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Rezumat

Tema lucrarii de diploma consta in realizarea unui compilator pentru un limbaj de programare
de nivel inalt, destinat in special aplicatiilor “hard real-time”, numit Timing Specification Lan-

guage TSD, precum si rezolvarea unei probleme de conducere utilizand acest limbaj.

Rezolvarea unei probleme de conducere consta din doua etape: (1)inginerul automatist
prelucreaza ecuatiile diferentiale, care descriu din punct de vedere fizic procesul care urmeaza
sa fie condus, utilizand programe ca Matlab si (2)inginerul programator implementeaza algorit-
mul de reglare pe o anumita platforma (prin platforma se intelege o anumita configuratie hard
impreuna cu sistemul de operare in timp real). Ceea ce trebuie sa faca un inginer automa-
tist este: modelarea procesului si a perturbatiilor, obtinerea si optimizarea legii de reglare si
validarea functionalitatii si performatelor sistemului de reglare automat (SRA) prin analiza si
simulare. Dupa ce regulatorul a fost proiectat, el trebuie implementat pe o anumita platforma
de catre un inginer programator. In mod normal inginerul programator descompune activitatile
computationale necesare in taskuri, seteaza prioritatilor pentru taskuri, astfel incat sa indeplin-
easca conditiile de timp-real pentru un algoritm de dispecerizare dat si o configuratie hardware

data, dar si asigura un nivel de toleranta la erori, prin reproducerea si corectarea erorilor.

TSLasigura un nivel intermediar de abstractizare, care 1) permite inginerului program-
ator sa comunice mai eficient cu inginerul automatist si 2) apropie mai mult implementarea de
modelul matematic al regulatoruluiTSL defineste o arhitectura soft care permite separarea
functionalitatii de timing. Functionalitatea si timing-ul sunt suficiente pentru a asigura, ca im-
plementarea este consistenta relativ la modelul matematic. Pe de alta parte, permite inginerului
programator sa nu isi faca griji in ceea ce priveste performantele echipamentului hardware si
algoritmului de dispecerizare, atunci cand discuta cu inginerul automatist. Dupa ce programul

TSLa fost scris, ceea ce ii mai ramane de facut iniginerului programator este sa implementeze



programul pe o platforma data, TfSLacest pas este total decuplat de primul si se poate executa
fara ca inginerul programator sa mai discute cu inginerul automatist.

TSLeste de fapt o extensie a limbajul@iotto. Giotto se bazeaza pe un model de
taskuri numit LET (Logical Execution Time); in acest model timpul logic de terminare este
specificat in momentul in care taskul este eliberat. lesirile taskului sunt disponibile numai dupa
timpul de terminare, chiar daca executia taskului s-a incheiat mai dev(@ioko are trei pro-
prietati importante: 1)“time and value determinism”, 2)“switchability”, si 3) “schedulability”.
“Time determinism” inseamna ca senzorii sunt cititi, iar elementele de executie sunt scrise la
momente de timp predeterminate. “Value determinism” inseamna ca: dandu-se o secventa de
valori pentru senzori, rezulta o secventa de valori pentru elementele de executie, care este in
mod unic determinata de program si nu depinde de modul in care taskurile sunt dispecerizate.
“Switchability” este posibilitatea de a trece de la un mod la altul. “Schedulability” inseamna
ca toate taskurile care au fost eliberate isi vor termina executia inainte de expirarea intervalului
de timp alocat. Totudiotto are si cateva limitari: prima ar fi aceea ca momentul de timp in
care este eliberat un task si cel in care se termina sunt definite implicit prin perioada taskului
si a doua limitare este ca toate taskurile sunt LET-uri si nu exista posibilitatea de a avea taskuri
clasice cu constrangeri de precedenta specificate de dependente ale intrarilor si iesirilor.

Pentru a elimina cele doua neajunsuri ale@iotto, a fost definitTSL, care este o
extensie a primului limbaj. In acest nou limbaj a fost generalizat conceptul de task LET introdus
in Giotto si a fost combinat cu taskuri care au constrangeri de precedenta.

Un task LET generalizat este nunaihichored taskmomentul in care taskul este elib-
erat si cel in care el trebuie sa se termine sunt specificate prin, “release time” specificat ca si
un offset relativ la perioada taskului, respectiv “termination time” este specificat ca fiind sfar-
situl perioadei taskului. Intrarile taskului sunt citite in momentul in care taskul este eliberat,
iar iesirile sunt scrise in momentul in care taskul se termina (“termination time”); intre cele
doua momente de timp taskul poate fi executat oricum, singura constrangere fiind aceea ca el
nu poate sa comunice cu alte taskuri. In afara de taskurile ancb&tare si taskuri mo-
bile (“float tasks”). Constrangerile taskurilor mobile sunt specificate prin dependente. Fiecare
dependenta introduce o constrangere de precedenta in ceea ce priveste executia unui task, ast-
fel incat taskul nu va putea fi executat pana cand nu sunt indeplinite toate constrangerile de

precedenta. Pentru a asigura determinismul, citirea sensorilor, respectiv scrierea elementelor de



executie sunt ancorate in timp.

Un programT SLconsta din:
porturi — un port este utilizat pentru a comunica cu mediul exterior sau intre taskuri;

drivere — sunt utilizate pentru a transfera informatia de la un port la altul si pentru a o converti

daca este cazul;

taskuri — sunt utilizate pentru a face calcule consumatoare de timp (ex., calculul unei legi de
reglare), in mod normal un task citeste de la unul sau mai multe porturi de intrare si

actualizeaza unul sau mai multe porturi de iesire

moduri — un mod are o perioada, prin care se precizeaza cu ce frecventa este executat modul
respectiv; un mod consta din invocari de taskuri ancorate si mobile, actualizari de sen-
zori, actualizari de elemente de executie si schimbari de mod, toate aceste elemente sunt
caracterizate de o frecventa, iar in afara de taskurile mobile si schimbarile de mod, toate

elementele mai au si un offset, care este specificat relativ la inceputul perioadei.

Compilatorul deTSlva avea ca intrare, un prograisl, iar rezultatul compilarii va
fi un fisier care va contin&€ codeul, care va fi interpretat de o masina virtuala, nuntta
Machine Compilatorul este construit pornind de la un parser, care a fost generat automat cu
SableCC care este un tool specializat in generarea de parsere pornind de la un fisier in care
este descrisa gramatica limbajului respectiv. Dupa ce un program a fost parsuit, se obtine un

Abstract Syntax Tree (AST). Utilizand acest AST compilatoruT&tva:

e crea o tabela de simboluri, care va contine cate o lista pentru fiecare tip de declaratie, in

plus compilatorul va verifica unicitatea fiecarei declaratii;

e verifica tipurile, in acest pas compilatorul va verifica daca tipul si numarul parametrilor

formali corespund cu tipul si numarul parametrilor actuali;

e crea tabela de dependente, aceasta tabela va contine informatii despre dependentele de

intrare, respectiv iesire ale unui task mobil;

¢ verifica dependentele, in acest pas compilatorul va cauta bucle inchise intre dependente;



¢ verifica frecventele, in acest pas compilatorul va verifica faptul ca frecventa unui element
dintr-un anumit mod este mai mare ca zero si divide perioada modului, de asemenea
pentru taskurile mobile va verifica faptul ca dependentele sale au aceeasi frecventa ca si

el;

¢ verifica schimbarile de mod, in acest pas compilatorul verifica faptul ca, prin trecerea de

la un mod la altul nu apar supraincarcari;

e genereE codeul, in acest pas compilatorul va gen&aodeul.

Procesul ales pentru a fi condus eStstemul Celor Trei Rezervoa(8TS). Procesul
consta din trei rezervoard(, 1, andTs), T} si 15 fiind interconectate cii3. Fiecare rezervor
este prevazut si cu un robinet de scurgere in extefipravand doi robineti de scurgere in
exterior. Avand in vedere ca nu am avut disponibil procesul, am realizat un simulator (program
scris in Java), care poate fi condus prin TCP/IP, in plus calculatorul la care este conectat procesul
este unul destul de vechi (486), pentru ca foloseste o placa de achizitie pentru care nu mai
exista slot compatibil in calculatoarele mai noi, acesta fiind inca un motiv pentru care nu am
condus direct procesul. Regulatorul a fost implementat in doua variante: o prima varianta a fost
implementata in Java, acest program putand fi folosit atat ca si regulator, dar si doar pentru a
urmarii evolutia semnalelor din proces, a doua varianta este implemenfE#.iAsa cum am
spus a fost nevoie de un simulator pentru ca nu am avut disponibil procesul, totusi trecerea de
pe simulator pe procesul real se poate face destul de simplu fara a face modificari in regulator.
Aceasta pentru ca, comenzile regulatorului se dau prin socketuri, ceea ce inseamna ca este
suficienta scrierea uni program care sa ruleze pe calculatorul la care este conectat procesul si
care sa implementeze partea de server a protocolului “Control Protocol”, acesta fiind protocolul
utilizat in comunicarea dintre regulator si simulator.

Lucrarea este impartita in doua parti: (1) suportul teoretic si (2) implementare.

In prima parte sunt prezentate elementele de natura teoretica pe care se bazeaza lu-
crarea, astfel, ilChapter 1 sunt prezentate conceptual Limbajalotto, Limbajul TSL, si
SableCC care este un utilitar pentru generarea automata a unui parser, tot in prima parte este
inclus siChapter 2 in care sunt sunt prezentate conceptele din Ingineria Reglari utilizate in

studiul de caz.



In a doua parte sunt prezentate modificarile aduse compilatdbidio, astfel incat
sa ofere support pentru noul limbdj{L) (Chapter 3), precum si studiul de caz ales pentru a
scoate in evidenta proprietatile limbajull&L

In finalul lucrarii sunt prezentate cateva idei pentru dezvoltarea ulterioara a limbajului

TSL






Introduction

The main goal of this thesis is to exte@lotto Compilef4], which is a compiler forGiotto
Language[2], in order to support the new features, introduced by Timing Specification Lan-
guage TSL), which is an extension dgiotto. Still in this thesis | will present a solution to a
control problem, that usesSLfor the implementation.

Giottois a high level language that provides an intermediate level of abstraction in the
cycle of developing control application. @Giottoone can easily observe the separation between
timing and functionality. In fact inGiotto can be implemented only the control application
timing, while the functionality will be implemented in another language (e.g., Cridn 1 |
present the new model introduced Gyotto. As it can be seen from the figure after compiling
a Giotto program, results the code that will be interpreted by a virtual machine, called the
Machine This approach make&Siotto platform independent, in the sense that, givehiatto
program, it could be run on any platform(the word “platform” represents a hardware architecture
together with the operating system running on it), with the condition that there shouldibe an
Machinefor that platform. The basic elemer@otto deals with are: ports, drivers, and tasks.

All of them are presented iBection 1.1 Here | will say a few words about tasks@iotto. A

tasks inGiotto is a piece of code, that needs a significant amount of time to be executed. An
important property of a task, is task period, which defines how often the task will be executed,
but also defines the time interval in which task should be executed, and even if the task is faster,
and it doesn’t need the hole period to execute, the results produced by task will be considered to
be valid only at the end of the period.Hence the period of a task is also called Logical Execution
Time (LET), and &Giottotasks is also called a LET task.

Giotto has three main properties:

1. the first property isime and value determinisniTime determinism means that sensors
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Figure 1: Giotto model.
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are read and actuators are written at predetermined points in time. Value determinism
means that given a sequence of sensor readings, the corresponding sequence of actuator
writings is uniquely determined by the program; it does not depend on the scheduling of
the tasks. This implies in particular, the absence of race conditions and priority inversion

problems.

2. the second property @iotto is switchability, the ability to switch modes in a nontrivial

fashion, possibly preempting the LET of tasks, while maintaining determinism.

3. third, Giotto allows for a simple check afchedulability that all released tasks are able to

complete execution before termination.

However, control applications from the automotive industry have also uncovered sev-
eral severe shortcomings @fiotto. The first limitation ofGiotto is that both the release and
termination times of tasks are defined implicitly through the task period: every task is released
at the beginning of its period, and terminated at the end of the period. This is problematic in
particular with short but infrequent tasks. The second limitatioGioftto is that all tasks are
LET tasks, and no accommodation is provided for classical real-time tasks with precedence
constraints specified by 1/0 dependencies.

In order to overcome this limitations a new language called Timing Specification Lan-
guage TSL was created.TSLis an extension ofsiotto, a language targeted towards hard
real-time applications with multi-modal time-periodic behavior. In order to do this, the LET
tasks ofGiotto were generalized and combined with tasks that have precedence constraints.

A generalized LET task is called amchored taskits scheduling constraints are spec-
ified by an arbitrary release time and an arbitrary termination time. The task inputs are read
at the release time and the task outputs are written at the termination time; the task can be ex-
ecuted between these two times in any way, but no interaction with other tasks may happen
between these two times. The release time is specified afsatrelative to the period of the
task. In addition to anchored taskESL hasfloating tasks The scheduling constraints of a
floating task are specified only through dependencies: task inputs may depend on sensor read-
ings and the outputs of other (anchored and floating) tasks; task outputs may be depended on
by drivers writing the inputs of other tasks and actuators. Each such dependency introduces a

precedence constraint on the scheduler; as long as these constraints are met, floating tasks can
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be executed at any time. To ensure determinism, all sensor readings and actuator writings are
anchored in time; they have fixed periods and offsets. To ensure the efficient schedulability of
mode switches, from one mode to the next, some (anchored and floating) tasks may be removed
or some tasks may be added, but not both.

A TSLprogram consists of:

ports — a port is used for communication with the environment or for communication between

tasks;
drivers — are used to transfer and convert the information between ports;

tasks — are used for computing time consuming functions that read from task input ports an

state ports and updates task output ports and state ports;

modes — a mode has a period that specifies after how much time the mode will be executed
again; a mode consists of task invocations (anchored or float), sensors updates, actuator
updates, and mode switches, each of the presented elements has a frequency that specifies
how many times it will be executed per mode, and except for float task invocations, and

mode switch, all the elements can have an offset.

