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Rezumat

Tema lucrarii de diploma consta in realizarea unui compilator pentru un limbaj de programare

de nivel inalt, destinat in special aplicatiilor “hard real-time”, numit Timing Specification Lan-

guage (TSL), precum si rezolvarea unei probleme de conducere utilizand acest limbaj.

Rezolvarea unei probleme de conducere consta din doua etape: (1)inginerul automatist

prelucreaza ecuatiile diferentiale, care descriu din punct de vedere fizic procesul care urmeaza

sa fie condus, utilizand programe ca Matlab si (2)inginerul programator implementeaza algorit-

mul de reglare pe o anumita platforma (prin platforma se intelege o anumita configuratie hard

impreuna cu sistemul de operare in timp real). Ceea ce trebuie sa faca un inginer automa-

tist este: modelarea procesului si a perturbatiilor, obtinerea si optimizarea legii de reglare si

validarea functionalitatii si performatelor sistemului de reglare automat (SRA) prin analiza si

simulare. Dupa ce regulatorul a fost proiectat, el trebuie implementat pe o anumita platforma

de catre un inginer programator. In mod normal inginerul programator descompune activitatile

computationale necesare in taskuri, seteaza prioritatilor pentru taskuri, astfel incat sa indeplin-

easca conditiile de timp-real pentru un algoritm de dispecerizare dat si o configuratie hardware

data, dar si asigura un nivel de toleranta la erori, prin reproducerea si corectarea erorilor.

TSLasigura un nivel intermediar de abstractizare, care 1) permite inginerului program-

ator sa comunice mai eficient cu inginerul automatist si 2) apropie mai mult implementarea de

modelul matematic al regulatorului.TSL defineste o arhitectura soft care permite separarea

functionalitatii de timing. Functionalitatea si timing-ul sunt suficiente pentru a asigura, ca im-

plementarea este consistenta relativ la modelul matematic. Pe de alta parte, permite inginerului

programator sa nu isi faca griji in ceea ce priveste performantele echipamentului hardware si

algoritmului de dispecerizare, atunci cand discuta cu inginerul automatist. Dupa ce programul

TSLa fost scris, ceea ce ii mai ramane de facut iniginerului programator este sa implementeze
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programul pe o platforma data, inTSLacest pas este total decuplat de primul si se poate executa

fara ca inginerul programator sa mai discute cu inginerul automatist.

TSLeste de fapt o extensie a limbajuluiGiotto. Giotto se bazeaza pe un model de

taskuri numit LET (Logical Execution Time); in acest model timpul logic de terminare este

specificat in momentul in care taskul este eliberat. Iesirile taskului sunt disponibile numai dupa

timpul de terminare, chiar daca executia taskului s-a incheiat mai devreme.Giotto are trei pro-

prietati importante: 1)“time and value determinism”, 2)“switchability”, si 3) “schedulability”.

“Time determinism” inseamna ca senzorii sunt cititi, iar elementele de executie sunt scrise la

momente de timp predeterminate. “Value determinism” inseamna ca: dandu-se o secventa de

valori pentru senzori, rezulta o secventa de valori pentru elementele de executie, care este in

mod unic determinata de program si nu depinde de modul in care taskurile sunt dispecerizate.

“Switchability” este posibilitatea de a trece de la un mod la altul. “Schedulability” inseamna

ca toate taskurile care au fost eliberate isi vor termina executia inainte de expirarea intervalului

de timp alocat. TotusiGiotto are si cateva limitari: prima ar fi aceea ca momentul de timp in

care este eliberat un task si cel in care se termina sunt definite implicit prin perioada taskului

si a doua limitare este ca toate taskurile sunt LET-uri si nu exista posibilitatea de a avea taskuri

clasice cu constrangeri de precedenta specificate de dependente ale intrarilor si iesirilor.

Pentru a elimina cele doua neajunsuri ale luiGiotto, a fost definitTSL, care este o

extensie a primului limbaj. In acest nou limbaj a fost generalizat conceptul de task LET introdus

in Giottosi a fost combinat cu taskuri care au constrangeri de precedenta.

Un task LET generalizat este numitanchored task; momentul in care taskul este elib-

erat si cel in care el trebuie sa se termine sunt specificate prin, “release time” specificat ca si

un offset relativ la perioada taskului, respectiv “termination time” este specificat ca fiind sfar-

situl perioadei taskului. Intrarile taskului sunt citite in momentul in care taskul este eliberat,

iar iesirile sunt scrise in momentul in care taskul se termina (“termination time”); intre cele

doua momente de timp taskul poate fi executat oricum, singura constrangere fiind aceea ca el

nu poate sa comunice cu alte taskuri. In afara de taskurile ancorateTSL are si taskuri mo-

bile (“float tasks”). Constrangerile taskurilor mobile sunt specificate prin dependente. Fiecare

dependenta introduce o constrangere de precedenta in ceea ce priveste executia unui task, ast-

fel incat taskul nu va putea fi executat pana cand nu sunt indeplinite toate constrangerile de

precedenta. Pentru a asigura determinismul, citirea sensorilor, respectiv scrierea elementelor de
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executie sunt ancorate in timp.

Un programTSLconsta din:

porturi – un port este utilizat pentru a comunica cu mediul exterior sau intre taskuri;

drivere – sunt utilizate pentru a transfera informatia de la un port la altul si pentru a o converti

daca este cazul;

taskuri – sunt utilizate pentru a face calcule consumatoare de timp (ex., calculul unei legi de

reglare), in mod normal un task citeste de la unul sau mai multe porturi de intrare si

actualizeaza unul sau mai multe porturi de iesire

moduri – un mod are o perioada, prin care se precizeaza cu ce frecventa este executat modul

respectiv; un mod consta din invocari de taskuri ancorate si mobile, actualizari de sen-

zori, actualizari de elemente de executie si schimbari de mod, toate aceste elemente sunt

caracterizate de o frecventa, iar in afara de taskurile mobile si schimbarile de mod, toate

elementele mai au si un offset, care este specificat relativ la inceputul perioadei.

