because they do not offer 
the same flexibility as number theoretic based 
signatures such as RSA or DSA. Still, one can 
implement a digital signature based on simple one-way 
functions, therefore we underline that this protocol can 
be based entirely on one-way functions. Also as future 
work we intend to use such signatures on some low 
computational power microcontrollers for the 
implementation of a similar protocol. 
 
5. Implementation details 
 

 A client-server application was developed. The 
client application can be used to connect over TCP/IP 
to the server application hosted on the same computer 
to which the robot is linked via the application 
gateway offered by the producer. The client is able to 
command the robot remotely, by sending commands 
(the basic movements are implemented: forward, 
backward and turns to left or right). Also, the images 
that are collected from the robot are sent to the client. 
We underline that all this information is send with the 
authentication protocol described in section 3. 
Therefore al information is authentic and packets 
cannot be corrupted in transit by adversaries. The 
control flow used in the application is depicted in 
figure 5. In order to prevent time-outs, a Redundant 
Command Generator and a Redundant Response 
Generator are used to issue a command or a response. 

We choose C# as the environment to implement our 
application. The robot SDK available from the 
producer was intended to be used in VC++ or Visual 
Basic 6. We avoid the use of VB 6.0 since it is out of 

date and also we avoided the use of VC++ since it 
leads to more work in the implementation. Instead, we 
choose to implement the application in C#.  
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Figure 5. Control flow for the protocol 
 
Using the ActiveX control offered by the producer 

in C# is fairly easy, however the control crashed 
several times when sensor readings are done, therefore 
the use of try/catch structures was needed. Rather late 
we found that there is a different software package that 
can be used to communicate with the X80 robot hosted 
at [22]. This seems to give better results than the one 
from the producer and although we didn’t use it here 
we plan to use it in some forthcoming applications for 
potential improvements.  

As for the cryptographic primitives involved, we 
have used all the hash functions and message 
authentication codes available in .NET in order to 
achieve comparative results: RIPEMD, MD5, SHA1, 
SHA256, SHA384, SHA512. The following classes 
were used: MD5CryptoServiceProvider, 
RIPEMD160Managed, SHA1Managed, 
SHA256Managed, SHA384Managed, 
SHA512Managed, HMACMD5, HMACRIPEMD160, 
HMACSHA1, HMACSHA256, HMACSHA384, 
HMACSHA512.  

We note that the computation of SHA1 with the use 
of  SHA1CryptoServiceProvider is significantly slower 
than for SHA1Managed. Experimental results 
regarding the computational performance of these 
primitives can be found in the following section. The 
communication was implemented over the standard 
TCP sockets available in the System.Net.Sockets 
namespace. 



 
6. Experimental results  
 

Some experimental results are mandatory in 
establishing the communication and computational 
performance of the protocol. First, some results on the 
cryptographic primitives involved are needed. The 
results from tables 1 and 2 show the computational 
time, expressed in seconds, for hash functions and 
message authentication codes. The computational time 
is estimated by computing the function for 610  times 
and then computing the arithmetic mean (in every 
iteration the new input of the function is the previous 
output).  

 
 

Hash 
Function 

CPU Intel 
T2300@1.66Ghz 

CPU Intel 
E6750@2.66Ghz 

MD5 69.37 10 s−×  65.15 10 s−×  

RIPEMD160 62.81 10 s−×  61.56 10 s−×  

SHA1 62.03 10 s−×  61.40 10 s−×  

SHA-256 63.28 10 s−×  61.87 10 s−×  

SHA-384 69.53 10 s−×  64.21 10 s−×  

SHA-512 69.68 10 s−×  64.37 10 s−×  

 
Table 1. Computational time for some hash 
functions in .NET 

 
 

H-MAC  Intel 
T2300@1.66Ghz 

Intel 
E6750@2.66Ghz 

MD5 621.25 10 s−×  611.56 10 s−×  

RIPEMD160 69.68 10 s−×  65.15 10 s−×  

SHA1 622.18 10 s−×  611.87 10 s−×  

SHA-256 610.78 10 s−×  65.78 10 s−×  

SHA-384 635.78 10 s−×  615.93 10 s−×  

SHA-512 635.93 10 s−×  616.09 10 s−×  

 
Table 2. Computational time for some MAC 
Codes in .NET 

 
For the experimental results regarding the protocol 

the same hash function that is used for the computation 
of the session keys, i.e. the one-way chain, was also 
used for the computation of the HMAC. However, the 
application is flexible and allows the use of distinct 

functions for the computation of the key chain and the 
MAC. 