The input for theTSL Compilerwill be of course aTSL program, and the result of
the compilation will be thde code as for aGiotto program, but thée codegenerated foil SL
programs is an extension of tlecodegenerated for &iotto program. The resulting code
will be interpreted by a virtual machine, also calledMachine which is an extension of the
Machineused forGiotto E code

TheTSL Compileiis based on a parser that was automatically generated using a com-
piler compiler tool calledbableCCAfter aTSLprogram was parsed, using the parser generated
by SableCCan Abstract Syntax Tree (AST) is obtain. Using this AST Tise. Compilemill:

e create aSymbol Tablethe Symbol Tablewill contain a list for each type of declaration
(e.g., a list for tasks declaration, one for drivers, etc.), at this step the compiler will per-

form some checks, so that there will not be two definitions with the same name ;

e perform type checking, on this step the compiler will verify that formal parameters type

and number is the same with the actual parameters type and number;
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e create @ependency Tabj¢his table will contain information about what elements a float

task depends on, and what are the elements that depend on a task;

e perform the dependency check, this means that the compiler will check the program

against closed loops;

e frequency check, on this step the compiler will check that the frequency of each element
from a node is not zero and divides mode period, also for float tasks it will check that the
elements that depends on the task as well as the elements the task depends on have the

same frequency;

e mode switch check, on this step the compiler will check that each mode switch is possible

without overloading the system;

e E codegeneration, on this step the compiler will generateEheode for the TSL pro-
gram got as input, the generation of theeodeconsist of two parts, first C code will be
generated for th&ymbol Tablgthis will be compiled and linked into tHe Machine and

second will be generated tliecode

The plant | have chosen to controlitiree Tanks Syste(8TS). The plant is made up
of 3 tanks {1, T5, T3), and bothl’; and7; are connected witfiz, through pipes. Each tank has
a draining pipe, that let the fluid go out of the tank, tdakas 2 such pipes. There are also two
pumps connected t6,, respectivelyl;, and through this pumps the controller will be able to
control the level of the fluid iA}, and7;. The command to the pumps in given in voltage.

The 3TS plant is interesting because it is nonlinear, multi-variable, and in order to be
able to controller it in all possible scenario you need more then one controller, which in terms
of TSLmeans mode switch (which is an important featurd St).

Since | didn’t have the process available, | had implemented a simuBt& imu-
lator) for the process (written in Java). The simulator has to functioning modes: (1) manual,
in this mode the user can control the command given to pumps, and (2) auto, in this mode the
user can only change the opening coefficient for taps, while the commands to pumps are given
by a regulator. The simulator acts as a server, it waits for a regulator to connect via TCP/IP.
The communication between the plant simulator server and the controller client is done using a

protocol, defined by me, callegdontrol Protocol
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The controller is implemented both in Java (3TS Conttroller) and@i$h The Java
version of the controller can be used in two modes: (1) view mode, in this mode it will be
connected to the process server, but it will not control the plant, it will just read the main signal
values and it will draw them, and (2) control mode, in this mode the controller will control the
plant.

The thesis is split in two parts: (1) theoretical background, and (2) implementation. In
the first part | present theoretical concepts on which is based my thesis, in this part | present
conceptually the oldiotto Language, and the neWSLLanguage, an&ableCCall this three
subjects are presented@hapter 1, as well as the control engineering concepts | used for the
case studyGhapter 2).

In the second part | present the changes | mad@itato Compiler in order to add
support for the new features introduced B§L Language Chapter 3). Still in this part | will
present the case study | chose, in order to show some of the new features introdli&d in
(Chapter 4).

Thesis ends with some ideas we have about possible extensidfd.of



Chapter 1
Timing Specification Language (TSL)

In this chapter | will presenGiotto language, which is base for thHeSL then | will preset
the TSL | will also presentSableCC which is a compiler compiler tool, that was used when

implementingGiotto Compilerand of cours& SL Compiler

1.1 Giotto

Giottg2] is a platform-independent language for specifying software for high-performance
control applications. Th&iotto Compilergenerates code for a virtual machine, called the

E Maching3], which can be ported to different platforms. T&&tto Compileralso checks if

the generate& Codeis time safe for a given platform, that is, if the platform offers sufficient
performance to ensure thatCodeis executed in a timely fashion that conforms with Gietto
semantics. The most important benefit of the platform-independent approach is that it permits
a clean separation of timing and function.

There are two kinds of software processes, which together make up the functional part
of an E program One that needs a significant amount of time, or in other words has a non-
negligible WCET (worst-case execution time), called task (i.e., computation of a control law),
and the other one, that has a negligible WCET, called driver(i.e., reading the value of a sensor).
Both tasks and drivers are written in a conventional language, such as C.

The timing part of arE programconsists of a set of E actions. Each E action is trig-
gered by an event, and may call a driver, which is executed immediately, or release a task which

is handed over to the schedule of the operating systemEMachineis a virtual machine that
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execute€€ Code whose instructions can specify arbitrary sequences of E act(®iugto is a
structured language for specifying limited combinations of E actions that occur typical control
applications. Next | will present the syntax fGiotto language and thE Machine each in a

different subsection.

1.1.1 Giotto syntax

The basic functional unit iiottois the task, which is a periodically executed piece of, say, C
code. Several concurrent tasks make up a mode. Tasks can be added or removed by switching
from one mode to another. Tasks communicate with each other, as well as with sensors and
actuators, by so-called drivers, which is code that transports and converts values between ports.
A Giotto program does not specify where, how and when tasks are scheduled. Further | will

describe informally the syntax.

Ports — in Giotto all data is communicated through ports. A port is a typed variable located
in a globally shared name space. There are three types of pdaistio program: sen-
sors, actuators, and tasks ports. Sensors ports are updated by environment and read by
the Giotto program. Actuators pots are updated®iptto program and read by the envi-
ronment. Tasks ports are both read and update@ibsto program, and they are used to
communicate between tasks and modes. An important particularity of tasks ports is the

fact that they are double buffered, in order to avoid inconsistency.

Tasks — a task is a piece of code written in a sequential language, which contains no synchro-
nization and can not be terminated prematurely. At an abstract level a task is nothing more
then a function that reads a set of input ports and state ports, and updates a set of output
ports and state ports. There are some constrains a task should respect: (1)input ports and
state ports should be unique for each task, while (2) output ports must be unique only for

tasks invoked in the same mode.

Drivers — a driver is a piece of code that can be executed in logical zero time. It is a function
that reads from a set of input ports and updates a set of output ports. A driver is guarded

by a condition and only if that condition is true the driver function will be executed.

Task Invocations — aGiottotask is a periodic tasks. A task invocation is characterized by the
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task it invokes and the frequency the task is invoked. The frequency is a non-zero natural
number (;..x), Which specifies how many times the task will be invoked per mode and it

also specifies task period.

Mode — aGiotto program consists of a set of modes, but only one mode is active at a specified
moment in time, there can be specified a possible transition from one mode to another
through a mode switch. A mode consist of a set of task invocations, actuator updates and
mode switches. A mode has a period, and a set of mode ports which are update when a

mode switch takes place.

Mode Switch — a mode switch describes the transition form one mode to another. A mode
switch has a frequency, a target mode and a driver that will be invoked when the mode
switch takes place. The guard of the driver is called the exit condition, because only ifitis
evaluated to true the mode switch takes place. The exit condition is evaluated periodically,

as specified by mode switch frequency.

1.1.2 E-Machine

The E Machineis a virtual machine that mediates between the physical processes and the soft-
ware processes of an embedded system through a control program wriE€bade E Code
controls the execution of software processes in relation to physical events, such as clock ticks,
and software events, such as task completrCodeis interpreted on th& Machinein real
time.

Every time an event (timer or completion) occurs, Eh#&lachineobserves it and can
initiate the execution oE Code E Code in turn, supervises the execution of both tasks and
drivers.

TheE Codehas the following instructions:

Call driver — thecall instruction initiates the execution of a driver. This instruction has only
one parameter, represented by the driver to be called. Since the driver is considered to
be synchronous system-level code, it will be executed directly b¥tMachinebefore

interpreting the next instruction.
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Release task— thereleaseinstruction hands a task to the operating system. It has only one

parameter, representing the task to be released.

Future E-Code — thefuture instruction marks a block d& Codefor execution at some future
time. It has two parameters: the address of a block @odewhere to jump, and the

interval of time after which the jump is performed.

Jump - thejump instruction represent an unconditioned jump to a specified address. It has

only one parameter, the address of the block @odewhere to jump.

If —theif instruction represents a conditioned jump to a specified address. It has three param-

eters: the address of block BfCodewhere to jump, and the condition to be evaluated.

Return —thereturn instruction, stops th& Machinefrom interpretinge Codeuntil an event

happens.

1.1.3 Giotto pros and cons

Giotto is based on the Logical Execution Time (LET) model of tasks; in this model a logical
termination time is specified at the time of release of a task. The outputs of a task are only
available at the termination time even if the execution is complete before the termination in-
stance. LET sacrifices end-to-end delays in the execution of a set of tasks, and in return, secures
three key properties for the language. The first propertyrise and value determinisnTime
determinism means that sensors are read and actuators are written at predetermined points in
time. Value determinism means that given a sequence of sensor readings, the corresponding
sequence of actuator writings is uniquely determined by the program; it does not depend on the
scheduling of the tasks. This implies in particular, the absence of race conditions and priority
inversion problems. The second propertyGbtto is switchability, the ability to switch modes
in a nontrivial fashion, possibly preempting the LET of tasks, while maintaining determinism.
Third, Giotto allows for a simple check achedulability that all released tasks are able to
complete execution before termination.

However, control applications from the automotive industry have also uncovered sev-
eral severe shortcomings @fiotto. The first limitation ofGiotto is that both the release and

termination times of tasks are defined implicitly through the task period: every task is released
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at the beginning of its period, and terminated at the end of the period. This is problematic in
particular with short but infrequent tasks. The second limitatiofiofto is that all tasks are
LET tasks, and no accommodation is provided for classical real-time tasks with precedence

constraints specified by 1/0 dependencies.

1.2 TSL

In order to relax the limitations dbiotto, presented in the previous section, while still maintain-
ing the three key properties of determinism, switchability, and schedulability. A new language
called Timing Specification Languagé3L) was createdTSLis an extension oGiotto [2], a
language targeted towards hard real-time applications with multi-modal time-periodic behavior.
In order to do this, the LET tasks &fiotto were generalized and combined with tasks that have
precedence constraints.

A generalized LET task is called amchored taskits scheduling constraints are spec-
ified by an arbitrary release time and an arbitrary termination time. The task inputs are read
at the release time and the task outputs are written at the termination time; the task can be ex-
ecuted between these two times in any way, but no interaction with other tasks may happen
between these two times. The release time is specified afsatrelative to the period of the
task. In addition to anchored taskBSL hasfloating tasks The scheduling constraints of a
floating task are specified only through dependencies: task inputs may depend on sensor read-
ings and the outputs of other (anchored and floating) tasks; task outputs may be depended on
by drivers writing the inputs of other tasks and actuators. Each such dependency introduces a
precedence constraint on the scheduler; as long as these constraints are met, floating tasks can
be executed at any time. To ensure determinism, all sensor readings and actuator writings are
anchored in time; they have fixed periods and offsets. To ensure the efficient schedulability of
mode switches, from one mode to the next, some (anchored and floating) tasks may be removed
or some tasks may be added, but not both.

Figure 1.1 illustrates the extension Giotto to TSL In Giotto each mode consists
of LET tasks with a specified frequency; the mode period and the frequency determines the
LET (which is equal to the period) of the task. The task is logically released at the start of its

period and logically terminated at the end of the corresponding period (Figure 1.1&8%LIn
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Figure 1.1: The new properties of the extended language

an invocation of an anchored task will be specified by three parameters: frequency, offset, and
duration. The frequency denotes the number of times the task is invoked within a mode period.
The offset denotes the time when the task is logically released after the start of the period, and
the duration denotes the LET of the task. The sum of offset and duration is less than the period
of invocation. Figure 1.1b shows an example of two taBkand T2 with corresponding offsets
(01 ando2) and durationsql andd2). The Giotto style of task invocation is the special case
with offset being equal to zero and duration being equal to the period of the invocatiéSLIn
the sensor and actuator update$aftto are also extended to have offsets. The duration is not
relevant here as sensor and actuator updates use logical zero time to execute. Figure 1.1c shows
an instance of a sensor and an actuator update. The invocation periods are the same; the sensor
is updated at an offseiswhile the actuator is updated at an offeet

The second type afSLtasks are the floating tasks. The execution window of a floating
task is specified by the frequency of invocation of the task and by dependencies between the task
and sensor reads, actuator writes, and other tasks. Figure 1.1d shows an example of a floating
taskT1; the offset of the sensarit reads and the offset of the actuatoit writes determines
the actual span of time for execution. Figure 1.1e shows an instance where the floating task
T2 reads the output of 1. The taskT1 reads from sensa and writes tol 2, which writes to
actuatora. The time duration between the sensor read and actuator update is the time available
for executing the tasks (time constraints) and the factTRatads the output of 1 forces the
execution ofT1to precede that of 2 (order constraint). Sensor and actuator updates cannot be
floating.

The anchored tasks read input ports and update output ports at the specified LET

boundaries. A floating task communicates in as-soon-as-possible fashion; the task reads the
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input ports as soon as the source ports of the drivers communicating to the input port are up-

dated in the period of invocation; the task updates the output ports as soon as the execution is
completed. If the inputs of a floating task depends on several anchored tasks, floating tasks, and
sensor updates, then the release time of the floating task is the earliest time when all anchored
tasks have terminated, all floating tasks have completed execution, and all sensor updates have
happened. If the outputs of a floating task are depended on by several anchored tasks and ac-
tuator updates, then the deadline of the floating task is the earliest of the release times of the

anchored tasks and actuator updates.

1.2.1 TSL Syntax

| will discuss the main features of the language on the basis of a control application. In order to
do this | have implemented BSL program that controls a plant, which is simulated biasa
program The process consist of three interconnected tanks and the main target for the controller
is to keep the level of the fluid in two of the tanks constant by commanding two pumps, each
pump is connected to one of the two tanks. The plant is detail&eation 4.1 The plant |

chose is interesting, because it is nonlinear and one can not obtain good control results in all
possible scenario without using more then one regulator, which in termSlomeans mode

switch (which is an important feature ®SLI want to illustrate). There can be distinguished

two different situations for the control problem:(1)a tank dose not lose any fluid and (2)a tank
loses fluid. In the first case it is needed a P Controller, while in the second case a Pl Controller.
Since there are two pumps each connected to a tank, thus results that are needed four modes in
order to cover all possible combinations. The program consists of four modes of operation, one
for each possible combination as described before. Each of the four modes contains two tasks
(each computing the command for one of two pumps), from one mode the program can switch
to any of other three modes depending on what taps are opened. Th&fuytrogram can be

found inAppendix A.

Port. A portis a program variable associated with a type and carries a value consistent with the
type. Ports are classified as sensor ports (e.g.georthil), actuator ports (e.g. poact pumps,

output ports (e.g. podut ul), input ports, and private ports.

Task. A task communicates through an interface consisting of a set of input ports and a set
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of output ports. For example, tagil P computes the command for the first pump, it has one
input port and one output port. A set of private ports is used to store the internal state of a
task. A task computes a function, implemented by a sequential block of code, from its input
and private ports to its output and private ports. At its release, the task reads the latest values of
the input ports, and, at its termination, the task updates the output ports.

Driver. Drivers transport values from ports to ports. A driver connects sensor ports and/or
output ports of tasks (source ports) to input ports of tasks (destination ports), or output ports
(source ports) to actuator ports (destination ports). For example, dpdatergl connects the

sensor portsenhl to the input port of taskgl_P. The communication scheme is as follows:

a driver consists of a function and a guard; if the guard is evaluatédiéathe function is
executed. While tasks require logically non-zero time for execution and can be preempted,
drivers always execute in logical zero time and are atomic.