Compilatorul deTSLva avea ca intrare, un programTSL, iar rezultatul compilarii va

fi un fisier care va contineE code-ul, care va fi interpretat de o masina virtuala, numitaE

Machine. Compilatorul este construit pornind de la un parser, care a fost generat automat cu

SableCC, care este un tool specializat in generarea de parsere pornind de la un fisier in care

este descrisa gramatica limbajului respectiv. Dupa ce un program a fost parsuit, se obtine un

Abstract Syntax Tree (AST). Utilizand acest AST compilatorul deTSLva:

• crea o tabela de simboluri, care va contine cate o lista pentru fiecare tip de declaratie, in

plus compilatorul va verifica unicitatea fiecarei declaratii;

• verifica tipurile, in acest pas compilatorul va verifica daca tipul si numarul parametrilor

formali corespund cu tipul si numarul parametrilor actuali;

• crea tabela de dependente, aceasta tabela va contine informatii despre dependentele de

intrare, respectiv iesire ale unui task mobil;

• verifica dependentele, in acest pas compilatorul va cauta bucle inchise intre dependente;
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• verifica frecventele, in acest pas compilatorul va verifica faptul ca frecventa unui element

dintr-un anumit mod este mai mare ca zero si divide perioada modului, de asemenea

pentru taskurile mobile va verifica faptul ca dependentele sale au aceeasi frecventa ca si

el;

• verifica schimbarile de mod, in acest pas compilatorul verifica faptul ca, prin trecerea de

la un mod la altul nu apar supraincarcari;

• generaE code-ul, in acest pas compilatorul va generaE code-ul.

Procesul ales pentru a fi condus esteSistemul Celor Trei Rezervoare(3TS). Procesul

consta din trei rezervoare (T1, T2, andT3), T1 si T2 fiind interconectate cuT3. Fiecare rezervor

este prevazut si cu un robinet de scurgere in exterior,T2 avand doi robineti de scurgere in

exterior. Avand in vedere ca nu am avut disponibil procesul, am realizat un simulator (program

scris in Java), care poate fi condus prin TCP/IP, in plus calculatorul la care este conectat procesul

este unul destul de vechi (486), pentru ca foloseste o placa de achizitie pentru care nu mai

exista slot compatibil in calculatoarele mai noi, acesta fiind inca un motiv pentru care nu am

condus direct procesul. Regulatorul a fost implementat in doua variante: o prima varianta a fost

implementata in Java, acest program putand fi folosit atat ca si regulator, dar si doar pentru a

urmarii evolutia semnalelor din proces, a doua varianta este implementata inTSL. Asa cum am

spus a fost nevoie de un simulator pentru ca nu am avut disponibil procesul, totusi trecerea de

pe simulator pe procesul real se poate face destul de simplu fara a face modificari in regulator.

Aceasta pentru ca, comenzile regulatorului se dau prin socketuri, ceea ce inseamna ca este

suficienta scrierea uni program care sa ruleze pe calculatorul la care este conectat procesul si

care sa implementeze partea de server a protocolului “Control Protocol”, acesta fiind protocolul

utilizat in comunicarea dintre regulator si simulator.

Lucrarea este impartita in doua parti: (1) suportul teoretic si (2) implementare.

In prima parte sunt prezentate elementele de natura teoretica pe care se bazeaza lu-

crarea, astfel, inChapter 1 sunt prezentate conceptual LimbajulGiotto, Limbajul TSL, si

SableCC, care este un utilitar pentru generarea automata a unui parser, tot in prima parte este

inclus siChapter 2 in care sunt sunt prezentate conceptele din Ingineria Reglari utilizate in

studiul de caz.
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In a doua parte sunt prezentate modificarile aduse compilatoruluiGiotto, astfel incat

sa ofere support pentru noul limbaj (TSL) (Chapter 3), precum si studiul de caz ales pentru a

scoate in evidenta proprietatile limbajuluiTSL.

In finalul lucrarii sunt prezentate cateva idei pentru dezvoltarea ulterioara a limbajului

TSL.
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Introduction

The main goal of this thesis is to extendGiotto Compiler[4], which is a compiler forGiotto

Language[2], in order to support the new features, introduced by Timing Specification Lan-

guage (TSL), which is an extension ofGiotto. Still in this thesis I will present a solution to a

control problem, that usesTSLfor the implementation.

Giotto is a high level language that provides an intermediate level of abstraction in the

cycle of developing control application. InGiottoone can easily observe the separation between

timing and functionality. In fact inGiotto can be implemented only the control application

timing, while the functionality will be implemented in another language (e.g., C). InFig. 1 I

present the new model introduced byGiotto. As it can be seen from the figure after compiling

a Giotto program, results theE code, that will be interpreted by a virtual machine, called theE

Machine. This approach makesGiotto platform independent, in the sense that, given aGiotto

program, it could be run on any platform(the word “platform” represents a hardware architecture

together with the operating system running on it), with the condition that there should be anE

Machinefor that platform. The basic elementsGiotto deals with are: ports, drivers, and tasks.

All of them are presented inSection 1.1, Here I will say a few words about tasks inGiotto. A

tasks inGiotto is a piece of code, that needs a significant amount of time to be executed. An

important property of a task, is task period, which defines how often the task will be executed,

but also defines the time interval in which task should be executed, and even if the task is faster,

and it doesn’t need the hole period to execute, the results produced by task will be considered to

be valid only at the end of the period.Hence the period of a task is also called Logical Execution

Time (LET), and aGiotto tasks is also called a LET task.

Giottohas three main properties:

1. the first property istime and value determinism. Time determinism means that sensors
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Giotto Compiler C Compiler (gcc)

Object Code

E Machine

Operating System

Plant

Actuators Sensors

Giotto Program
Timing

C Code
Functionality

E Code

Figure 1: Giotto model.
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are read and actuators are written at predetermined points in time. Value determinism

means that given a sequence of sensor readings, the corresponding sequence of actuator

writings is uniquely determined by the program; it does not depend on the scheduling of

the tasks. This implies in particular, the absence of race conditions and priority inversion

problems.

2. the second property ofGiotto is switchability, the ability to switch modes in a nontrivial

fashion, possibly preempting the LET of tasks, while maintaining determinism.

3. third,Giottoallows for a simple check ofschedulability, that all released tasks are able to

complete execution before termination.

However, control applications from the automotive industry have also uncovered sev-

eral severe shortcomings ofGiotto. The first limitation ofGiotto is that both the release and

termination times of tasks are defined implicitly through the task period: every task is released

at the beginning of its period, and terminated at the end of the period. This is problematic in

particular with short but infrequent tasks. The second limitation ofGiotto is that all tasks are

LET tasks, and no accommodation is provided for classical real-time tasks with precedence

constraints specified by I/O dependencies.