In [6], [8] some terminology for evaluating the 
performance of communication over Internet for 
industrial systems is explained. These definitions, 
adopted by NIST (National Institute of Standards and 
Technology) and ODVA (Open DeviceNet Vendor 
Association), originate from [2], [3]. We will measure 
the communication performance by using the Round 
Trip Time (RTT), which is the time necessary to 
compute a command by the controller, send it to the 
controlled process and receive the desired response. In 
our application this implies the execution of the 10 
steps that are suggested in figure 6. The use of RTT for 
measuring the performance of the protocol is needed as 
other metrics such as the response latency or the action 
latency from [8] will not be enough relevant for the 
efficiency of the performance of the protocol. In table 
3 the average number of packets per second is given 
and also the average closed loop latency resulted from 
the previous value (the values are taken for the first 1 
minute of run).  

 
Hash 

Function for 
keys and 

MAC 

Output 
Length 
(in bits) 

 

Packets/Second 
(Average Value) 

Round 
Trip Time 

MD5 128 64 0.016 s 

RIPEMD160 160 56 0.017 s  

SHA1  160 61 0.016 s 

SHA-256  256 56 0.017 s 

SHA-384 384 52 0.019 s 

SHA-512 512 50 0.020 s 

 
Table 3. Communication statistics for different 
hash functions and MAC codes 
 

For example in the worst case the closed loop 
latency is at 0.02 seconds, this is for the SHA512 
cryptographic function. We also note that the 
minimum and maximum number of packets sent over 
each second can vary a lot, and therefore we 
considered just the average values for the entire run-
time. These results were achieved in a LAN, but the 
application can be tested as well on any other network 
that supports TCP/IP communication.  
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Figure 6. Flowchart of the steps involved in 
one round trip (for session i ) 

 
The results from table 3, point out that it is the size 

of the hash functions and MAC that influences the 
communication performance. It is easy to observe that 
in table 1 the computational time for the SHA-256 
function and the corresponding MAC is lower than for 
MD5 while in table 3 the best communication 
performance was achieved with the MD5 function due 
to its reduced output size. Therefore a reduced size for 
the output of the hash function is preferable, however 
MD5 is known for several weaknesses [19], and it is 
unlikely that in the future it will give a sufficient level 
of security. However, even for the use of the SHA-512 
which gives the largest output, we still get an average 
value of 50 packets per second which is much more 
than the speed of the robot (for example the robot can 
get at most 4fps while we are sending an average of 50 
fps). This finally shows that using cryptographic 
security is feasible for applications. 

 

 
 
7. Performance analysis 
 

A performance analysis for the protocol, based on 
the line utilization ratio, is useful in order to establish 
the performance of the protocol. First, the time 
required for one communication session, which 
consists in sending a command and receiving a 
response, is the following:  

 
session

r c c c c r r r
ver comp send prop ver comp send prop

T

t t t t t t t t= + + + + + + +
    (1) 

 
Here, ,r c

ver vert t  is the time to verify the response and 
the command, ,c r

comp compt t  is the time to compute the 

command and the response, ,c r
send sendt t  is the time to 

send the command and the response, while ,c r
prop propt t  is 

the propagation time for the command and the 
response. As the protocol is symmetric on both sides, 
and time values in each pair are close, fortunately we 
can do some simplifications: r c

ver ver vert t t , 
c r

prop prop propt t t , c r
comp comp compt t t , 

c r
send send sendt t t= ≈ . More, as the computation and the 

verification of a MAC code require almost the same 
amount of time we have: 

r c c r
comp ver ver ver comp compt t t t t− . Therefore (1) leads 

to: 
 

4 2 2session comp ver send propT t t t−= ⋅ + ⋅ + ⋅         (2) 
 
Now, from this entire time interval sessionT  the line is 

utilized only for the fraction of time when the 
command and responses are actually sent, i.e.:  

 
c r

send send sendT t t= +          (3) 
 
By using the same approximations as previously we 

get: 
 

2send sendT t≈ ⋅           (4) 
 
Now the line utilization can be easily defined by 

using (2) and (4) as: 
 

2
4 2 2

send send

session comp ver send prop

T t
U

T t t t−

⋅
= =

⋅ + ⋅ + ⋅
  



2
send

comp ver send prop

t
t t t−

=
⋅ + +

         (5) 

 
By reducing with sendt  we further get: 
 

1
2

1 prop comp ver

send send

U
t t
t t

−

=
⋅

+ +
        (6) 

 
Practical examples with particular data can be 

useful; therefore we proceed with an analysis for three 
types of networks: Wide Area Network (WAN), Local 
Area Network (LAN) and Wireless Area Network 
(WLAN): 

 Assume for the WAN a link distance of 10 km 
and the speed over optical fiber close to the speed of 
light 83 10 /m s× . We get that propagation time is 

3
4

8

10 10 0.33 10
3 10propt s s−×

= = ×
×

. At data rates of 1 Gbps 

and for a packet of 32 Kb (we consider this as the 
average size for the command and response packets) 

we have 
3

6
9

32 10 32 10
1 10sendt s s−×

= = ×
×

. Now 

20.01 10prop

send

t
t

× , let 610 10comp vert s−
− = ×  and we have 

2
0.625comp ver

send

t
t

−⋅
= . It follows from (7) that  0.38U  

and the line is only 38% of the time utilized for the 
actual communication, the rest of the time the line is 
free. 