Modes. A mode consists of periodic task invocations, sensor and actuator updates, and has
a mode period (e.g., mod@ P has a period of 500ms) and communicates with other modes
through mode ports. The mode ports are a subset of the output ports of the tasks invoked in
the mode. A sensor update specifies the sensor port being updated, a frequency, and an offset.
For example, in the mode_P the sensor podenhlis updated every 500ms with an offset of
100ms. An actuator update specifies the actuator port being updated, a frequency, a driver, and
an offset. The driver connects a subset of the mode ports to the actuator port and updates the
actuator port at the specified offset from the start of the period. For example, in themdde

the actuator poract pumpsis updated with frequency 1 and offset 500ms. To avoid races no
two sensor updates should write to the same sensor port and no two actuator updates should
write to the same actuator port.

There are two ways of task invocations: anchored and floating. An anchored task
invocation is specified with a frequency, task name, offset, duration, and input driver. The task
is (logically) released at the specified offset from the period and the task is (logically) terminated
at the sum of offset and duration from the start of the period; in other words, the offset denotes
the release time whereas the duration denotes the task’s LET. The sum of the offset and the
duration is less or equal to the period of the invocation. The input driver connects sensor ports
and mode ports to input ports of the task. A floating task invocation is specified by a frequency,

a task name, and an input driver; the tagk P is invoked in floating style. The precedence



1.2 TSL 21

relation for a floating task will be discussed later.TIBLmode, a task can either be invoked in
anchored style or in floating style but not both. To avoid races no two task invocations (anchored
and/or floating) can update the same output pdi&i.also distinguishes betwe&iotto modes

(all anchored style invocation has zero offset and duration equal to the period of invocation and
no floating style task invocation) and n@ietto modes (any other mode).

Mode Switches.A mode switch is specified by a frequency, a destination mode, and a driver.
At specified intervals the associated driver guard is evaluated. If the evaluation returned true
control switches to the target mode. MdddP switches to mod®_PI and the mode switch is
checked with frequency one.

Precedenced he execution of a floating task is dependent on the frequency of invocation (the
execution must be completed within the period of invocation) and the relation with invocation/
termination of LET tasks, release/ completion of other floating tasks and sensor/ actuator up-
dates. The precedence is imposed by the input drivers of the floating task invocations and are

of the following types:

e Input driver of floating task reads from a sensor port/ output port of an anchored task
— the floating task must be released after sensor is updated/ the logical termination of
the LET task. The constrain imposes a time restriction on when the floating task can be

released.

e Input driver reads from the output port of another floating taskhe second floating
task must be released after the first floating task has completed execution. The constraint

imposes a restriction on the execution order of the floating tasks.

e A driver for an actuator update or an input driver of an anchored task reads from the
output port of a floating task- the execution of the floating task should be completed
before the actuator is updated/ the LET task is logically released. The constraint imposes

a time restriction on when the execution of a floating task should be complete.

In modeP_P the execution window for the tasigl P is determined by the offset of
the sensosenhl and the offset of actuat@ct pumps
TSLimposes constraints on program expressiveness; they are necessary to execute

programs in an unambiguous way and to perform meaningful analysis. The four constraints are
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described as follows.

Matching. If a floating task depends on a task invocation, and/or sensor update and/or
actuator update then the frequency of invocations or updates should be identical. This constraint
forces thei-th instance of the invocations to communicate with each other. In the Rdele
floating taskrgl_P depends upon sensor updaenhl, which has same frequency. The an-
chored tasks are crucial in this context as they can be used to communicate between tasks with
different frequencies.

Acyclicity. Dependencies between floating tasks should be acyclic. In other words, a
graph denoting the precedence relation between tasks should be a directed acyclic graph. This
is essential for performing schedulability analysis.

Causality. The time constraints on a floating task should be such that the time at which
an outputis required should not precede that of reading an input. Consider two anchorét tasks
andt2 and a floating tasksuch that reads frontl andt2 reads front. The logical termination
of t1 should be strictly before the logical releaset®ifthis means thait gets non-zero logical
time to execute. In general, if a floating tagkr a set of floating tasks) depends on an anchored
taskti (or a sensos update) and the output portstodre being read by an anchored taskor
an actuator update) then the time of termination f(or the time of updating) should be
strictly less than the time of invocation taf (or the time of updating).

Switchability. The switchability criterion specifies whether a switch is possible be-
tween two modes: andm’'.

Before presenting switchability criterion | have to define wh&iatto mode and a

non-Giotto mode are:

Giotto mode —is a mode where all offsets are zero, durations for all tasks invoked in that mode

are equal to period, and there are no floating tasks.

Non-Giotto mode — is a mode where there is at least one offset greater then zero, or at least

one task duration less then period, or at least one floating task.

The switchability criterion is satisfied if one of the following holds true:

1. if m andm’ are Giotto modes then all task invocations preempted by a mode switch

should be present in the target mode with identical frequencies as in the source mode.
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By preemption, | mean logical preemption, i.e., preemption anytime during period of

invocation of the task.

2. if m and/orm’ is a nonGiotto mode then eithern’ includes all task invocations (with
identical offsets, durations, period of invocations and precedences)@R m includes
all task invocations (with identical offsets, durations, period of invocations and prece-
dences) ofm/. This implies that there cannot exist two tagkand ¢’ such thatt has
been invoked inn and not inm/, andt’ has been invoked im' and not inm. Any task

invocation preempted by mode switch cannot be removed.

3. if the mode switch dose not preempt any task then the switch is always valid no matter

what are the task in source mode and what are the tasks in destination mode.

In the example, from any mode can switch to other mode as no mode switch preempts

a task.

1.2.2 TSL Compiler

In this section | will present the compiler f@iISL programs. For a given input program, the
compiler checks well-formedness and schedulability and generates so-Eatledefor the
(E)mbedded Maching]. E code is virtual machine code that specifies the exact times when
drivers are called and when tasks are released and terminated. E code does not specify when
released tasks actually execute. This is done by an EDF scheduler. E code consists of the fol-
lowing instructions: aall(d) instruction executes the drivér a release(t) instruction releases

the task: for execution by the EDF schedulerfiure(g, a) instruction marks the E code at the
address: for future execution when the predicatevaluates to true, i.e., whenis enabled ¢

is called atrigger, which observes events such as time ticks and the completion of tasks. The
E machine maintains a FIFO queue of trigger-address pairs. If multiple triggers in the queue
are enabled at the same instant, the corresponding E code is executed in FIFO order, i.e., in the
order in which thefuture instructions were executed. Aifi(c, a) instruction branches to the

E code at the addressf the predicate: evaluates to true. We calla condition which observes

port states such as sensor readings and task outputsn#a) instruction is an absolute jump

to the address and areturn instruction completes the execution of E code. The existing E ma-
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chine implementation, which is written in C and uses POSIX threads, was extended to handle
completion events in addition to time ticks.

The compiler divides each mode into uniform temporal segments called uniinién
is defined as the smallest time interval at which any of the following happens: releasing an an-
chored task, terminating an anchored task, updating a sensor, updating an actuator or switching
modes. For a mode: the span of a unit is denoted bym| and the total number of units by
n[m] the relation being)[m| = ©[m|/~[m| wherer[m] is the period of the mode. For tA&L
program discussed earlier the unit size is 100 ms and there are 5 units (the mode period being
500 ms). The E-code generated B$Lcompiler is shown irAppendix A. The program com-
piler starts by emitting calls to initialize all output and private ports. For an outputppbere
are two drivers:init(p) being the driver to initialize the port antbpy(p) being the driver to
copy local output ports to global output ports. For an anchored task there are two sets of output
ports, local and global. At termination local ports are copied to the global ports. For floating
tasks there is only one set of output ports. Once the ports are initialigedmnstruction is
emitted to transfer control to the beginning of the E code block corresponding to the start of
the program which is the unit 0 of tHe P mode. In the examplé_P being the starting mode,
a jump tomode_address|P_P, 0] is emitted;mode_address|., .| is a symbolic address which is
linked up in the actual E code.

E code for an unitx of a modem is generated in four stages. In the first stage an
E code block is generated (starting with the addresge_address[m, u]) to update task out-
put ports (of anchored tasks that do not precede a floating task), to update actuator ports, to
update sensor ports (that are used by mode switches) and to check mode switches that are pos-
sible at the corresponding unit. The E code blockiatle address| P_P, 0] calls the drivers for
the actuators (the functiodriver(.) implements the driver functionalities in the implementa-
tion language), updates the actuator ports (the ports are accesses by calling a fimgtipn
updates sensor paenelfor mode switch, and checks for mode switch. If mode switch condi-
tion is evaluated térue then the control jumps to take necessary action for mode switch (jump
to switch_address|P_P,0, P_PI,0, P_P_to_P_PI]); otherwise it jumps to the block which re-
leases tasks for the unit (jumptisk addres§P_P, 0] wherdask addresss a symbolic address).

In the second stage a block of code is emitted to take necessary action if a mode switch
is enabled (the block starting with the addregsich_address[P_P,0, P_PI, P_P_to_P_PI]).
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The compiler performs a computation of the destination whitor the target moden’ and

the time to waitd’ before jumping to the target unit. The target unit is computed as close as
possible to the end of the destination mode period. If no tasks are preempted the control can
jump to the starting unit of target mode without waiting & 0,6’ = 0). If the duration of
eitherw or «’ is a multiple of the other then there is no wait tindé £ 0) else time to wait is
computed. The computation is similar to the one presented foGtatto compiler in [4]. If

0" = 0 then ajumpinstruction transfers control to the task invocation block:bktarting at

the addressask_address|m’, u']. Note this bypasses the mode switch check at target unit and
thus removes the possibility of multiple mode switches at the same logical instaht- I, a

trigger is emitted to wait for the time instant and then to jump to the required task invocation
address. In my example, at mode switch no task is preempted and hence the control jumps to
task_address[P_P1,0].

In the third stage code is emitted for releasing tasks invoked at the unit (e.g. code at
task_address[P_P, 0]). First, the sensors updatedudbut not read by floating tasks are updated.
As one can easily notice the update driver for a sensor can called twice for the same unit, but
this is no problem because the drivers are state-full and if a driver is called twice in the same
unit it will be actually executed only the first time. Second, the anchored tasks logically starting
at the unit are released. The floating tasks with period of invocation coinciding with the unit
and with no precedences are also released. Third, the floating tasks with period of invocation
coinciding with the unit and with precedence constraints are released. This is done by defining
three triggers: 1, call to block of codes that update sensor ports read by the floating tasks, 2, call
to block of codes that update output ports (of anchored tasks) that are read by the floating tasks
and 3, call to block of codes that release the floating tasks. Note this is required to have ports
being read by input drivers of the floating tasks be updated before the invocation of the task. The
complexity arises from the fact that the exact instance of floating task release cannot be deter-
mined apriori an WCET analysis and the compiler generates code independent of the WCETs
of the tasks. An example of the first scenario is updating the ssesdrl (in modeP_P) which
precedes a floating task invocation; the update procedure is called by a trigger from code block
at task_address|P_P, 0] and is updated at the addressisor_update_address[P_P,0,senhl].
Note the event for the trigger in the above case are known apriori as time instances for sensor

updates and anchored task terminations can be computed without WCET information. Note the
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event in the trigger may not be determined here as it consists of completion events of floating

tasks which are not known apriori and the trigger event is represented as a set of time triggers
and completion events. The last stage of the compiler generates code for the blocks referred to
by the above three trigger instructions; the codes are straightforward and updates sensor ports,

call copy functions for output ports and release floating tasks.

1.3 SableCC

SableC(l] is an object-oriented framework that generates compilers (and interpreters) in the
Java programming language. This framework is based on two fundamental design decisions.
Firstly, the framework uses object oriented techniques to automatically build a strictly-typed
abstract syntax tree (AST) that matches the grammar of the compiled language and simplifies
debugging. Secondly, the framework generates tree-walker classes using an extended version
of the visitor design pattern which enables the implementation of actions on the nodes of the
abstract syntax tree using inheritance.

The steps to build a compiler usiigableCCare:

1. creating &SableCCspecification file containing the lexical definitions and the grammar

of the language to be compiled;
2. launchingSableCCon the specification file to generate a framework;

3. creating one or more working classes, possibly inheriting from classes generated by

SableCCworking classes are classes that contain the core compiler functionality;
4. creating a main compiler class that activates lexer, parser, and woking classes;
5. compiling the compiler with a Java compiler.
After launchingSableCCon the specification file, there will be generated four packages:

o thelexer package contains the Lexer and LaxerException classes. These classes are the

generated lexer and the exception thrown in case of a lexing error, respectively;

¢ the parser package contains the Parser and ParserException classes. These classes are

the generated parser and the exception thrown in case of a parsing error, respectively;
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e thenodepackage contains all the classes defining the typed AST;

¢ the analysis package contains one interface and three classes. These classes are used

mainly to define AST walkers.

The packages that are important for understandiy Compileimplementaion are
node andanalysis In packagenodefor each production rule defined in the specifications file
there will be a class named after the production, prefixed with 'P’, replacing the first latter with
an uppercase, replacing each latter preceded by an underscore with an uppercase, and removing
the underscores. If the production has a single unnamed alternative, the alternative class is
named like its production class, but the uppercase 'P’ prefix is replaced by an uppercase ’'A.
When there are more then one alternati8ableCCrequires a name for each alternative. A
name is given to an alternative in the grammar by prefixing the alternative with an identifier
between curly brackets. The class name is created as described before the only difference is
that the identifier will be used instead of production name. For elements there will be a variable
that will be access through getxxx and setxxx methods.

The most important class ianalysisis the abstract class DepthFirstAdaptor which
should be implemented by any depth first walker of the AST. For each alternative there are two
methods in the class onmAxxx(Axxx nodeg)hat is called when a node of corresponding type
(Axxx) in the AST is reached, and the secomaifAxxx(Axxx nodgwhen the node is left. In
both cases the parameter represents the node and can be used to get information about the node.

In order to make things clear | will present in the end of this section an example inspired
from the SableCGspecification file foiTSL Compiler

| will consider the following production rule:

driver_declaration = driver [driver_name]:ident
[source_ports]:actual_ports output
[destination_ports].formal_ports

|_brace call_driver r_brace ;
This is whatSableCGwill generate:

e a class calledPDriverDeclarationand a class calledDriverDeclaration
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e there will be a member of typ€ldent (this calss was generated fiolent token) in the
above classes, called driverName, and that could be access via ngetivd/erName

such a member will be generated for each element;

¢ in the classDepthFirstAdaptorthere will be defined to methods corresponding to this
production rule:public void inADriverDeclaration(ADriverDeclaration nodegandpub-

lic void outADriverDeclaration(ADriverDeclaration node)



Chapter 2

Control Engineering Theoretical Support

In this chapter | will present the control engineering theoretical background for this thesis.