In order to overcome this limitations a new language called Timing Specification Lan-

guage (TSL) was created.TSL is an extension ofGiotto, a language targeted towards hard

real-time applications with multi-modal time-periodic behavior. In order to do this, the LET

tasks ofGiottowere generalized and combined with tasks that have precedence constraints.

A generalized LET task is called ananchored task; its scheduling constraints are spec-

ified by an arbitrary release time and an arbitrary termination time. The task inputs are read

at the release time and the task outputs are written at the termination time; the task can be ex-

ecuted between these two times in any way, but no interaction with other tasks may happen

between these two times. The release time is specified as anoffsetrelative to the period of the

task. In addition to anchored tasks,TSLhasfloating tasks. The scheduling constraints of a

floating task are specified only through dependencies: task inputs may depend on sensor read-

ings and the outputs of other (anchored and floating) tasks; task outputs may be depended on

by drivers writing the inputs of other tasks and actuators. Each such dependency introduces a

precedence constraint on the scheduler; as long as these constraints are met, floating tasks can
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be executed at any time. To ensure determinism, all sensor readings and actuator writings are

anchored in time; they have fixed periods and offsets. To ensure the efficient schedulability of

mode switches, from one mode to the next, some (anchored and floating) tasks may be removed

or some tasks may be added, but not both.

A TSLprogram consists of:

ports – a port is used for communication with the environment or for communication between

tasks;

drivers – are used to transfer and convert the information between ports;

tasks – are used for computing time consuming functions that read from task input ports an

state ports and updates task output ports and state ports;

modes – a mode has a period that specifies after how much time the mode will be executed

again; a mode consists of task invocations (anchored or float), sensors updates, actuator

updates, and mode switches, each of the presented elements has a frequency that specifies

how many times it will be executed per mode, and except for float task invocations, and

mode switch, all the elements can have an offset.

The input for theTSL Compilerwill be of course aTSLprogram, and the result of

the compilation will be theE code, as for aGiotto program, but theE codegenerated forTSL

programs is an extension of theE codegenerated for aGiotto program. The resultingE code

will be interpreted by a virtual machine, also calledE Machine, which is an extension of theE

Machineused forGiotto E code.

TheTSL Compileris based on a parser that was automatically generated using a com-

piler compiler tool calledSableCC. After aTSLprogram was parsed, using the parser generated

by SableCC, an Abstract Syntax Tree (AST) is obtain. Using this AST theTSL Compilerwill:

• create aSymbol Table, theSymbol Tablewill contain a list for each type of declaration

(e.g., a list for tasks declaration, one for drivers, etc.), at this step the compiler will per-

form some checks, so that there will not be two definitions with the same name ;

• perform type checking, on this step the compiler will verify that formal parameters type

and number is the same with the actual parameters type and number;
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• create aDependency Table, this table will contain information about what elements a float

task depends on, and what are the elements that depend on a task;

• perform the dependency check, this means that the compiler will check the program

against closed loops;

• frequency check, on this step the compiler will check that the frequency of each element

from a node is not zero and divides mode period, also for float tasks it will check that the

elements that depends on the task as well as the elements the task depends on have the

same frequency;

• mode switch check, on this step the compiler will check that each mode switch is possible

without overloading the system;

• E codegeneration, on this step the compiler will generate theE code, for theTSLpro-

gram got as input, the generation of theE codeconsist of two parts, first C code will be

generated for theSymbol Table, this will be compiled and linked into theE Machine, and

second will be generated theE code.

The plant I have chosen to control isThree Tanks System(3TS). The plant is made up

of 3 tanks (T1, T2, T3), and bothT1 andT2 are connected withT3, through pipes. Each tank has

a draining pipe, that let the fluid go out of the tank, tankT2 has 2 such pipes. There are also two

pumps connected toT1, respectivelyT2, and through this pumps the controller will be able to

control the level of the fluid inT1, andT2. The command to the pumps in given in voltage.

The 3TS plant is interesting because it is nonlinear, multi-variable, and in order to be

able to controller it in all possible scenario you need more then one controller, which in terms

of TSLmeans mode switch (which is an important feature ofTSL).

Since I didn’t have the process available, I had implemented a simulator (3TS Simu-

lator) for the process (written in Java). The simulator has to functioning modes: (1) manual,

in this mode the user can control the command given to pumps, and (2) auto, in this mode the

user can only change the opening coefficient for taps, while the commands to pumps are given

by a regulator. The simulator acts as a server, it waits for a regulator to connect via TCP/IP.

The communication between the plant simulator server and the controller client is done using a

protocol, defined by me, calledControl Protocol.
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The controller is implemented both in Java (3TS Conttroller) and inTSL. The Java

version of the controller can be used in two modes: (1) view mode, in this mode it will be

connected to the process server, but it will not control the plant, it will just read the main signal

values and it will draw them, and (2) control mode, in this mode the controller will control the

plant.

The thesis is split in two parts: (1) theoretical background, and (2) implementation. In

the first part I present theoretical concepts on which is based my thesis, in this part I present

conceptually the oldGiotto Language, and the newTSLLanguage, andSableCC, all this three

subjects are presented inChapter 1, as well as the control engineering concepts I used for the

case study (Chapter 2).

In the second part I present the changes I made toGiotto Compiler in order to add

support for the new features introduced byTSLLanguage (Chapter 3). Still in this part I will

present the case study I chose, in order to show some of the new features introduced inTSL

(Chapter 4).

Thesis ends with some ideas we have about possible extensions ofTSL.



Chapter 1

Timing Specification Language (TSL)

In this chapter I will presentGiotto language, which is base for theTSL then I will preset

the TSL. I will also presentSableCC, which is a compiler compiler tool, that was used when

implementingGiotto Compilerand of courseTSL Compiler.

1.1 Giotto

Giotto[2] is a platform-independent language for specifying software for high-performance

control applications. TheGiotto Compilergenerates code for a virtual machine, called the

E Machine[3], which can be ported to different platforms. TheGiotto Compileralso checks if

the generatedE Codeis time safe for a given platform, that is, if the platform offers sufficient

performance to ensure thatE Codeis executed in a timely fashion that conforms with theGiotto

semantics. The most important benefit of the platform-independent approach is that it permits

a clean separation of timing and function.

There are two kinds of software processes, which together make up the functional part

of an E program. One that needs a significant amount of time, or in other words has a non-

negligible WCET (worst-case execution time), called task (i.e., computation of a control law),

and the other one, that has a negligible WCET, called driver(i.e., reading the value of a sensor).