 Assume for the LAN a link distance of 100 m 
and the speed over copper media as 82 10 /m s× . We 
get that propagation time is 

6
8

100 0.5 10
2 10propt s s−= = ×
×

. At data rates of 100 

Mbps and a packet of 32 Kb we have 
3

3
6

32 10 0.32 10
100 10sendt s s−×

= = ×
×

. Now 

31.56 10prop

send

t
t

−× , let 610 10comp vert s−
− = ×  and we have 

32
62.5 10comp ver

send

t
t

− −⋅
= ×  and therefore it follows from 

(7) that  0.94U .  
 Assume for the WLAN a link distance of 30 m 

for the and the speed close to the speed of light 
83 10 /m s× . We get that propagation time is 

7
8

30 10
3 10propt s s−= =
×

. At data rates of 10 Mbps and 

for a packet of 32 Kb (we consider this as the average 
size for the command and response packets) we have 

3
3

6

32 10 3.2 10
10 10sendt s s−×

= = ×
×

. Now 631 10prop

send

t
t

−×  , 

let 610 10comp vert s−
− = ×  then we have 

32
6.25 10comp ver

send

t
t

− −⋅
= ×  . Therefore it follows from (7) 

that  0.99U  and the line is 99% percents of time 
utilized. 

Let us now assume that in general the time to 
compute a cryptographic function takes the average 
value of 610 10 s−× , this assumption is correct with 
respect to tables 1 and 2. As seen from the examples 
above the propagation time varies between 710 s−  to 

40.33 10 s−×  while the data rate varies between 10 
Mbps for a wireless network to 1 Gb for optical fiber 
which means that for a packet of 32 Kbits the 
transmission time is between 33.2 10 s−×  and 

632 10 s−× . Let us consider that the propagation time  
7 410 ,0.33 10propt − −⎡ ⎤∈ ×⎣ ⎦  and the transmission time 

6 332 10 ,3.2 10sendt − −⎡ ⎤∈ × ×⎣ ⎦ , the plot in figure 3 
illustrates the variation of the line utilization under 
these variations. 
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Figure 7. Variation of line utilization 

 
The plot from figure 7 let us see that line utilization 

is low in the case when propagation time is high and 
send time is low, usually this happens on long 
communication lines. We can state the following two 
conclusions for the case when the line utilization is 



low. First, since the line is not utilized other processes 
can communicate over the same line, thus the protocol 
does not consume the entire bandwidth of the network. 
Second, larger packets can be sent on the line without 
significantly reducing the packet rates.  

 
8. Conclusions 
 

The use of cryptographic security in industrial 
control systems is an obvious demand. In this paper an 
authentication protocol based on cryptographic 
techniques for a remote controlled system was 
proposed and implemented. The experimental results 
from our application show that implementing 
cryptography is feasible, and leads to satisfactory 
transfer rates for the addressed scenario.  

The main objective of this paper was to establish 
the influence of the computational time and 
communication overhead induced by the use of 
cryptography on the speed of the commands and 
responses sent between the remote controller and the 
remote controlled process. As a conclusion on this, we 
remark that the computational time is not a problem on 
currently used computers and the communication 
overhead induced by the use of cryptography is in the 
order of several hundred bits per packet. As the 
simplest message authentication code requires at least 
128 bits, and over long term, to increase security level, 
it is likely that 256 bits will be needed, we believe that 
such an overhead must be accepted. At least, for our 
scenario the use of message authentication codes of 
even 512 is acceptable.  

The performance analysis from section 7 lets us 
conclude that over long distances with large 
propagation delays the line is not heavily utilized and 
other processes can communicate over the same line as 
well. Also, larger packets can be sent on the line 
without significantly reducing the packet rates. 

Since the X-80 robot is a slow process, where time 
constraints are not a great issue, as future work the use 
of such an authentication protocol in a more restrictive 
environment, where time constraints are a serious 
issue, may be more interesting to address. The 
proposed protocol is generic and therefore it can be 
used in other control scenarios as well without major 
modifications. 
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