2.1 Quality Indicators

In this subsection | will refer only to quality indicators defined using the controlled system
response to step signal input and only for dynamic regimeFign 2.1 are represented the

dynamic regime quality indicators. The indicators are:

t. — control time; represents the time interval form the beginning of the transition reg¢jme (

until the answer enters the so callgtént region which is defined as-0.2 - Az.;

t; — first control time; the time interval form the beginning of the transition regiymnentil the

desired value(,.) if being reached for the first time;
t,, —time when the maximum value,{(,.) is reached;

t, —raising time, defined by the relation: e
t, = t0.95 — t0.05 (2.1)

wheret o5 andtq o5 represent time moments for whickz(¢) reaches 0.05 respectively

0.95 fromAz.;
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o1 — over-control is defined by the relation:

Zmaz — “oo

JAV-2

o = ,WithAzs = zoo — 2o, O in percents ai% = oy - 100 (2.2)

For more information about quality indicators you should look at [7].

2.2 P Controller

In this section I will present how to design a P Controller for an | planEi¢n 2.2it is presented

the block schema for an | plant controlled with a P Controller.
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Figure 2.2: P Controller

P Controller transfer function is:
Hp(s) = kg (2.3)

| plant transfer function is:
Hp(s) = kp— (2.4)

Transfer function for controled system is:

1
HC(S) = (2.5)
kplszs +1

From last equation results that controled system time constant is:

1

T = 2.6
Tk (2.6)

Since control time¢. = 37 results that choosing, the controller parametér; will be:
kr 5 (2.7)

- k:Ptc
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2.3 Frequency Domain Controller Design

Frequency domain controller design in the simplest variant it is based on the frequency loga-
rithmic Bode characteristics, amplitude-frequency and faze-frequency.
The big time constants of the plant are compensated by the controller (for instance if

the controller is PI):

Hig(s) = (14 T -5) (2.82)
Byl
) = T T o) (2.8b)

Then you have to choose the faze reseryg)(in [45°,60°] where the system is for
sure stable and the transition regimes will be acceptable.

Knowing that by definition the faze reserve is:
YR = 1800 + AH()(jwt) (29)

and using the faze-frequency characteristic (the same for any valyg tte cut frequency,
will be got.
Then the amplitude-frequency characteristic will be plotted for an initial value of
k., notedk?. Then forw;, from amplitude-frequency characteristic the signed valug =
|Ho(jw;)| will be read and will be used to compute the transfer coefficiégt for the con-
troller:
ky = KO- 10720 (2.10)
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TSL Compiler Implementation

TSL Compileiis made up of four parts:
e the parser which is automatically generatedSapleCC
e the symbol table;
¢ the checker;
e the code generator;

In the next sections | will present only the last three parts, | will not describe the parser because

this was already covered in a previous chapter when | had deSRaigd CC

3.1 Symbol Table

Symbol Table is implemented in ttf8ymbolTablelass whose declaration is presente@ode

3.1.1 For each type o SLdeclaration there is definedpablic Mapmember that will keep

Code 3.1.1SymbolTable declaration
public class SymbolTable extends DepthFirstAdapter

track of all defined elements (e.gublic final Map taskswhich is being used to keep track of
all defined tasks). The key in each suclap member is represented by each defined element
name and the object stored is actually the node that represents the declaration. When an instance

of this class is fed to parse tree, which was obtained as the result of parsing the program, then
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all declarations are being processed one by one, and added to the correspdagirigtwo
elements that have the same name were declared, an error is reported and the compiler stops.
In Code 3.1.2it is presented the method that is called before leavimgskDeclaratiomode,

for other elements it is the same. Everything | have presented so far was already implemented

Code 3.1.2outATaskDeclaration method
public void outATaskDeclaration(ATaskDeclaration node) {
final String name = node.getTaskName().getText();

if (declarations.put(name, node) !'= null) {
errorRedefined(node.getTaskName(), name);
}

if (tasks.put(name, node) != null) {
errorRedefined(node.getTaskName(), name);
}

}

in classicGiotto Compilerwhat | had to add to th&ymbolTablelass, were two neywublic
Map members that are used to keep track of all anchored and float task invocations. The two

members are:

e modesLetTaskdor each mode there is an element in this Map with the mode name as
key and the stored object is another Map that contains all the anchored task invocations

in that mode;

o modesFloatTaskshe same asiodesLetTaskshe only difference is that it refers to float

task invocations.

DependencyTabléCode 3.1.3 it is new introduced inTSL Compilerand it is very
much alike withSymbolTablgthe only reason why | haven’t combine this two in one single
table is that before | build thBependencyTablehave to do type checking, which means that |

am not able to combine the two tables in a single one. As the name suggests, this table contains

Code 3.1.3DependencyTable declaration
public class DependencyTable extends DepthFirstAdapter{
1>
public DependencyTable(SymbolTable pSymbolTable) {
symbolTable = pSymbolTable;
}

1.4
}

information about the dependency between tasks invocations in a mode. There aruétiwo

Map members:
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e modesinputDependenciegor each mode there is an element, which has the mode name
as key and the object stored idMapthat for each element in the mode keepfamayL.ist

with all elements on which it depends;

e modesOutputDependenciefor each mode there is an element which has the mode name
as key and the object stored iMapthat for each element in the mode keepfamyList

with all elements that depends on it.

In order to create the two dependency tables, first for each mode there are created
others two dependency maps, that later will be used to find out for what elements a port is
an input and for what element a port is an output. Each map maintaiAsraylList for each
port . In order to compute this two tables, an internal class was defined that will be applied on
AModeDeclarationinstance at the beginning of mode declaration and for each element in the
mode declaration the input and the output ports lists are iterated, if they exists, and the node is
being put in one of the two maps, depending on what is the relation between the node and the
port. InCode 3.1.4are presented two methods, one that procesSesmsorUpdataode and the
other oneAActuatorUpdatenode. Then after this tables were computed, for each anchored or
float task invocation in the mode, based on its input and output ports and using the two auxiliary
maps that were presented before, a list of input and output dependencies is created.

For each mode there is computed a list of task output ports that are outputs for tasks
that are being invoked as float tasks. This list is needed because a task can be invoked as an
anchored or as a float task in different modes and the output port is doubled buffered if the task

is invoked as an anchored task, and it is directly accessed if it is invoked as a float task.

3.2 Checker

Actually this section should be cold “Checkers”, because there are more then one checker. The

checkers are:
e TypeChecker performs type checking;
e DependencyCheckerchecks the program against closed loops;

e FrequencyChecker checks the frequencies, offsets and everything related to time;
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Code 3.1.4Ports dependency computation.

public void outASensorUpdate(ASensorUpdate n){
putPortOutputFor(n.getSensorPortName().getText(), node);

public void outAActuatorUpdate(AActuatorUpdate n){
ADriverDeclaration driver = (ADriverDeclaration) symbolTable.
drivers.get(n.getDriverName().getText());
AActualPortList sourcePorts = (AActualPortList) ((AActualPorts)
driver.getSourcePorts()).getActualPortList();
LinkedList actualPorts = sourcePorts.getActualPort();
if (actualPorts != null) {
Listlterator sourcelterator = actualPorts.listlterator();
while (sourcelterator.hasNext()) {
AActualPort port = (AActualPort) sourcelterator.next();
putPortinputFor(port.getPortName().getText(), n);
}
}
}

o ModeSwitchChecker checks mode switch condition;

e TimeSafetyCheckerchecks time safety for each mode;

Next | will present the implementation for each of the checkers.

3.2.1 Type Checker

This checker performs type safety checks on all the elements of a modéoda 3.2.1is

presented th@&ypeCheckeclass declaration. What this checker dose is:

Code 3.2.1TypeChecker declaration

public class TypeChecker extends DepthFirstAdapter{
1.
public TypeChecker(SymbolTable symbolTable,boolean dynamicGiotto){
this.symbolTable = symbolTable;
this.dynamicGiotto = dynamicGiotto;

}
1*.x

e for each sensor update in a mode it checks to see if the sensor port that is updated exists

and that there are no to sensor updates in the same mode that refer to the same sensor;

e for each actuator update in a mode it checks to see if the actuator port and the driver
being used exist, that there is only one actuator update referring to the same actuator port
in a mode, and that the type of the actuator port and the type of the formal port of the
driver being used to update the actuator port are the same, and that the driver has only one

formal port;
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o for each mode switch, first checks for existence of destination mode, then checks that
only one mode switch with this destination mode is present in the mode, then checks that
the driver being used by the mode switch exists, and finally checks that the number and
type of formal ports of mode switch driver are the same with the number and type of

destination mode ports;

e for each anchored and float task invocation checks that the task exists, that there are no
two task invocations that refers to the same task in the same mode, then checks for the
existence of driver used to update the task input ports and finally checks that the number

and type of task input port are the same with the number and type of driver formal ports;

e also it checks that there are no two tasks invocations in the same mode that update the

same output port

3.2.2 Dependency Checker

This checker, checks the program against closed loops between float task invocations. The
algorithm that performs the check is implemented in a recursive metode(3.2.2 that has

two parameters, the first one is the current task name that was reached following the chain of
dependency lists and the second is the name of the task on which the function was applied first.
Using theDependencyTabléor the current node the list of node that depends on the current
node is obtained, and each node in this list is tested against the start node, and if they match
then an error is reported and the compiler stops, else if the node is an anchored or float task

invocation, then the method is called again with the start node set to this one.

3.2.3 Frequency Checker

The checks performed by this checker are:

e for each element in a mode, the frequency is checked, there are two types of checks
that are performed on the frequency: (1) the frequency can not be zero and (2) it must
by among the dividers of the mode period;@ode 3.2.3is presented the method that

performs this checks
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Code 3.2.2dependencyCheck method

private void dependencyCheck(Tldent crrNode,Tldent stNode){
ArrayList taskDependencies=(ArrayListimodeDependencies.get(
crrNode.getText());
Iterator deplt=taskDependencies.iterator();
while(deplt.hasNext()){
Node n=(Node)deplt.next();
if(n instanceof AFloatTaskInvocation){
AFloatTasklnvocation fINode=(AFloatTaskInvocation)n;
if(fiNode.getTaskName().getText().compareTo(stNode.getText())==0)}{
dependencyError(crrNode,stNode);

final String fINameTmp=fINode.getTaskName().getText();
if(floatDep.contains(fiNameTmp)){
dependencyError(flNode.getTaskName(), stNode);

}
floatDep.add(floatNameTmp);
dependencyCheck(fINode.getTaskName(),stNode);

if(n instanceof ALetTasklnvocation){
AlLetTaskInvocation letNode=(ALetTaskInvocation)n;
if(letNode.getTaskName().getText().compareTo(stNode.getText())==0){
dependencyError(crrNode,stNode);
}

final String letNameTmp=letNode.getTaskName().getText();
if(letDep.contains(letNameTmp)){
dependencyError(letNode.getTaskName(), stNode);

}
letDep.add(letNameTmp);
dependencyCheck(letNode.getTaskName(),stNode);

Code 3.2.3checkFrequency method

private void checkFrequency(Token frequencyToken) {
final int modePeriod = Integer.parselnt(modePeriodToken.getText());
final int frequency = Integer.parselnt(frequencyToken.getText());
if (frequency == 0)
errorZero(frequencyToken);
if ((modePeriod % frequency) = 0)
errorFrequency(frequencyToken, modePeriodToken.getText());
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e for each sensor update and actuator update the offset is checked so that it is not greater
then period Code 3.2.4, a similar check is performed for anchored tasks also, but in this

case you have to consider the duration also;

Code 3.2.4checkOffset method

private void checkOffset(TIdent node,TNumber pOffset,
TNumber pFrequency){
boolean checkOk = true;
if (pOffset != null) {
int period = modePeriod / Integer.parselnt(pFrequency.getText());
int offset = Integer.parselnt(pOffset.getText());
checkOk = offset <= period;
if (IcheckOk) {
erroOffset(node);

}

}
}

e for each mode switch there is performed a check so that if the mode switch depends on a

sensor update then the sensor update is not allowed to have an offset

o for each float task invocation the list of dependencies is checked so that all the node the

task depends on or which depends on the task have the same freqGedey3.2.5;

Code 3.2.5checkDependencyFrequency method

private void checkDependencyFrequency(Tldent taskName,Token frequency){

llcheck for input dependency

/ltake each node that the task represented by taskName depends
/lon and test that the frequencies are the same

/lif they are not the same throw an error and stop

/lcheck for output dependency

/ltake each node that depends on task represented by taskName
/land test that the frequencies are the same

/lif they are not the same throw an error and stop

e for each anchored task invocation sensor update and actuator update a causality check is
performed, in order to make sure that | don’t get zero time to execute a float task; the
causality check works as follows: for each anchored task invocation and sensor update |
take the dependency list and if | can reach an anchored task, or an actuator update just
following the dependency list, and if in the list there is at least one float task invocation,
then the causality condition as described in previous chapter are checkztjer.2.6

present the methods that perform this checks.
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Code 3.2.6Causality check methods

//Search the dependencies until reach to a let task invocation or an
/lactuator update then check causality conditiona
private void checkCausality(AFloatTaskinvocation floatTask,Node stNode){

if (dependencies != null) {
Iterator it = dependencies.iterator();
while (it.hasNext()) {
Node depNode = (Node) it.next();
if (depNode instanceof AFloatTasklnvocation)
checkCausality((AFloatTaskInvocation) depNode, stNode);
else
if (depNode instanceof AlLetTasklnvocation)
checkCausality((ALetTasklnvocation) depNode, stNode);
else
if (depNode instanceof AActuatorUpdate)
checkCausality((AActuatorUpdate) depNode, stNode);
Ylend while
Ylend if
}

private void checkCausality(ALetTasklnvocation letTask,Node stNode){

if (startNode instanceof ALetTaskInvocation) {
/I Let vs Let

if (stLetDuration + stLetOffset >= letOffset) //error

if (startNode instanceof ASensorUpdate) {
/I sensor update vs Let

if (stOffset >= letOffset) //error

3.2.4 Mode Switch Checker

This checker, checks the condition that must hold in order to be able to switch from one mode

to another without overloading. There are three possible cases:

e the mode switch does not preempt any task, then there is no condition to be checked;

e the two modes are clasgBiottomodes, in this case the osiotto mode switch conditions

must be checked;

e the two modes ar@SL modes, in this case thESL mode switch conditions must be
checked.