Both tasks and drivers are written in a conventional language, such as C.

The timing part of anE programconsists of a set of E actions. Each E action is trig-

gered by an event, and may call a driver, which is executed immediately, or release a task which

is handed over to the schedule of the operating system. TheE Machineis a virtual machine that
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executesE Code, whose instructions can specify arbitrary sequences of E actions.Giotto is a

structured language for specifying limited combinations of E actions that occur typical control

applications. Next I will present the syntax forGiotto language and theE Machine, each in a

different subsection.

1.1.1 Giotto syntax

The basic functional unit inGiotto is the task, which is a periodically executed piece of, say, C

code. Several concurrent tasks make up a mode. Tasks can be added or removed by switching

from one mode to another. Tasks communicate with each other, as well as with sensors and

actuators, by so-called drivers, which is code that transports and converts values between ports.

A Giotto program does not specify where, how and when tasks are scheduled. Further I will

describe informally the syntax.

Ports – in Giotto all data is communicated through ports. A port is a typed variable located

in a globally shared name space. There are three types of ports inGiotto program: sen-

sors, actuators, and tasks ports. Sensors ports are updated by environment and read by

theGiotto program. Actuators pots are updated byGiotto program and read by the envi-

ronment. Tasks ports are both read and updated byGiotto program, and they are used to

communicate between tasks and modes. An important particularity of tasks ports is the

fact that they are double buffered, in order to avoid inconsistency.

Tasks – a task is a piece of code written in a sequential language, which contains no synchro-

nization and can not be terminated prematurely. At an abstract level a task is nothing more

then a function that reads a set of input ports and state ports, and updates a set of output

ports and state ports. There are some constrains a task should respect: (1)input ports and

state ports should be unique for each task, while (2) output ports must be unique only for

tasks invoked in the same mode.

Drivers – a driver is a piece of code that can be executed in logical zero time. It is a function

that reads from a set of input ports and updates a set of output ports. A driver is guarded

by a condition and only if that condition is true the driver function will be executed.

Task Invocations – aGiotto task is a periodic tasks. A task invocation is characterized by the
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task it invokes and the frequency the task is invoked. The frequency is a non-zero natural

number (ωtask), which specifies how many times the task will be invoked per mode and it

also specifies task period.

Mode – aGiottoprogram consists of a set of modes, but only one mode is active at a specified

moment in time, there can be specified a possible transition from one mode to another

through a mode switch. A mode consist of a set of task invocations, actuator updates and

mode switches. A mode has a period, and a set of mode ports which are update when a

mode switch takes place.

Mode Switch – a mode switch describes the transition form one mode to another. A mode

switch has a frequency, a target mode and a driver that will be invoked when the mode

switch takes place. The guard of the driver is called the exit condition, because only if it is

evaluated to true the mode switch takes place. The exit condition is evaluated periodically,

as specified by mode switch frequency.

1.1.2 E-Machine

TheE Machineis a virtual machine that mediates between the physical processes and the soft-

ware processes of an embedded system through a control program written inE Code. E Code

controls the execution of software processes in relation to physical events, such as clock ticks,

and software events, such as task completion.E Codeis interpreted on theE Machinein real

time.

Every time an event (timer or completion) occurs, theE Machineobserves it and can

initiate the execution ofE Code. E Code, in turn, supervises the execution of both tasks and

drivers.

TheE Codehas the following instructions:

Call driver – thecall instruction initiates the execution of a driver. This instruction has only

one parameter, represented by the driver to be called. Since the driver is considered to

be synchronous system-level code, it will be executed directly by theE Machinebefore

interpreting the next instruction.
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Release task– the releaseinstruction hands a task to the operating system. It has only one

parameter, representing the task to be released.

Future E-Code – thefuture instruction marks a block ofE Codefor execution at some future

time. It has two parameters: the address of a block ofE Codewhere to jump, and the

interval of time after which the jump is performed.

Jump – the jump instruction represent an unconditioned jump to a specified address. It has

only one parameter, the address of the block ofE Codewhere to jump.

If – theif instruction represents a conditioned jump to a specified address. It has three param-

eters: the address of block ofE Codewhere to jump, and the condition to be evaluated.

Return – thereturn instruction, stops theE Machinefrom interpretingE Codeuntil an event

happens.

1.1.3 Giotto pros and cons

Giotto is based on the Logical Execution Time (LET) model of tasks; in this model a logical

termination time is specified at the time of release of a task. The outputs of a task are only

available at the termination time even if the execution is complete before the termination in-

stance. LET sacrifices end-to-end delays in the execution of a set of tasks, and in return, secures

three key properties for the language. The first property istime and value determinism. Time

determinism means that sensors are read and actuators are written at predetermined points in

time. Value determinism means that given a sequence of sensor readings, the corresponding

sequence of actuator writings is uniquely determined by the program; it does not depend on the

scheduling of the tasks. This implies in particular, the absence of race conditions and priority

inversion problems. The second property ofGiotto is switchability, the ability to switch modes

in a nontrivial fashion, possibly preempting the LET of tasks, while maintaining determinism.

Third, Giotto allows for a simple check ofschedulability, that all released tasks are able to

complete execution before termination.

However, control applications from the automotive industry have also uncovered sev-

eral severe shortcomings ofGiotto. The first limitation ofGiotto is that both the release and

termination times of tasks are defined implicitly through the task period: every task is released
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at the beginning of its period, and terminated at the end of the period. This is problematic in

particular with short but infrequent tasks. The second limitation ofGiotto is that all tasks are

LET tasks, and no accommodation is provided for classical real-time tasks with precedence

constraints specified by I/O dependencies.

1.2 TSL

In order to relax the limitations ofGiotto, presented in the previous section, while still maintain-

ing the three key properties of determinism, switchability, and schedulability. A new language

called Timing Specification Language (TSL) was created.TSL is an extension ofGiotto [2], a

language targeted towards hard real-time applications with multi-modal time-periodic behavior.

In order to do this, the LET tasks ofGiottowere generalized and combined with tasks that have

precedence constraints.