In Code 3.2.7is presented the method that is called when leaving the mode switch node. As
it can be seen first the preemption test is performed by applying oorth®de an instance

of classCheckPreemptignwvhich looks at each task invocation frequency in the mode, and if
it does not divide by mode switch frequency themeemptswill be set totrue, otherwise it

will remain false After the preemption test was performed and if this test returned true, then
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Code 3.2.70utAModeSwitch method

public void outAModeSwitch(AModeSwitch node){

crrMode.apply(checkPreemption);
if(checkPreemption.preempts){
/I both modes are classic giotto modes
checkClassicGiotto(destMode, modeSwitchFreq);
if(!(destModeType && crrModeType)X
/I at least one mode is a giotto+ mode
checkGiottoPlus(destMode, modeSwitchFreq);

}

the classidGiotto mode switch condition will be checked. The clasGimtto conditions test

is implemented in the methddode 3.2.8 What this method does is: for each task invocation

Code 3.2.8checkClassicGiotto method

private void checkClassicGiotto(AModeDeclaration destMode,
int modeSwitchFreq)

}

in the source mode tests to see if the task invoke frequency does divide by the mode switch
frequency, if it does not divide tests to see if the task is invoked in the destination mode with
the same period, if not an error is thrown an the compiler stops. If at least one of the two modes
is aTSLmode, then thd SLmode switch conditions are tested. In order to find out if a mode

is a classidsiotto mode or aTSLone, an instance of the cla€$assicGiottoModes apply on

the mode, this class is very similar wi@heckPreemptioolass, it has a public memeber that

will be true if the mode is a classiGiotto mode and false otherwise. TA&L mode switch
conditions are implemented §ode 3.2.9 First the list of anchored and float tasks of the
destination mode are got froBymbolTablgthen the inclusion test is performed (this would be

the firstTSLcondition), if this test returns true, then the second test is performed by the method

checkSecondConditipthe second condition ensure that the dependencies are preserved.

3.2.5 Time Safety Checker

This checker, checks the mode utilization based on mode period and the worse case execution
time of each task that is invoked in the mode, if mode utilization is greater then 1 then an error
is reported and the compiler stops. The mode utilization is computed as sho@eder8.2.10

Wherewcetis task worse case execution time and frequency is the task invocation frequency.
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Code 3.2.9checkGiottoPlus method

private void checkGiottoPlus(AModeDeclaration destMode,

int modeSwitchFreq){

final String destModeName = ...

final int destPeriod = ...

final int crrPeriod = ...

final Map destLetTasks=...

final Map destFloatTasks=...

if(Utils.include(crrFloatTasks, destFloatTasks) &&
Utils.include(crrLetTasks, destLetTasks)}{

checkSecondConditions(crrMode, destMode,
crrMode.getModeName(), destMode.getModeName());

else if(Utils.include(destFloatTasks, crrFloatTasks) &&
Utils.include(destLetTasks, crrLetTasks)}{
checkSecondConditions(destMode, crrMode,
crrMode.getModeName(), destMode.getModeName());

else{
Il error
inclusionError(...);

}

Code 3.2.1Mode utilization computation

modeUtilization = modeUtilization
+ ((double) wcet / (modePeriod / frequency));

3.3 Code Generator

The code generation is made up of two parts:

e FTable— this class is used to generate a C filddble.c”, and its corresponding header

file “f _table.h”, this files will be compiled into the Machine the file will contain:

— for each sensor declaration will be added a variable declaration, that will be associ-

ated with the sensor, and a function, that will be called when the sensor is updated;

— for each actuator will be added again both a variable, and the function that will be

called when actuator is updated;

— for each output port there will be defined two variables, because a port is double
buffered, the initialization function, and a copy function that will copy the infor-
mation from the local variable into the global variable, if the task that writes to an

output port is a float task then only the local variable is used,;

— for each task will be added, for each formal port a variable, and also the function

that will be executed when the task is released;
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— for each driver there will be added two function one that will be the condition that
guards the driver, and the second the function that will be called when the driver is
to be called, for each mode in which the driver is used there will be added two new
such functions, the reason for this is that a task can be invoked in a mode as a float

task, and then in another as an anchored task;
— atrigger table, usually this table will contain only one trigger, which is the timer;

— task table, this will contain the list of all the tasks, and what is the function associated

with each task;

— driver table, this will contain the list of drivers, the function associated with each
diver;
— condition table, this will contain the list of condition and the function associated

with each condition;

— port table, this will contain the list of sensor, actuator and output ports and the

address of the variable associated with each port;
e ECode- this will be used to generate tkecodefor the Giotto program.

Further I will not detailed any more tHeéTableclass, because | made only a few modifications
to it, instead | will detailed th&Codeclass, because | consider it to be more interesting.
Before | present how thE codeis generated a few observations must be made regard-

ing what | mean when | say that an element is enabled:

e sensor update — a sensor update is enabled if: (1) there is no float task that depends on it
and(|unit — (of fset/unit Period)| * frequency) mod nUnit = 0, or (2) there is a float

task that depends on the sensor update theit x frequency) mod nUnit =0

e actuator update — an actuator update is enabled|ifait — (of fset/unitPeriod)| *

frequency) mod nUnit = 0
e mode switch — a mode switch is enabledufiit x frequency) mod nUnit = 0

e anchored tasks —an anchored task is enablediift— (o f f set /unit Period)|* frequency) mod nUnit
0
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o float task — a float task is enabled ifnit * frequency) mod nUnit = 0
TheE codegeneration works as follows:

o first for each mode the small unit period is computed using an isntarMead¢Unitclass

(the unit period is defined in the previous chapter);

¢ the period of each mode is divided in a number of unit periods and for each such a unit

period the following set of operations is performed:

— for all anchored tasks on which depends no float task and that are finished at the

current unit the copy driver is called;

— for each actuator update, that is enabled at this unit, first the driver is called to update

the port then the corresponding device function is called;

— for each sensor update, which is enabled and on which there is a mode switch that

depends on, the corresponding device function is called;

— for each enabled mode switch, the mode switch condition check is generated, then
on the true branch will be generated the the jump to the address where the mode

switch is implemented, and on the false branch the jump to task address is generated;

— mode switch address, first the mode switch driver is called, then the jump to the task
address for desired unit from the destination mode, or a future instruction referring

to the same address as the jump, depending on the preempted tasks;

— task address, first for all enabled sensor updates on which there is an anchored task
that depends on, but no dependent float task the device function is called, next for
all anchored tasks that are enabled, the update driver is called, then the task is re-
leased, next for each enabled sensor update on which there is at least a float task that
depends on, a future instruction is generated with the time set to the offset and the
address where the sensor device function is called, for each anchored task on which
there is a float task that depends on a future instruction is generated with the time set
to offset+duration and the address where the copy function for the task output ports
is called, for each enabled float task a future instruction is generated with the time

set to the biggest offset on which the task depends on, the list of float tasks that this
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task depends on (this list is encoded in a 32 bit integer, based on the fact that | can

not have more then 32 tasks) and the address where the task is released,;

— at the end a last future instruction is generated with the period set to the unit period

and the address set to the next unit.
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Chapter 4

Case Study

In order to testTSLin a control application | have implemented a simulator for Tieee
Tanks System (3TShe3TS Simulators written in Java, | have also implemented a controller
(3TS Controller), also written in Java, that can be used to controBft&eplant. The3TS
Controller, could also be used as a viewer, for the evolution of 3i& Simulatorsignals.
Also | have implemented a reduced version3dS Controllerin TSL The communication
between the controller (Java ®6L) and the simulator is done via sockets, | choose this type of
communication because is totally platform independent, in order to do this a proGmutdl
Protoco) was implemented. Next | will present tf8'S Plant then | will presentControl

Protocoland each application in different section.

4.1 Three Tanks System (3TS) Plant

In this section | will present the 3TS plant, | will build a mathematical model for the plant, and
| will design the control structures and algorithms.
3TS system is made up of three identical cylindrical tanks {;, Ts), having the
same transversal sectioh The three tanks are interconnected through pipes having the same
sectionS (S << A(m?)). Each thank has a tap through which the fluid drains. TAnkas
a supplementary tap. There are also two pumRpand P,, which are connected t6; and
T, respectively, The pumps are powered by two DC-motors. In order to be able to simulate
perturbations in the system, the interconnection pipes as well as the draining pipes are equipped

with a tapozi where: € {Sl, SQ, g2, €1, €2, 63}.
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4.1.1 Mathematical Modeling

In Fig. 4.1it is presented the block schema for 3TS plant. Further in this subsection I will

present the mathematical model for 3TS system.

P, Up=X1m ¢ Und=X3m < Un=Xom P,
Ug 57577 Oy Opp !~ g
| = ; % % 7 | = |
,,,,, | P ——
4T Ts T, 2]
h, hs
h,
s ag, S 8 s ap
Qr N_A VQ o M
8¢ S Aq 7 Ag s A,
Oe Os1 Ues O3z q Og2
)

Figure 4.1: 3 Tanks System

The level of the fluid in the the tanks depends on:
o the filling flow capacities of; and7% (g1, gp2);
¢ the draining flow capacities of the six taps:

— Q1,5 9e2, G35 4g2 - €MPLying flow capacities (these represent the perturbations);

— 13, q32 - the interchange flow capacities;

The interconnection flow capacities are considered to be oriented:
qi3 > 0,ifhy > hs(Th — T3);
13 < 0,ifhy < hs(T3 — TY);
respectively:
gs2 > 0,ifhg > ho(T5 — T5);
q32 < 0,ifhg < ho(Ty — T3);

In order to be able to mathematically model the process the physical phenomena that

takes place must be known.
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The main equation for 3TS system is Bernoulli’s equation. The equation relates the

speed and the pressure off moving fluid.

2

p+ % + dgh = const. 4.2

Considering the “homogeneous environment” ahdk < A, then the speed of the

draining fluid could be approximated by the following relation:

v = \/29Ah (4.2)

whereAh represents the fluid level deference between interconnected tanks.
First | will model the case when there is only one tank (1TS) then | will model the case
when there are two tanks interconnected (2TS) and in the end | will present the mathematical

model for 3TS plant.

41.1.1 1TS Plant

The plant is presented Fig. 4.2

P Up =XMm
uC \77777: q
l% ; %
|
,,5,,’1\-‘
h
a A

e

Figure 4.2: One Tank System

The evolution of the volume of the fluid in the tank is characterized by the following
equation:
hA = Z[%n - QOut} =4y (43)
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where

e ¢;, represents the in flow capacity, and for for 1 TS plantitis represented by pump capacity

(qp);

gdp = ClUc (44)

e ¢, represents the out flow capacity, and it is represented by the flow capacity of the fluid

that drains through. (q.).

e = HeS\/ 2gh (4.5)
Combining equationsi(3), (4.4), and @.5) results:
h = il (cue — peS+/2gh) (4.6)

Linearizing the equatior4(6) in the neighborhood of the fixed poirti, u.o, andyu.g) results:

: 1
Ah = AcAuC Le0S N/ 2 —Ah SV 2ghoALe) 4.7)

In Fig. 4.31 present the results of simulating the found mathematical model for the

1TS plant in Matlab,the Simulink schema can be foundppendix E.

4.1.1.2 2TS Plant

The plant is presented Fig. 4.4

Writing the equation4.3) for each of the two tanks | get:
- 1
hl = Z(Qpl — 13 — qe1) (4.8)

. 1
h3 = Z(C]m — (e3) (4.9)
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Figure 4.3: 1TS Matlab simulations
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Figure 4.4: 2 Tanks System
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where

i3 = psy - S - sgn(hy — hs)/2g|hy — hs] (4.10a)
Ger = fer - S - /2911 (4.10b)
Ges = pes - S - \/2gh3 (4.10c)
dp1 = C1lc1 (4.10d)

Combining equationsi(8), (4.9), and @.10 | get:

|
hl = Z(clud — Ms1 - S - sgn(h1 - h3) 2g|h1 - h3| — He1 * S - \ 29h1) (4113.)
|

hs Z(MSl S sgn(hi — h3)/2g|h1 — ha| — pes - S+ /2ghs (4.11b)

Linearizing the mathematical modél.(]) in the neighborhood ofi{;y, /) | get:
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Ahl - —
Sv/2g 1
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A 24/ |h1o — hsol
S\/2g 1

Ahs
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30

In Fig. 4.51 present the results of simulating the found mathematical model for the

2TS plant in Matlab,the Simulink schema can be foundppendix E.
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Figure 4.5: 2TS Matlab simulations
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4.1.1.3 3TS Plant

The plant is presented fig. 4.1 The mathematical model for 3TS plant is equivalent to the

mathematical model tor two 2TS plants and one tank is common to both plants.

2TS;
fr = (a1 — 015~ 40)
1—AQp1 13 — Qe1
iy = Squs
3—A€713 de3
2TS,

. 1
hy = Z(QpQ + q32 — Ge2 — Gg2)

. 1
h = —_—— — (e
3 | 432 — (4e3

Combining the equations f@7'S; and27'S, | get the following mathematical model for 3TS

plant:
iy = (a1 — 15— 40)
1= A dp1 — 413 — Qel
. 1
hy = Z(QpQ +q32 — Qe2 — Qg2)
. 1
hs = —qi3 — — Q.
3 ACI13 G32 — (e3
where
q13 = HUs1 - S - 3gn(h1 — hg)\/ 2g|h1 — hg‘ (4163.)
qs2 = sz - S - sgn(hs — ha)\/2g|hs — hs| (4.16b)
q20 = fg2 - S - \/2ghy (4.16c¢)
Qei = Hei * S 1/ 2ghz (416d)

(4.16e)

Qpi = CilUc;
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Linearizing the model in the neighborhood &f {, h2g, h30) | get:

. v/ 2
Ahy = — Agsgn hio — h30 vV ’hl() - hso - Aug
V29 1
- —Us1089n(h10 - h30) WAV
A 2+/|h1o — hao
V29 1
+ —Usmsgn(hlo - hso) e — ———RWAV B
A 24/ !hm - h30|
\/2
hio - Au, e ———Ah A c
“V No 1— = Uel0 * 2% 1+ —Auq
. \/ 2
Ahy —Tgsgn h30 - h20 Y ’h:&o - hzo Augy
V29 1
+ —us2059n(hso — hy) - ———= - Ahg
A 24/|hso — haol
V29 1 V29
- Us2039n(h30 h2o) e Ahy — ——- v hao - Attes
A 2+/|hso — haol A
\/ 1 V249
. - Ahy — —\/ h20A
A ueZO \/E 2 0 ug2
V29
— Ah A c
quOQ\/E 2 + —Au 2
. \/2
Ahg = Ag 59” th - h30 Y4 |h10 - hgo Aug
V29 1
+ =10 - sgn(hio — hso) » ———= - Ay
A 24/ |h10 - h30|
V29 1
— ——Us10 sgn(hw - hso) — Al
A 24/ |h1o - h30|
\/2
Agsgn hso — h20 Y4 ’h30 - hzo Augy
V29 1
— ——Ug20 * sgn(h30 - hzo) e —— ———RAV
A 2\/\h30—h20|
V29 1
+ —ug00 - sgn(hso — hag) - ———=="-Ahy
A 24/ Vl:so - h20|

29 V29 1
-/ h Au, e ——Ah
A 30 ° 3 — A — Ue30 * 2\/h_30 3

In Fig. 4.61 present the results of simulating the found mathematical model for the

3TS plant in Matlab,the Simulink schema can be foundppendix E.
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Figure 4.6: 3TS Matlab simulations
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4.1.2 Controllers Design

The aim of the controller is to maintain constant the level of the fluid in tdhledT; (h; and
hy, respectively), using the fill flow capacitigs, andg,, and the tankl’;. The perturbations

are considered to be:
e the level of the fluid in tanks;
e drain of the fluid throughout emptying taps, marked by flow capacitig@Sy.2, ge3, G20-

There are two possible situations that should be consider: (1)if there is no perturbation,
then as showed iSection 4.1.1.1the mathematical model has an integrator behavior, and a
good controller for such a mathematical model would be a P Controller, and (2) if there are

some perturbations in the system then will be used a PI Controller.

4.1.2.1 P Controller

This controller will be used only if there is no perturbation acting up on the tank for which the
controller is working. Since there is no perturbation, the tank can be consider to be independent,
resulting that can be used the 1TS mathematical ma@d@é)l for the controller design.

Transfer function for 1TS mathematical model without perturbations is:

cl
Controller transfer function is:
Hg(s) = kr (4.19)

Using equationZ.7) and choosing. = 60s | get:

I (4.20)

In Fig. 4.71 present the results of simulating the control of 1 TS plant using the P Con-
troller | design for a reference value of 0.6m,the Simulink schema can be fouRgpendix
E.
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Figure 4.7: 1TS with P Controller simulation results

4.1.2.2 Pl Controller

The PI controller will be used if there is any perturbation acting up on the tank for which the
controller is working.Since as | showed $ection 4.1.1.3he 3TS plant is equivalent to two

2TS plants, having a common tank, | will use the 2TS plant mathematical model for controller
design. The controller for the first tank (T1) will be designed using the mathematical model
of the 2TS plant made up of T1 and T3, while the controller for the second tank(T2) will be
designed using the mathematical model of the 2TS plant made up of T2 and T3. The method

used to design the two controllersiiee Frequency Domain Controller Desigmethod.

PI Controller transfer function is:

Hp(s) = L (1+ sT}) (4.21)

sT;

PI Controller for T1 - Bode diagrams for system transfer function and closed system transfer

function are presented Fig. 4.8
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Figure 4.8: Bode diagrams:(a)system; (b)closed system; 1 (c)closed systenkz = 10

FromFig. 4.8acan be read the dominant time constany,(,) for the plant: 7,,,, = 70s |
chooseT; = 15s and | plot the Bode diagrams for closed system&gqr= 1 (Fig. 4.8b).
If I choosep,., = 45° then from figure (b) | can see that | have to raise the diagram with
20db, which is equivalent to multiply by 10, thus resulfs= 10. Hence for tankl | get the

following PI Controller:
10

HR(S) = 1_53

(14 155) (4.22)

In Fig. 4.91 present the results of simulating the control of 2TS{3) plant using the
PI Controller | design for a reference value of 0.4m and all perturbations set to 0.5, in Matlab,the
Simulink schema can be found Appendix E.
PI Controller for T2 - Bode diagrams for system transfer function and closed system transfer
function are presented Fig. 4.10
FromFig. 4.10acan be read the dominant time constdh, () for the plant:7,,,, = 65s |
choosel; = 15s and | plot the Bode diagrams for closed systemkigr= 1 (Fig. 4.100. If |
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Figure 4.9: 2TS[}-T3) with Pl Controller simulation results

choosep,., = 45° then from figure (b) | can see that | have to raise the diagram with 17.5db,
which is equivalent to multiply by 5.3, thus resultg = 5.3. Hence for tankl; | get the
following PI Controller:

5.3

Hg(s) = 1_53(1 + 15s) (4.23)

In Fig. 4.111 present the results of simulating the control of 2T:3{3) plant using the
P1 Controller | design for a reference value of 0.4m and all perturbations set to 0.5,the Simulink
schema can be found Appendix E.

The PI controllers will be implemented so that the P and | components are distinct as

shown inFig. 4.12
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In Fig. 4.131 present the results of simulating the control of 3TS plant using the
Pl Controllers | design before, for a reference value of 0.5mhfoand 0.4 forh,, and all

perturbations set to 0.5,the Simulink schema can be fouAgpendix E.
As it can be seen from the simulation resutis> 20%, which is too much so | have

introduce Anti Windup Reset (AWR) in order to reduce the The block schema for the

controller with AWR is presented iRig. 4.14
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In Fig. 4.151 present the results of simulating the control of 3TS plant using the PI
Controllers | design before with ARW, for a reference value of 0.5mfoand 0.4 forh,, and

all perturbations set to 0.5,the Simulink schema can be fouAgpendix E.
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4.2 Control Protocol

| have implemented this protocol in order to have a simple way to communicate between the
regulator client and the process server. The protocol is build over TCP/IP. | have implemented
a full version of the protocol in Java and in C | have implemented only the regulator client.

In Fig. 4.161 present the structure of a packet fr&@ontrol Protocol As it can be seen from

TYPE DATA 1 DATA N

Figure 4.16: Control Protocol packet structure

the figure the first byte in the packet will represent the packet type, after this byte there can be
a fix or a variable number of bytes representing packet data. If packet data has a fix number of
bytes then data length is known from the type (a type can not be used both with fix and variable
data length). If the packet data has a variable length then the first byte after the type byte will

represent data length. For a full description of the protocol you should logk@endix B.

Further | will present the Java and C implementation of the protocol.

4.2.1 Javaimplementation

Control Protocolwas implemented in the packagentrol.net the package contains only four

classes:

e ControlProtocol— in this class are defined gsiblic static final bytemembers all the
possible packet types and all the error codes, there are also defined a fewstaitiity

methods;
e ControlProtocolExceptior this represents an exception, the class extg@wdslang.Exception

e ProcessServer this class represents the server (the process is considered to be the
server); the constructor for this class takes a single parameter that represents the port
on which the server will listen, still in the constructoiSarverSockes created for the
specified port, but the server will not start listening for clients untildtat() method is

called; whatstart() method does, is to create a new thread in which the server will start
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listening for clients, and if a client is accepted then an instanc&eoferWorkerwhich

is an internal class, will be created and put in a list of clients, in order to take care of the
client in a separate thread, while the server will continue to wait for others clients; what
worker dose is: wait for packets from the client and for each packet if it is necessarily it
will raise an event to notify the presence of the packet; in the server class there are also
defined method that allows to the upper layer to send a packet to all client (broadcast);
there is also a stop method that will send a packet to all clients telling them that the server

is going down and then it will close all the workers and the server main thread.

e RegulatorClient- this class represents the client (the regulator is considered to be the
client); the constructor will take two parameters: (Btangthat will represent the server
address, and (2) ant that will represent the port on which the server is listening, in the
constructor there will be createdsmcketthat will connect to server, after the connection
was establish a synchronization packet is send to the server that will have to reply with
the same packet, otherwise the client will shutdown; there is aldarf) and astop()
method, thestart() method will create a new thread, where the client will wait for packets
send by the server and it will raise an event if necessarily to notify the upper layer, the
stop()method will send a packet to the server telling it that the client is going down and
then stops the thread; there are also others methods defined, that can be used by the upper

layer to send a packet to the server.

4.2.2 Cimplementation

It is just a partial implementation of the regulator client, but still enough to be able to control
the process. The implementation is made in one file Crdileleint.c and the corresponding

header filerg_client.h The implementation consists of the following functions:
e init_rg_client() — initialized the connection and sends the synchronization packet;
e a couple of functions that are used to send a particular type of packet;

e readsensors() used to read a packet send by server and that represents the new fluid

levels in the three tanks.
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As it can be seen the error cases are not treated and also the only valid packet that should be send
by the server is the one that represents the new signals values, if any other packet is sent, then
the regulator will report a broken protocol and will stop. This condition is satisfied because the
server can accept to types of cliengsotto clientandjava clien), the only difference between

them is that tagiotto clientsthe server will send only packets that represents new signals value

and will ignore all other packets.

4.3 3TS Simulator

3TS Simulatort is implemented in Java. The main classisulator.Simulator3T.SThe user
guide for the application is presentedAppendix C. When implementing the simulator | tried
to decoupleJser Interfaceas much as possible from the logic. Having this idea in mind, | have

split the application in three packets:
e simulator.model — contains all classes used to simulate the process;
e control.net — this was presented before and what is used from this is the server.

e Simulator.ui — contains all classes used to create user interface;

4.3.1 Package simulator.model

This package contains all the class used to simulate 3TS proce$sg.1@.171 present the
UML diagram for the classes in this package.

As it can be seen from the UML diagram all the models are driven from the same class
(Model), which extends another cladéyPropertyChangeSupportNext | will describe each

class:

MyPropertyChangeSupport —this class is from the packebntrol.util, it is an abstract class,

its main purpose is to add support ropertyChangevent in the subclasses;
Model - this is also an abstract class and it is extended by all models;

TapModel — this class implements the logic for a tap, it hasoaiblemember that represents

the open coefficient, it also keeps two referencesTar&kModel if both are nonull then
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MyPropertyChangeSupport
Model
PumpM odel TankModel TapModel Model3TS
2 3 6 <>

Figure 4.17: UML diagram for simulator.model package

the tap is between two tanks else it is an emptying tap, this class has also a method that
based on the tanks references and the open coefficient computes the flow capacity through

the tap, the class can also trigger an event every time the open coefficient changes ;

PumpModel -this class implements the logic for a pump, this class has theseberspump
capacity, the command given to the pump (in [V], and the pump debit computed on the

first two), the class can trigger an event when command has changed or debit has changed;

TankModel - this class implements the logic for a tank, this class h@staf taps that are
connected to the tank, Setof pumps that are connected to the tanklcablemember
representing the hight of the tank, and anottmrblemember representing the fluid level,
there is also a method that takes as a parameter the sample time, and based on pumps
and taps debit it will compute the speed of variation of the fluid, that will be integrated
to obtain the actual fluid level, the class can trigger an event every time the fluid level

changes;

Model3TS - this class implements the logic for the 3TS process simulation and it uses the
previous three models in order to do this, the class hastamember representing the
sample time, in order to simulate 3TS process a thread is created that after sample time

milliseconds will compute the new fluid level in each tank;
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4.3.2 Package simulator.ui

For each mode there is a graphical component used to control that model paramekegs. In

4.18it is presented the UML diagram of the class in this package.

java.swing.JPanel
! |
TankPanel MySlider
PumpSlider TapSlider PeriodSlider

Figure 4.18: UML diagram for simulator.ui package

Next | will present each class in the packet:

MySlider - this class will be used only as a base class, it represents a slider;

PumpSlider — extendsMySliderand it is used to update the command given to the pump, it

has aPumpModemember for which the command is given;

TapSlider — extenddMlySliderand it is used to update the open coefficient of a tap, there is a

TapModelmember for which the coefficient is controlled;

PeriodSlider — extenddMySliderand it is used to update the simulation sample time, there is

aModel3TSmember for which the sample time is updated,;

TankPanel — this is used to graphically represent the the evolution of the fluid level in a tank,

there is alTankModelmember which is represented by the component.
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4.4 3TS Controller

4.4.1 3TS Controller

3TS Controlleris implemented in Java. The main classantroller.Controller3TSThe user
guide for the application is presenteddppendix D. As3TS Simulatothis too is implemented
with the idea of separating the user interface from the application logic. It is made up of three

packets:

e controller.model — contains all classes used to implement the regulator logic;
e control.net — this was presented before and what is used from this is the client;

e controller.ui — contains all classes used to create user interface.

Next | will present each packet excegaintrol.netin a separate subsection.

4.4.2 Package controller.model

The classes in this package implements the logic of the applicatiofiglr4.19can be seen

the UML diagram for this package. Further | will detail each of this classes:

AbstractTableModel MyPropertyChnageSupport

A !

SignalModel ControllerModel
A

PolynomModel PIControllerModel GeneralControllerModel

Figure 4.19: UML diagram for controller.model package

SignalModel - this class implements a model for a signal, it hag\emayList member which
is used to store data, what is interesting about this class is that when accessing an element
whose index is not in the rage then zero will be return and no Exception is thrown, also it

can trigger an event when a new value is added;
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ControllerModel - this is the base class for all controllers, it hasramember that represents
regulator sample time, it also has AmrayList of SignalModel for commands, another
one for feedback signals, and another one for error signals and an array of doubles for
references and new computed commands, it can trigger an event when the sample time

has changed,;

PIControllerModel - this class implements the Pl Controller with ARW, it has as members
kr andT; based on this it will compute the numerical algorithm parameters, it also im-
plements the abstract methocdmputeCommandiat is inherit fromRegulatorModelin
this method, based on the feedback signals, error signals, and commands signal the PI

numerical algorithm is implemented,;

PolynomModel — this class extend&bstractTableModebecause it is also used as a model
for a JTablecomponent, it has aArrayList member that will be used to store polynom

coefficients;

GeneralControllerModel — this class implements a general numerical control algorithm, it
has two members of tydeolynomModelone forp coefficients and another one fgico-
efficients, the class implementemputeCommandsom the superclass, in this method
actually is implemented the general numerical algorithm basegxcoefficientsg coeffi-
cients, feedback signals, error signals, and commands sign@ledm4.4.1l present the
computeCommandsethod for the general algorithradmputeCommandsethod for Pl

controller is just a particular case of this).

4.4.3 Package controller.ui

The classes in this package are used to create user interface &rSheontroller In Fig. 4.20

can be seen the UML diagram for this package. Further | will detail each of this classes:

DiagramPanel — this is used for plotting a signal, the signal is represented SigaalModel

member, every time a value is added to the signal the component is repainted;

DiagramDialog — this class is used to display a dialog, that will draw the diagram for a signal

and it will compute the quality indicators if it is the case;
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Code 4.4.1computeCommands method for general numerical control algorithm

public void computeCommands() {

/linitializations

double yk=ySignale.getScaledValue(ySignale.getSize()-1);

double ek=referances[0]*ySignale.getScaleFactor()-yk;

/Il add p coefficients

final Iterator p=pCoefficient.iterator();

int index=pCoefficient.getRowCount();

while(p.hasNext(){
inal double crrP=((Double)p.next()).doubleValue();
newCommands[0]+=-crrP*uSignale.get(uSignale.getSize()-index);
index--;

/ladd p coefficients
final Iterator g=qCoefficient.iterator();
index=qCoefficient.getRowCount();
while(g.hasNext()){
final double crrQ=((Double)q.next()).doubleValue();

if(index==1)
newCommands[0]+=crrQ*ek;
else
newCommands[0]+=crrQ*eSignale.get(eSignale.getSize()
-index+1);
index--;
}
1 limit the command [0,10]
)}“store command and error
}
JDialog JPanel
DiagramDialog DiagramPanel PIControllerPanel PolynomPanel

GeneralControllerPanel

Figure 4.20: UML diagram for controller.ui package
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PIControllerPanel — this class is used to create a graphical component that can be used to set

the parameters forRIControllerModelinstance;

GeneralControllerPanel — this class is used to create a graphical component that can be used

to set the parameters foiGeneralControllerModeinstance;

PolynomPanel — this class is used to create a graphical component that can be used to add,

remove, or change a coefficient fronfPalynomModelnstance.