A generalized LET task is called ananchored task; its scheduling constraints are spec-

ified by an arbitrary release time and an arbitrary termination time. The task inputs are read

at the release time and the task outputs are written at the termination time; the task can be ex-

ecuted between these two times in any way, but no interaction with other tasks may happen

between these two times. The release time is specified as anoffsetrelative to the period of the

task. In addition to anchored tasks,TSLhasfloating tasks. The scheduling constraints of a

floating task are specified only through dependencies: task inputs may depend on sensor read-

ings and the outputs of other (anchored and floating) tasks; task outputs may be depended on

by drivers writing the inputs of other tasks and actuators. Each such dependency introduces a

precedence constraint on the scheduler; as long as these constraints are met, floating tasks can

be executed at any time. To ensure determinism, all sensor readings and actuator writings are

anchored in time; they have fixed periods and offsets. To ensure the efficient schedulability of

mode switches, from one mode to the next, some (anchored and floating) tasks may be removed

or some tasks may be added, but not both.

Figure 1.1 illustrates the extension ofGiotto to TSL. In Giotto each mode consists

of LET tasks with a specified frequency; the mode period and the frequency determines the

LET (which is equal to the period) of the task. The task is logically released at the start of its

period and logically terminated at the end of the corresponding period (Figure 1.1a). InTSL,
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Figure 1.1: The new properties of the extended language

an invocation of an anchored task will be specified by three parameters: frequency, offset, and

duration. The frequency denotes the number of times the task is invoked within a mode period.

The offset denotes the time when the task is logically released after the start of the period, and

the duration denotes the LET of the task. The sum of offset and duration is less than the period

of invocation. Figure 1.1b shows an example of two tasksT1andT2with corresponding offsets

(o1 ando2) and durations (d1 andd2). TheGiotto style of task invocation is the special case

with offset being equal to zero and duration being equal to the period of the invocation. InTSL

the sensor and actuator updates ofGiotto are also extended to have offsets. The duration is not

relevant here as sensor and actuator updates use logical zero time to execute. Figure 1.1c shows

an instance of a sensor and an actuator update. The invocation periods are the same; the sensor

is updated at an offsetoswhile the actuator is updated at an offsetoa.

The second type ofTSLtasks are the floating tasks. The execution window of a floating

task is specified by the frequency of invocation of the task and by dependencies between the task

and sensor reads, actuator writes, and other tasks. Figure 1.1d shows an example of a floating

taskT1; the offset of the sensors it reads and the offset of the actuatora it writes determines

the actual span of time for execution. Figure 1.1e shows an instance where the floating task

T2 reads the output ofT1. The taskT1 reads from sensors and writes toT2, which writes to

actuatora. The time duration between the sensor read and actuator update is the time available

for executing the tasks (time constraints) and the fact thatT2 reads the output ofT1 forces the

execution ofT1 to precede that ofT2 (order constraint). Sensor and actuator updates cannot be

floating.

The anchored tasks read input ports and update output ports at the specified LET

boundaries. A floating task communicates in as-soon-as-possible fashion; the task reads the
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input ports as soon as the source ports of the drivers communicating to the input port are up-

dated in the period of invocation; the task updates the output ports as soon as the execution is

completed. If the inputs of a floating task depends on several anchored tasks, floating tasks, and

sensor updates, then the release time of the floating task is the earliest time when all anchored

tasks have terminated, all floating tasks have completed execution, and all sensor updates have

happened. If the outputs of a floating task are depended on by several anchored tasks and ac-

tuator updates, then the deadline of the floating task is the earliest of the release times of the

anchored tasks and actuator updates.

1.2.1 TSL Syntax

I will discuss the main features of the language on the basis of a control application. In order to

do this I have implemented aTSLprogram that controls a plant, which is simulated by aJava

program. The process consist of three interconnected tanks and the main target for the controller

is to keep the level of the fluid in two of the tanks constant by commanding two pumps, each

pump is connected to one of the two tanks. The plant is detailed inSection 4.1. The plant I

chose is interesting, because it is nonlinear and one can not obtain good control results in all

possible scenario without using more then one regulator, which in terms ofTSLmeans mode

switch (which is an important feature ofTSLI want to illustrate). There can be distinguished

two different situations for the control problem:(1)a tank dose not lose any fluid and (2)a tank

loses fluid. In the first case it is needed a P Controller, while in the second case a PI Controller.

Since there are two pumps each connected to a tank, thus results that are needed four modes in

order to cover all possible combinations. The program consists of four modes of operation, one

for each possible combination as described before. Each of the four modes contains two tasks

(each computing the command for one of two pumps), from one mode the program can switch

to any of other three modes depending on what taps are opened. The fullTSLprogram can be

found inAppendix A.

Port. A port is a program variable associated with a type and carries a value consistent with the

type. Ports are classified as sensor ports (e.g. portsenh1), actuator ports (e.g. portact pumps),

output ports (e.g. portout u1), input ports, and private ports.

Task. A task communicates through an interface consisting of a set of input ports and a set
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of output ports. For example, taskrg1 P computes the command for the first pump, it has one

input port and one output port. A set of private ports is used to store the internal state of a

task. A task computes a function, implemented by a sequential block of code, from its input

and private ports to its output and private ports. At its release, the task reads the latest values of

the input ports, and, at its termination, the task updates the output ports.

Driver. Drivers transport values from ports to ports. A driver connects sensor ports and/or

output ports of tasks (source ports) to input ports of tasks (destination ports), or output ports

(source ports) to actuator ports (destination ports). For example, driverupdaterg1 connects the

sensor portssenh1 to the input port of taskrg1 P. The communication scheme is as follows:

a driver consists of a function and a guard; if the guard is evaluated totrue the function is

executed. While tasks require logically non-zero time for execution and can be preempted,

drivers always execute in logical zero time and are atomic.

Modes. A mode consists of periodic task invocations, sensor and actuator updates, and has

a mode period (e.g., modeP P has a period of 500ms) and communicates with other modes

through mode ports. The mode ports are a subset of the output ports of the tasks invoked in

the mode. A sensor update specifies the sensor port being updated, a frequency, and an offset.

For example, in the modeP P the sensor portsenh1 is updated every 500ms with an offset of

100ms. An actuator update specifies the actuator port being updated, a frequency, a driver, and

an offset. The driver connects a subset of the mode ports to the actuator port and updates the

actuator port at the specified offset from the start of the period. For example, in the modeP P

the actuator portact pumpsis updated with frequency 1 and offset 500ms. To avoid races no

two sensor updates should write to the same sensor port and no two actuator updates should

write to the same actuator port.