4.4.4 TSL 3TS Controller

| have implemented only the PI Controller with ARW algorithm. The implementation consists

of two pars:

e one that is written in C, and implements the control algorithm as well as the communica-

tion with the plant, this represents the functionality;

e and the part that is implementedTiSL, representing the timing.

4.4.5 Cimplementation

C implementation consist of. (Cpntrol Protocolimplementation, this was presentedSnb-
section 4.2.2and (2) the regulator implementation and the implementation of the driver used to
read sensors and write actuators.

In Code 4.4.2 present the C implementation for the PI with ARW control algorithm.
One can clearly see the separation between P and | components. All the parameters of the
algorithm g, 7;, and sample time) are read from a file in the initialization function (discussed
in Subsection 4.2.2

4.4.6 TSL implementation

In Fig. 4.211 present the structure of the program. As it can be seen from the figure the program

has four modesP_P, P_PI, PI_P, andPI_PI. All four modes have:

e the same period;
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Code 4.4.2P_Rg function

double P_Rg(double w,double y, double kR,double kRi,
double Tri,type_circular_array *u,type_circular_array *ulim,
type_circular_array *ui,type_circular_array *e){
double uk;
double ek;
double uik;
ek=w-y;
uk=kR*ek;
uik=(uk-kRi*ek)*Tri/kRi;
circular_array_add(u,uk);
if(uk<0.0){
uk=0.0;

}
if(uk>10.0){

uk=10.0;
}
circular_array_add(ulim,uk);
circular_array_add(ui,uik);
circular_array_add(e,w-y);

return uk;
}
MODE P_P MODE P_PI
period 500ms period 500ms
sen_hl sen_hl
rgl_P rgl_P
act_pumps act_pumps
O
sen_h2 sen_h2
rg2 P rg2_PI
MODE PI_P MODE PI_PI
period 500ms period 500ms
sen_hl sen_hl
O———+ rgl_PI O——— rgl_PI
act_pumps act_pumps
sen_h2 sen_h2
O—— rg2 P O———— rg2_PI

Figure 4.21: TSL program structure
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e two tasks;

e two sensors update with an offset of 100ms (k&rand serh?2);
e Six sensors update with zero offset;

e One actuator update (aptmps);

e three mode switches.

The execution will always start with tHe_P mode. The program can switch from any mode to

any other mode.

P_P mode - this mode is used when there is no perturbation acting up,ar 73, the control

lows for the two tanks are of P type;

P_PI mode - this mode is used when there is no perturbation acting uffiorbut there is
perturbation acting up oih,, for 77 there will be used a P control low, while @k there

will be used a PI control low

P1_P mode - this mode is used when there is no perturbation acting uff,orbut there is
perturbation acting up of, for 75 there will be used a P control low, while f@i there

will be used a PI control low

P1_P1 mode - this mode is used when there is perturbation acting uf;oor 75, the control

lows for the two tanks are of Pl type;

Full TSLprogram and th& codegenerated for it can be seenAppendix A.

4.4.7 Simulation results

In this section | will present the results of usim@L Controller.

In Fig. 4.221 present the results of using the PI Controller for tdiland P Controller
for tank73. The simulation conditions arey = 0.5m, hyy = 0.4m, pe; = 0.5, andue, =
He3 = Hs1 = [s2 = g2 = 0.

In Table 4.1andTable 4.2can be found the quality indicators fét and75.
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Figure 4.22: PIP mode simulation results

20%
t, | 72[s]
147[s]
167[s]
244]s]
818[s]

Table 4.1: PIP T} quality indicators
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01 0%
iy | 42[s]
. | 129[s]
t1 | 342[s]
tm | 342[9]
t. | 120[s]

Table 4.2: PIP T; quality indicators

In Fig. 4.23I present the results of using the Pl Controller for tdhland P1 Controller
for tank 7;,. The simulation conditions arey = 0.5m, hog = 0.4m, fle1 = flea = [le3 =
0.5,1151 = 0.3,150 = 0.4, andpzo = 0.

In Table 4.3andTable 4.4can be found the quality indicators fét and75.

01 8%
t, | 114]s]
¢, | 208[s]

t1 | 302[s]

tm | 379[S]

t. | 639[s]

Table 4.3: PIPI T; quality indicators

o | 17%

£, | 119[5]

t, | 217[s]
t1 | 266[s]
tm | 381[s]
t. | 835[9]

Table 4.4: PIPI T; quality indicators

In Fig. 4.241 present the results for the following simulation conditidng:= 0.5m,
hso = 0.4m, | start with all perturbation set to zero, then | $et = 0.4, us; = 0.5, and

ies = 0.6, and in the end | set,.o = 0.5, andyi,s2 = 0.6.
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Figure 4.23: PIPI mode simulation results
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Chapter 5

Conclusions

In this thesis | have presented how | had implemented the compiler farShestarting from

a previous implementation of@iotto compiler. Then | had presented the solution to a control
problem usingTSL for the implementation of the control low. From the case study one can
easily observe that there are three main steps that must be followed when solving a control

problem usingl'SL:

e plant modeling and controller design;
e implementation of the control low in C, this represents the functionality;

e writing the TSLprogram, which represents the timing.

5.1 Outlook and Future Work

The anchored tasks were introduced BlLbecause of the need to communicate between groups

of tasks that have different elements, otherwise the float tasks would have been enough. In a
future version we plan to remove anchored tasks and to have only float tasks, but in order

to do this a mechanism to be able to communicate between float tasks groups with different

frequencies is needed. A solution for this could be to use generalized ports (communicators)

that can be both read and write by tasks, an actuator is a special case of port that can only be
written, while a sensor is a special port that can only be read. Thefm$Larogram there will

be acommunicator updatesimilar to a sensor or actuator update, that will have a frequency

and will use a driver to update the port (the driver will read from some tasks).



82 Conclusions

In the currenfTSLimplementation, there can be executed only one mode, a good idea
would be able to run a number n of modes in parallel, but a mode will contain only tasks that
have the same frequency.

An important limitation ofTSLis that when switching from one mode to another then
either the tasks are removed or added, but not both, in other words you are not able to replace
tasks when you switch from one mode to another. In order to overcome this limitation for
each task there will be specified a nominal execution time (NET), this of course is platform
independent and it will allow to compare relatively tasks. The idea for this NET comes from
the fact that if two tasks, andt, are given, and if on a platform is faster thert,, then this
will be the case on any other platform.

In the current implementation of thESL CompileandE Machinethe compiler gen-
erates C code for eadSLprogram, that has to be compiled and static linked irEiMachine
This implies that th&e Machinemust be compiled after each compilationT&L program. A

solution to this would be to use dynamic linking.



Appendix A

TSL 3TS Regulator Program

TheTSLprogram that implements the regulator is:

sensor
c_double sen_hl uses getH1; //reads hl

c_double sen_h2 uses getH2; //reads h2

c_int sen_el uses getEl; //read T1 el evacuation valve state

c_int sen_e2 uses getE2; //read T2 e2 evacuation valve state

c_int sen_e3 uses getE3; /fread T2 e3 evacuation valve state

c_int sen_g2 uses getG2; //read T2 g2 evacuation valve state

c_int sen_sl uses getSl; /lread T1-T3 sl inverconnection valve state
c_int sen_s2 uses getS2; /lread T2-T3 s2 inverconnection valve state

actuator
c_double_arr act_pumps uses updateCommand; // update pumps command

output
c_double out_ul
c_double out_u2 :

c_zero_double; //lcommand for first pump
c_zero_double; //command for second pump

[ltasks

/IGeneral regulator for hl

task rgl_PI(c_double h1) output(out_ul) state(){
release PI_Rgil(hl, out_ul)

}

/IGeneral regulator for h2

task rg2_PI(c_double h2) output(out_u2) state(){
release PI_Rg2(h2, out_u2)

}

/IP regulator for hl
task rgl_P(c_double hl) output(out_ul) state(){
release P_Rg1(hl, out_ul)

/IP regulator for h2

task rg2_P(c_double h2) output(out_u2) state()}{
release P_Rg2(h2, out_u2)

}

/[drivers

/lupdate rgl input
driver update_rgl(sen_h1) output(c_double h1){
if c_true() then double_to_double(sen_h1,h1)

}
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/lupdate rg2 input

driver update_rg2(sen_h2) output(c_double h2){
if c_true() then double_to_double(sen_h2,h2)

}

/lupdate command limit task input

driver update_comm_limit(out_ul,out_u2) output(c_double ul, c_double u2){
if c_true() then double2_to_double2(out_ul,out_u2,ul,u2)

}

/lactuator update
driver update_act_pumps(out_ul,out_u2) output(c_double_arr commands){
if c_true() then double2_to_double_arr(out_ul,out_u2,commands)

}

//mode switch drivers
driver P_P_to_P_PI(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
if P_P_to_P_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)

then empty_switch_driver()

driver P_P_to_PI_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
if P_P_to_PI_P_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

}

driver P_P_to_PI_PI(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
if P_P_to_PI_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

}

driver P_PI_to_P_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){

if P_PI_to_P_P_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)

then empty_switch_driver()

}

driver P_PI_to_PI_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
if P_P_to_PI_P_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)

then empty_switch_driver()

}

driver P_PI_to_PI_PIl(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(}{
if P_P_to_PI_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

}

driver PI_P_to_P_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
then_er;pt;/_gwﬁch_driver()

}

driver PI_P_to_P_PI(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){

if PI_P_to_P_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)

then empty_switch_driver()

driver PI_P_to_PI_Pl(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(}
if PI_P_to_PI_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

}

driver PI_PI_to_P_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(){
if PI_PI_to_P_P_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

}

driver PI_PI_to_P_PIl(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(}{

if PI_PI_to_P_PI_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()



}

driver PI_Pl_to_PI_P(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2) output(}{
if PI_PI_to_Pl_P_cond(sen_el,sen_e2,sen_e3,sen_g2,sen_sl,sen_s2)
then empty_switch_driver()

start P_P{
mode P_P() period 500{

/lsensor update
senfreq 1 do sen_hl offset 100;

senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_el offset O;
senfreq 1 do sen_e2 offset O;
senfreq 1 do sen_e3 offset O;
senfreq 1 do sen_g2 offset O;
senfreq 1 do sen_sl offset 0;
senfreq 1 do sen_s2 offset 0;

/lactuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

/Imode switch

exitfreq 1 do P_PI(P_P_to P_PI);
exitfreq 1 do PI_P(P_P_to_PI_P);
exitfreq 1 do PI_PI(P_P_to_PI_PI);

floatfreq 1 do rgl_P(update_rgl);
floatfreq 1 do rg2_P(update_rg2);
}

mode P_PI() period 500{
/lsensor update
senfreq 1 do sen_hl offset 100;

senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_el offset O;
senfreq 1 do sen_e2 offset O;
senfreq 1 do sen_e3 offset O;
senfreq 1 do sen_g2 offset O;
senfreq 1 do sen_sl offset 0;
senfreq 1 do sen_s2 offset 0;

/lactuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

/Imode switch
exitireq 1 do P_P(P_PI_to_P_P);

exitfreq 1 do PI_P(P_PI_to_PI_P);
exitfreq 1 do PI_PI(P_PI_to_PI_PI);

floatfreq 1 do rgl_P(update_rgl);
floatfreq 1 do rg2_Pl(update_rg2);
}

mode PI_P() period 500{
/lsensor update
senfreq 1 do sen_hl offset 100;

senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_el offset O;
senfreq 1 do sen_e2 offset O;
senfreq 1 do sen_e3 offset O;
senfreq 1 do sen_g2 offset O;
senfreq 1 do sen_sl offset 0;
senfreq 1 do sen_s2 offset 0;

/lactuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

/Imode switch
exitireq 1 do P_P(PI_P_to_P_P);
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exitfreq 1 do P_PI(PI_P_to _P_PI);
exitfreq 1 do PI_PI(PI_P_to_PI_PI);

floatfreq 1 do rgl_Pl(update_rgl);
floatfreq 1 do rg2_P(update_rg2);
}

mode PI_PI() period 500{
/lsensor update
senfreq 1 do sen_hl offset 100;

senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_el offset O;
senfreq 1 do sen_e2 offset O;
senfreq 1 do sen_e3 offset O;
senfreq 1 do sen_g2 offset O;
senfreq 1 do sen_sl offset 0;
senfreq 1 do sen_s2 offset 0;

/lactuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

/Imode switch

exitfreq 1 do P_P(PI_PI_to_P_P);
exitfreq 1 do P_PI(PI_PI_to_P_PI);
exitfreq 1 do PI_P(PI_PI_to_PI_P);

floatfreq 1 do rgl_Pl(update_rgl);
floatfreq 1 do rg2_Pl(update_rg2);
}
}

TheE codegenerated by the compiler for the previous program is:

/loutput port initialization
call(init(out_ul))
call(init(out_u2))

/lijump to start mode
jump(mode_address[P_P,0])

//mode P_P

//mode_address[P_P,0]

call(dev(sen_s2))

call(dev(sen_g2))

call(dev(sen_e3))

call(dev(sen_e2))

call(dev(sen_el))

call(dev(sen_s1))
if(condition_P_P_P_PI,switch_address[P_P,0,P_PI1,0,P_P_to_P_PI])

if(condition_P_P_PI_P,switch_address[P_P,0,PI_P,0,P_P_to_PI_P])

if(condition_P_P_PI_PI,switch_address[P_P,0,PI_PI,0,P_P_to_PI_PI])
jump(task_address[P_P,0])

[//switch_address[P_P,0,P_PI1,0,P_P_to_P_PI]
call(driver(P_P_to_P_Pl))

jump(task_address[P_P1,0])

/Iswitch_address[P_P,0,PI_P,0,P_P_to_PI_P]
call(driver(P_P_to_PI_P))
jump(task_address[PI_P,0])

//switch_address[P_P,0,PI_PI1,0,P_P_to_PI_PI]
call(driver(P_P_to_PI_PI))

jump(task_address[PI_PI,0])

/ltask_address[P_P,0]
future(100,sensor_update_address[sen_h1,P_P,0])
future(100,sensor_update_address[sen_h2,P_P,0])
future(100,task_release_address[rgl_P,P_P,0])



future(100,task_release_address[rg2_P,P_P,0])
future(100,mode_address[P_P,1])
return

/Isensor_update_address[sen_h1,P_P,0]
call(dev(sen_h1))
return

/Isensor_update_address[sen_h2,P_P,0]
call(dev(sen_h2))
return

Iltask_release_address[rgl_P,P_P,0]
call(driver(update_rg1))
release(task(rgl_P))

return

Iltask_release_address[rg2_P,P_P,0]
call(driver(update_rg2))
release(task(rg2_P))

return

/Imode_address[P_P,1]
future(100,mode_address[P_P,2])
return

/Imode_address[P_P,2]
future(100,mode_address[P_P,3])
return

//mode_address[P_P,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[P_P,4])
return

//Imode_address[P_P,4]
future(100,mode_address[P_P,0])
return

/IP_Pl mode

/Imode_address[P_PI,0]

call(dev(sen_s2))

call(dev(sen_g2))

call(dev(sen_e3))

call(dev(sen_e2))

call(dev(sen_e1l))

call(dev(sen_s1))
if(condition_P_PI_P_P,switch_address[P_PI,0,P_P,0,P_PI_to_P_P])
if(condition_P_PI_PI_P,switch_address[P_PI,0,PI_P,0,P_PI_to_PI_P])
if(condition_P_PI_PI_PI,switch_address[P_PI,0,PI_PI1,0,P_PI_to_PI_PI])
jump(task_address[P_PI,0])

/Iswitch_address[P_PI,0,P_P,0,P_PI_to_P_P]
call(driver(P_PI_to_P_P))

jump(task_address[P_P,0])

/Iswitch_address[P_P1,0,PI_P,0,P_PI_to_PI_P]
call(driver(P_PI_to_PI_P))
jump(task_address[PI_P,0])

//switch_address[P_P1,0,P1_PI,0,P_PI_to_PI_PI]
call(driver(P_PI_to_PI_PI))
jump(task_address[PI_PI,0])

/ltask_address[P_PI,0]
future(100,sensor_update_address[sen_h1,P_PI,0])
future(100,sensor_update_address[sen_h2,P_PI,0])
future(100,task_release_address[rgl_P,P_PI,0])
future(100,task_release_address[rg2_PI,P_P1,0])
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future(100,mode_address[P_PI,1])
return

//sensor_update_address[sen_h1,P_PI,0]
call(dev(sen_h1))
return

/Isensor_update_address[sen_h2,P_PI,0]
call(dev(sen_h2))
return

[ltask_release_address[rgl_P,P_PI,0]
call(driver(update_rg1))
release(task(rgl_P))

return

Iltask_release_address[rg2_PI,P_PI,0]
call(driver(update_rg2))
release(task(rg2_Pl))

return

/Imode_address[P_PI,1]
future(100,mode_address[P_PI,2])
return

/Imode_address[P_P1,2]
future(100,mode_address[P_PI,3])
return

/Imode_address[P_PI,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[P_P1,4])
return

/Imode_address[P_Pl,4]
future(100,mode_address[P_PI,0])
return

//Imode PI_P

/Imode_address[PI_P,0]

call(dev(sen_s2))

call(dev(sen_g2))

call(dev(sen_e3))

call(dev(sen_e2))

call(dev(sen_el))

call(dev(sen_s1))
if(condition_PI1_P_P_Pl,switch_address[PI_P,0,P_PI,0,PI_P_to_P_PI])
if(condition_P1_P_P_P,switch_address[PI_P,0,P_P,0,PI_P_to_P_P])
if(condition_P1_P_PI_PIl,switch_address[PI_P,0,PI_PI1,0,PI_P_to_PI_PI])
jump(task_address[PI_P,0])

/Iswitch_address[PI_P,0,P_PI,0,PI_P_to_P_PI]
call(driver(PI_P_to_P_PI))

jump(task_address[P_PI1,0])

/Iswitch_address[PI_P,0,P_P,0,PI_P_to_P_P]
call(driver(PI_P_to_P_P))
jump(task_address[P_P,0])

[//switch_address[PI_P,0,PI_PI,0,PI_P_to_PI_PI]
call(driver(P1_P_to_PI_PI))

jump(task_address[PI_PI,0])

/ltask_address[PI_P,0]
future(100,sensor_update_address[sen_h1,PI_P,0])
future(100,sensor_update_address[sen_h2,PI1_P,0])
future(100,task_release_address[rgl_PI,PI_P,0])
future(100,task_release_address[rg2_P,PI1_P,0])
future(100,mode_address[PI_P,1])



return

/Isensor_update_address[sen_h1,Pl_P,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,PIl_P,0]
call(dev(sen_h2))
return

[ltask_release_address[rgl_P,PI_P,0]
call(driver(update_rg1))
release(task(rgl_Pl))

return

[ltask_release_address[rg2_P,PI_P,0]
call(driver(update_rg2))
release(task(rg2_P))

return

/Imode_address[PI_P,1]
future(100,mode_address[PI_P,2])
return

/Imode_address[PI_P,2]
future(100,mode_address[PI_P,3])
return

/Imode_address[PI_P,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[PI_P,4])
return

/Imode_address[PI_P,4]
future(100,mode_address[PI_P,0])
return

/Imode PI_PI

/Imode_address[PI_PI,0]

call(dev(sen_s2))

call(dev(sen_g2))

call(dev(sen_e3))

call(dev(sen_e2))

call(dev(sen_el))

call(dev(sen_s1))
if(condition_PI_PI_P_PI,switch_address[PI_PI1,0,P_PI,0,PI_PI_to_P_PI])
if(condition_P1_PI_PI_P,switch_address[PI_PI,0,PI_P,0,PI_PI_to_PI_P])
if(condition_P1_PI_P_P,switch_address[PI_PI,0,P_P,0,PI_PI_to_P_P])
jump(task_address[PI_PI,0])

[//switch_address[PI_P1,0,P_PI,0,PI_PI_to_P_PI]
call(driver(PI_PI_to_P_PI))

jump(task_address[P_P1,0])

/Iswitch_address[PI_P1,0,P1_P,0,PI_PI_to_PI_P]
call(driver(PI_PI_to_PI_P))
jump(task_address[PI_P,0])

/Iswitch_address[PI_P1,0,P_P,0,PI_PI_to_P_P]
call(driver(PI_PI_to_P_P))

jump(task_address[P_P,0])

/ltask_address[PI_P1,0]
future(100,sensor_update_address[sen_h1,PI_PI,0])
future(100,sensor_update_address[sen_h2,PI_PI,0])
future(100,task_release_address[rgl_PI,PI_P1,0])
future(100,task_release_address[rg2_PI,PI_P1,0])
future(100,mode_address[PI_PI,1])

return
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/Isensor_update_address[sen_h1,Pl_PI,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,P1_PI,0]
call(dev(sen_h2))
return

/ltask_release_address[rgl_PI,PI_PI,0]
call(driver(update_rg1))
release(task(rgl_Pl))

return

Iltask_release_address[rg2_PI,PI_PI,0]
call(driver(update_rg2))
release(task(rg2_Pl))

return

/Imode_address[PI_PI,1]
future(100,mode_address[PI_PI,2])
return

//mode_address[PI_PI,2]
future(100,mode_address[PI_PI,3])
return

/Imode_address[PI_PI,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[PI_PI,4])
return

/Imode_address[PI_PI,4]
future(100,mode_address[PI_PI,0])
return
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Control Protocol valid packets:

e synchronize request- it is send by the client and the server will respond with the same

packet:

e command- this represents a command packet, data has a variable length:

1 length byte, byte|ength

e set period— this is sent by the client and tells the server what is the period for sending

the new values of the signals, the length of data is constant and is 2:

2 MSB LSB

e new values— this is a packet that is send by the server and represents new signals values

it has a variable length:

3 length byte, byte|ength

e netdelay-thisis a packet thatitis used to determine the delay introduced by the network,
the client will send this packet and the server will response with a packet that has the same

type but no data:
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4 ID

error —this is an error packet, it can be send both by the server and client and it has only

one byte of data, that will represent the error code:

5 error code

stop — this can be send both by the server or client and tells the partner that it is going

down, it has no data:

sensor request- this is send by the client, and tells the server to send the new signals

values, it has no data:

regulator request— this is send by the client and tells the server that the client wants to
be a regulator, initially the client is considered to be in the view mode, if there is already
a regulator then the server sends an error packet, else responses with the same packet, this

packet has a single byte of data representing the regulator type:

8 RG type

disconnect regulator— this is send by the client and tells the server that if it is a regulator

then it wants to be disconnected, this packet has no data:
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3TS Simulator User Guide
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Figure C.1: 3TS Simulator screenshot

As it can be seen from the screenshig. C.1the application main window is split in 3 panels:

control panel — this panel allows the user to:

¢ set the functioning mode, the mode canmbanualor autg, if the simulator will be

use without a regulator then it should be used in manual mode, else it should be in
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auto mode; in auto mode the user will not be able to control the command given to

the pumps;
e change the command given to pumps, this is possible only in manual mode;
e change the opening coefficient of the valves;

e set the port on which the server will listen and start the server;
simulation control panel — this panel allows the user to:

e set the simulation sample time;

e start, stop, or restart the simulation

simulation panel — this panel takes no input from the user it is just a viewer for the simulation.
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Figure D.1: 3TS Controller screenshot

As it can be seen from the screenshi. D.1the main application window is split in 3 panels:

control panel — allows the user to:

¢ set the address and port on which the server is listening and connect to the server, if

the connection to the server was not establish then the user can’t do any thing since
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all others controls are disabled until the connection is established;

e switch between the view and control mode, in view mode the program receives data
from the server and plots it, while in the control mode the program actually controls

the 3TS simulated process;

e start or stop the controller and save simulation data; simulation data will be saved in
two formats:(1) each signal will be saved in a file located in the application directory,
named after the signal, and having the extenslat) the file will contain all the
values for the signal separated by semicolon, and (2) each signal will be saved in a
jpg image file, this file will be also locate din the application directory and will be

named after the signal it will represent ;

controller panel - this panel will be activated only if the program is in control mode and the
controller is stop, the user can choose between two types of controllerss: (1)a PI con-
troller and (2) a general controller, in both cases the user will be able to set the reference,

controller parameters,and sample time ;

view panel — in this panel are plotted the main signals, if one double clicks on one of the

diagrams then a dialog will be showed for that diagr&ig.(D.2).

In Fig. D.2can be seen thBiagram Dialogfor h,. The dialog is split in two parts, the
first one is represented by a table that will contain the quality indicators for the signal, and the
second part where the signal diagram is drawn. If the user selects an indicator from the table,
then a line will be drawn on the diagram to represent that indicator, there can be more the one
indicators selected at the same time. For instance in the figure there are sglggtaad?,,
this will result in drawing to lines on the diagram, a horizontal oneffgy and a vertical one
for t.. There is also drawn a supplementary line representing the reference for the computed
time indicators. There is also a save button that will save the diagrappgimage file, the file
will be located in the application directory and will be named after the signal it is representing

plus the suffixancy.
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lalals) ha
Quality Indicator Value
h2inf 40.0
h2 min 0.0
h2max 44.21
sigma 0.1
15/Te 98.0
t/Te 198.0
1/Te 235.0
tm/Te 296.0 4
trjTe 944.0

n2lem|

Figure D.2: Diagram Dialog screenshot
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Appendix E

Matlab programs and Simulink schemes

1TS-MM - Simulink schema for 1TS plant and the Matlab program associated with it:

T

Step 2ain

- - e | h
Y

Integratar h
Fen =qrifu[1])

aini

C—

Clock 1

Figure E.1: 1TS Simulink schema

Matlab const.m program:

%pFile with constants for mathematical modeling of the 1TS plant

%Inputs

¢=0.0000155; %m3/(V*sec)
uc=10; %V

u=0.5;

%Constants
A=0.0154; %m?2;

S$=0.00005; %m2;
g=9.81; %m/sec2

2TS-MM - Simulink schema for 2TS plant and the Matlab program associated with it:
Matlab const.m program:

¢=0.0000155; %m3/(V*sec)
uc=10; %V
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Figure E.2: 2TS Simulink schema
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A=0.0154; %m2;
S$=0.00005; %m2;
g=9.81; %m/sec2

3TS-MM - Simulink schema for 3TS plant and the Matlab program associated with it:
Matlab const.m program:

¢=0.0000155; %m3/(V*sec)
A=0.0154; %m2;

S=0.00005; %m2;

0=9.81; %m/sec2

Km=27;

uel=1;
ue3=1;
usl=1;
ue2=1;
ug2=1;
us2=1;

ucl=10;
uc2=10;

1TS-Controller - Simulink schema for 1TS plant with P Controller and the Matlab program

associated with it:
Matlab const.m program:

¢=0.0000155; %m3/(V*sec)
u=0;

A=0.0154; %m?2;
S=0.00005; %m2;
0=9.81; %m/sec2
Km=27;

h0=0.3; %m
u0=0

%regulator P
tr=60;
kR=3*A/(tr*c

2TS-Controller - Simulink schema for 2TS plant with PI Controller and the Matlab program

associated with it:
Matlab const.m program:

¢=0.0000155; %m3/(V*sec)
A=0.0154; %m2;

S=0.00005; %m2;

0=9.81; %m/sec2

Km=27;
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h10=0.4;
h30=0.3;
uel0=0.5;
ue30=0.5;
us10=0.5;

%A matrix

all=-S/A*sqrt(2*g)/2*(us10*sign(h10-h30)/sqrt(abs(h10-h30)) + uel0/sqrt(h10));
al2=us10*S/A*sign(h10-h30)*sqrt(2*g)/2/sqrt(abs(h10-h30));
a21=us10*S/A*sign(h10-h30)*sqrt(2*g)/2/sqrt(abs(h10-h30));
a22=-S/A*sqrt(2*g)/2*(us10*sign(h10-h30)/sqrt(abs(h10-h30))+ue30/sqrt(h30));

%b matrix
bl=c/A;
b2=0;

%cC matrix
cl=1;
c2=0;

A=[all al2;a2l1 a22];
b=[b1;b2];

c=[cl c2];

d=[0];

%compute TF
[bb,aa]=ss2tf(A,b,c,0,1);
H11=tf(bb,aa);

bbl=[bb11 bb10];
aal=[aal2 aall aalQ];

H111=tf(bb1,aal)

%controller parameters
Ti=15;
kR=10;
brO=kR;
br1=kR*Ti;
ar0=0;
arl=Ti;
ar=[arl ar0];
br=[brl br0];
Hr=tf(br,ar)
HO=Hr*H11

%SRA simulation parameter

uel=0.5;

ue3=0.5;

us1=0.5;

%overridde values do not remove
¢=0.0000155; %m3/(V*sec)
A=0.0154; %m?2;

S=0.00005; %m2;

0=9.81; %m/sec2

Km=27;

3TS with controllers - Simulink schema for 3TS plant with Pl Controllers and the Matlab

program associated with it:
Matlab const.m program:

¢=0.0000155; %m3/(V*sec)
A=0.0154; %m?2;
S$=0.00005; %m2;
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0=9.81; %m/sec2
Km=27;

uel=0.5;
ue3=0.5;
us1=0.5
ue2=0.5;
ug2=0.0;
us2=0.5;

Til=15;
kR1=10;

Ti2=15;
kR2=5.3;

h10=0.5;
h20=0.4;

Te=0.5;

kKARW1=1/Til
kKARW2=1/Ti2
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