There are two ways of task invocations: anchored and floating. An anchored task

invocation is specified with a frequency, task name, offset, duration, and input driver. The task

is (logically) released at the specified offset from the period and the task is (logically) terminated

at the sum of offset and duration from the start of the period; in other words, the offset denotes

the release time whereas the duration denotes the task’s LET. The sum of the offset and the

duration is less or equal to the period of the invocation. The input driver connects sensor ports

and mode ports to input ports of the task. A floating task invocation is specified by a frequency,

a task name, and an input driver; the taskrg1 P is invoked in floating style. The precedence
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relation for a floating task will be discussed later. InTSLmode, a task can either be invoked in

anchored style or in floating style but not both. To avoid races no two task invocations (anchored

and/or floating) can update the same output ports.TSLalso distinguishes betweenGiottomodes

(all anchored style invocation has zero offset and duration equal to the period of invocation and

no floating style task invocation) and non-Giottomodes (any other mode).

Mode Switches.A mode switch is specified by a frequency, a destination mode, and a driver.

At specified intervals the associated driver guard is evaluated. If the evaluation returned true

control switches to the target mode. ModeP P switches to modeP PI and the mode switch is

checked with frequency one.

PrecedencesThe execution of a floating task is dependent on the frequency of invocation (the

execution must be completed within the period of invocation) and the relation with invocation/

termination of LET tasks, release/ completion of other floating tasks and sensor/ actuator up-

dates. The precedence is imposed by the input drivers of the floating task invocations and are

of the following types:

• Input driver of floating task reads from a sensor port/ output port of an anchored task

→ the floating task must be released after sensor is updated/ the logical termination of

the LET task. The constrain imposes a time restriction on when the floating task can be

released.

• Input driver reads from the output port of another floating task→ the second floating

task must be released after the first floating task has completed execution. The constraint

imposes a restriction on the execution order of the floating tasks.

• A driver for an actuator update or an input driver of an anchored task reads from the

output port of a floating task→ the execution of the floating task should be completed

before the actuator is updated/ the LET task is logically released. The constraint imposes

a time restriction on when the execution of a floating task should be complete.

In modeP P the execution window for the taskrg1 P is determined by the offset of

the sensorsenh1and the offset of actuatoract pumps.

TSL imposes constraints on program expressiveness; they are necessary to execute

programs in an unambiguous way and to perform meaningful analysis. The four constraints are
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described as follows.

Matching. If a floating task depends on a task invocation, and/or sensor update and/or

actuator update then the frequency of invocations or updates should be identical. This constraint

forces thei-th instance of the invocations to communicate with each other. In the modeP P

floating taskrg1 P depends upon sensor updatesenh1, which has same frequency. The an-

chored tasks are crucial in this context as they can be used to communicate between tasks with

different frequencies.

Acyclicity. Dependencies between floating tasks should be acyclic. In other words, a

graph denoting the precedence relation between tasks should be a directed acyclic graph. This

is essential for performing schedulability analysis.

Causality. The time constraints on a floating task should be such that the time at which

an output is required should not precede that of reading an input. Consider two anchored taskst1

andt2 and a floating taskt such thatt reads fromt1 andt2 reads fromt. The logical termination

of t1 should be strictly before the logical release oft2; this means thatt gets non-zero logical

time to execute. In general, if a floating taskt (or a set of floating tasks) depends on an anchored

taskti (or a sensors update) and the output ports oft are being read by an anchored taskto (or

an actuatora update) then the time of termination ofti (or the time of updatings) should be

strictly less than the time of invocation ofto (or the time of updatinga).

Switchability. The switchability criterion specifies whether a switch is possible be-

tween two modesm andm ′.

Before presenting switchability criterion I have to define what aGiotto mode and a

non-Giottomode are:

Giotto mode – is a mode where all offsets are zero, durations for all tasks invoked in that mode

are equal to period, and there are no floating tasks.

Non-Giotto mode – is a mode where there is at least one offset greater then zero, or at least

one task duration less then period, or at least one floating task.

The switchability criterion is satisfied if one of the following holds true:

1. if m andm ′ are Giotto modes then all task invocations preempted by a mode switch

should be present in the target mode with identical frequencies as in the source mode.
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By preemption, I mean logical preemption, i.e., preemption anytime during period of

invocation of the task.

2. if m and/orm ′ is a non-Giotto mode then eitherm ′ includes all task invocations (with

identical offsets, durations, period of invocations and precedences) ofm OR m includes

all task invocations (with identical offsets, durations, period of invocations and prece-

dences) ofm ′. This implies that there cannot exist two taskst and t ′ such thatt has

been invoked inm and not inm ′, andt ′ has been invoked inm ′ and not inm. Any task

invocation preempted by mode switch cannot be removed.

3. if the mode switch dose not preempt any task then the switch is always valid no matter

what are the task in source mode and what are the tasks in destination mode.

In the example, from any mode can switch to other mode as no mode switch preempts

a task.

1.2.2 TSL Compiler

In this section I will present the compiler forTSLprograms. For a given input program, the

compiler checks well-formedness and schedulability and generates so-calledE codefor the

(E)mbedded Machine[3]. E code is virtual machine code that specifies the exact times when

drivers are called and when tasks are released and terminated. E code does not specify when

released tasks actually execute. This is done by an EDF scheduler. E code consists of the fol-

lowing instructions: acall(d) instruction executes the driverd, arelease(t) instruction releases

the taskt for execution by the EDF scheduler, afuture(g, a) instruction marks the E code at the

addressa for future execution when the predicateg evaluates to true, i.e., wheng is enabled. g

is called atrigger, which observes events such as time ticks and the completion of tasks. The

E machine maintains a FIFO queue of trigger-address pairs. If multiple triggers in the queue

are enabled at the same instant, the corresponding E code is executed in FIFO order, i.e., in the

order in which thefuture instructions were executed. Anif (c, a) instruction branches to the

E code at the addressa if the predicatec evaluates to true. We callc acondition, which observes

port states such as sensor readings and task outputs. Ajump(a) instruction is an absolute jump

to the addressa and areturn instruction completes the execution of E code. The existing E ma-
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chine implementation, which is written in C and uses POSIX threads, was extended to handle

completion events in addition to time ticks.

The compiler divides each mode into uniform temporal segments called unit. Anunit

is defined as the smallest time interval at which any of the following happens: releasing an an-

chored task, terminating an anchored task, updating a sensor, updating an actuator or switching

modes. For a modem the span of a unit is denoted byγ[m] and the total number of units by

η[m] the relation beingη[m] = π[m]/γ[m] whereπ[m] is the period of the mode. For theTSL

program discussed earlier the unit size is 100 ms and there are 5 units (the mode period being

500 ms). The E-code generated byTSLcompiler is shown inAppendix A. The program com-

piler starts by emitting calls to initialize all output and private ports. For an output portp there

are two drivers:init(p) being the driver to initialize the port andcopy(p) being the driver to

copy local output ports to global output ports. For an anchored task there are two sets of output

ports, local and global. At termination local ports are copied to the global ports. For floating

tasks there is only one set of output ports. Once the ports are initialized ajump instruction is

emitted to transfer control to the beginning of the E code block corresponding to the start of

the program which is the unit 0 of theP P mode. In the example,P P being the starting mode,

a jump tomode address [P P, 0] is emitted;mode address [., .] is a symbolic address which is

linked up in the actual E code.

E code for an unitu of a modem is generated in four stages. In the first stage an

E code block is generated (starting with the addressmode address [m, u]) to update task out-

put ports (of anchored tasks that do not precede a floating task), to update actuator ports, to

update sensor ports (that are used by mode switches) and to check mode switches that are pos-

sible at the corresponding unit. The E code block atmode address [P P, 0] calls the drivers for

the actuators (the functiondriver(.) implements the driver functionalities in the implementa-

tion language), updates the actuator ports (the ports are accesses by calling a functiondev(.)),

updates sensor portsene1for mode switch, and checks for mode switch. If mode switch condi-

tion is evaluated totrue then the control jumps to take necessary action for mode switch (jump

to switch address [P P, 0, P PI, 0, P P to P PI]); otherwise it jumps to the block which re-

leases tasks for the unit (jump totaskaddress[P P, 0] wheretaskaddressis a symbolic address).

In the second stage a block of code is emitted to take necessary action if a mode switch

is enabled (the block starting with the addressswitch address [P P, 0, P PI, P P to P PI]).
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The compiler performs a computation of the destination unitu ′ for the target modem ′ and

the time to waitδ′ before jumping to the target unit. The target unit is computed as close as

possible to the end of the destination mode period. If no tasks are preempted the control can

jump to the starting unit of target mode without waiting (u ′ = 0, δ′ = 0). If the duration of

eitheru or u ′ is a multiple of the other then there is no wait time (δ′ = 0) else time to wait is

computed. The computation is similar to the one presented for theGiotto compiler in [4]. If

δ′ = 0 then ajump instruction transfers control to the task invocation block ofu ′ starting at

the addresstask address [m ′, u ′]. Note this bypasses the mode switch check at target unit and

thus removes the possibility of multiple mode switches at the same logical instant. Ifδ′ > 0, a

trigger is emitted to wait for the time instant and then to jump to the required task invocation

address. In my example, at mode switch no task is preempted and hence the control jumps to

task address [P PI, 0].

In the third stage code is emitted for releasing tasks invoked at the unit (e.g. code at

task address [P P, 0]). First, the sensors updated atu but not read by floating tasks are updated.

As one can easily notice the update driver for a sensor can called twice for the same unit, but

this is no problem because the drivers are state-full and if a driver is called twice in the same

unit it will be actually executed only the first time. Second, the anchored tasks logically starting

at the unit are released. The floating tasks with period of invocation coinciding with the unit

and with no precedences are also released. Third, the floating tasks with period of invocation

coinciding with the unit and with precedence constraints are released. This is done by defining

three triggers: 1, call to block of codes that update sensor ports read by the floating tasks, 2, call

to block of codes that update output ports (of anchored tasks) that are read by the floating tasks

and 3, call to block of codes that release the floating tasks. Note this is required to have ports

being read by input drivers of the floating tasks be updated before the invocation of the task. The

complexity arises from the fact that the exact instance of floating task release cannot be deter-

mined apriori an WCET analysis and the compiler generates code independent of the WCETs

of the tasks. An example of the first scenario is updating the sensorsenh1 (in modeP P) which

precedes a floating task invocation; the update procedure is called by a trigger from code block

at task address [P P, 0] and is updated at the addresssensor update address [P P, 0, senh1].

Note the event for the trigger in the above case are known apriori as time instances for sensor

updates and anchored task terminations can be computed without WCET information. Note the
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event in the trigger may not be determined here as it consists of completion events of floating

tasks which are not known apriori and the trigger event is represented as a set of time triggers

and completion events. The last stage of the compiler generates code for the blocks referred to

by the above three trigger instructions; the codes are straightforward and updates sensor ports,

call copy functions for output ports and release floating tasks.

1.3 SableCC

SableCC[1] is an object-oriented framework that generates compilers (and interpreters) in the

Java programming language. This framework is based on two fundamental design decisions.

Firstly, the framework uses object oriented techniques to automatically build a strictly-typed

abstract syntax tree (AST) that matches the grammar of the compiled language and simplifies

debugging. Secondly, the framework generates tree-walker classes using an extended version

of the visitor design pattern which enables the implementation of actions on the nodes of the

abstract syntax tree using inheritance.

The steps to build a compiler usingSableCCare:

1. creating aSableCCspecification file containing the lexical definitions and the grammar

of the language to be compiled;

2. launchingSableCCon the specification file to generate a framework;

3. creating one or more working classes, possibly inheriting from classes generated by

SableCC, working classes are classes that contain the core compiler functionality;

4. creating a main compiler class that activates lexer, parser, and woking classes;

5. compiling the compiler with a Java compiler.

After launchingSableCCon the specification file, there will be generated four packages:

• the lexer package contains the Lexer and LaxerException classes. These classes are the

generated lexer and the exception thrown in case of a lexing error, respectively;

• the parser package contains the Parser and ParserException classes. These classes are

the generated parser and the exception thrown in case of a parsing error, respectively;
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• thenodepackage contains all the classes defining the typed AST;

• the analysis package contains one interface and three classes. These classes are used

mainly to define AST walkers.

The packages that are important for understandingTSL Compilerimplementaion are

nodeandanalysis. In packagenode for each production rule defined in the specifications file

there will be a class named after the production, prefixed with ’P’, replacing the first latter with

an uppercase, replacing each latter preceded by an underscore with an uppercase, and removing

the underscores. If the production has a single unnamed alternative, the alternative class is

named like its production class, but the uppercase ’P’ prefix is replaced by an uppercase ’A’.

When there are more then one alternative,SableCCrequires a name for each alternative. A

name is given to an alternative in the grammar by prefixing the alternative with an identifier

between curly brackets. The class name is created as described before the only difference is

that the identifier will be used instead of production name. For elements there will be a variable

that will be access through getxxx and setxxx methods.

The most important class inanalysis is the abstract class DepthFirstAdaptor which

should be implemented by any depth first walker of the AST. For each alternative there are two

methods in the class one (inAxxx(Axxx node)) that is called when a node of corresponding type

(Axxx) in the AST is reached, and the second (outAxxx(Axxx node)) when the node is left. In

both cases the parameter represents the node and can be used to get information about the node.

In order to make things clear I will present in the end of this section an example inspired

from theSableCCspecification file forTSL Compiler.

I will consider the following production rule:

driver_declaration = driver [driver_name]:ident

[source_ports]:actual_ports output

[destination_ports]:formal_ports

l_brace call_driver r_brace ;

This is whatSableCCwill generate:

• a class calledPDriverDeclarationand a class calledADriverDeclaration;
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• there will be a member of typeTIdent (this calss was generated forident token) in the

above classes, called driverName, and that could be access via methodgetDriverName,

such a member will be generated for each element;

• in the classDepthFirstAdaptorthere will be defined to methods corresponding to this

production rule:public void inADriverDeclaration(ADriverDeclaration node), andpub-

lic void outADriverDeclaration(ADriverDeclaration node).



Chapter 2

Control Engineering Theoretical Support

In this chapter I will present the control engineering theoretical background for this thesis.

2.1 Quality Indicators

In this subsection I will refer only to quality indicators defined using the controlled system

response to step signal input and only for dynamic regime. InFig. 2.1 are represented the

dynamic regime quality indicators. The indicators are:

tc – control time; represents the time interval form the beginning of the transition regime (t0),

until the answer enters the so calledsilent region, which is defined as±0.2 ·∆z∞;

t1 – first control time; the time interval form the beginning of the transition regimet0, until the

desired value (z∞) if being reached for the first time;

tm – time when the maximum value (zmax) is reached;

tr – raising time, defined by the relation: e

tr = t0.95 − t0.05 (2.1)

wheret0.05 andt0.95 represent time moments for which∆z(t) reaches 0.05 respectively

0.95 from∆z∞;
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Figure 2.1: Quality Indicators
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σ1 – over-control is defined by the relation:

σ1 =
zmax − z∞

∆z∞
, with∆z∞ = z∞ − z0, or in percents σ%

1 = σ1 · 100 (2.2)

For more information about quality indicators you should look at [7].

2.2 P Controller

In this section I will present how to design a P Controller for an I plant. InFig. 2.2it is presented

the block schema for an I plant controlled with a P Controller.

kR
k p
s

−

w e u y

Figure 2.2: P Controller

P Controller transfer function is:

HR(s) = kR (2.3)

I plant transfer function is:

HP (s) = kP
1

s
(2.4)

Transfer function for controled system is:

Hc(s) =
1

1
kP kR

s + 1
(2.5)

From last equation results that controled system time constant is:

T =
1

kP kR

(2.6)

Since control timetc = 3T results that choosingtc, the controller parameterkR will be:

kR =
3

kP tc
(2.7)
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2.3 Frequency Domain Controller Design

Frequency domain controller design in the simplest variant it is based on the frequency loga-

rithmic Bode characteristics, amplitude-frequency and faze-frequency.

The big time constants of the plant are compensated by the controller (for instance if

the controller is PI):

HRG(s) =
kr

s
(1 + Tdom · s) (2.8a)

Hp(s) =
kp(.........)

(1 + Tdom·s)(.........)
(2.8b)

Then you have to choose the faze reserve (ϕR) in [45o, 60o] where the system is for

sure stable and the transition regimes will be acceptable.

Knowing that by definition the faze reserve is:

ϕR = 180o + ∠H0(jωt) (2.9)

and using the faze-frequency characteristic (the same for any value ofkr), the cut frequencyωt

will be got.

Then the amplitude-frequency characteristic will be plotted for an initial value of

kr, notedk0
r . Then forωt, from amplitude-frequency characteristic the signed valueAB =

|H0(jωt)| will be read and will be used to compute the transfer coefficient (kr) for the con-

troller:

kr = k0
r · 10−

AB
20 (2.10)
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TSL Compiler Implementation

TSL Compileris made up of four parts:

• the parser which is automatically generated bySableCC;

• the symbol table;

• the checker;

• the code generator;

In the next sections I will present only the last three parts, I will not describe the parser because

this was already covered in a previous chapter when I had descriedSableCC.

3.1 Symbol Table

Symbol Table is implemented in theSymbolTableclass whose declaration is presented inCode

3.1.1. For each type ofTSLdeclaration there is defined apublic Mapmember that will keep

Code 3.1.1SymbolTable declaration
public class SymbolTable extends DepthFirstAdapter

track of all defined elements (e.g.,public final Map tasks, which is being used to keep track of

all defined tasks). The key in each such aMap member is represented by each defined element

name and the object stored is actually the node that represents the declaration. When an instance

of this class is fed to parse tree, which was obtained as the result of parsing the program, then
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all declarations are being processed one by one, and added to the correspondingMap, if two

elements that have the same name were declared, an error is reported and the compiler stops.

In Code 3.1.2it is presented the method that is called before leavingATaskDeclarationnode,

for other elements it is the same. Everything I have presented so far was already implemented

Code 3.1.2outATaskDeclaration method
public void outATaskDeclaration(ATaskDeclaration node) {

final String name = node.getTaskName().getText();
if (declarations.put(name, node) != null) {

errorRedefined(node.getTaskName(), name);
}
if (tasks.put(name, node) != null) {

errorRedefined(node.getTaskName(), name);
}

}

in classicGiotto Compilerwhat I had to add to theSymbolTableclass, were two newpublic

Map members that are used to keep track of all anchored and float task invocations. The two

members are:

• modesLetTasks, for each mode there is an element in this Map with the mode name as

key and the stored object is another Map that contains all the anchored task invocations

in that mode;

• modesFloatTasks, the same asmodesLetTasks, the only difference is that it refers to float

task invocations.

DependencyTable(Code 3.1.3) it is new introduced inTSL Compilerand it is very

much alike withSymbolTable, the only reason why I haven’t combine this two in one single

table is that before I build theDependencyTableI have to do type checking, which means that I

am not able to combine the two tables in a single one. As the name suggests, this table contains

Code 3.1.3DependencyTable declaration
public class DependencyTable extends DepthFirstAdapter{

/*...*/
public DependencyTable(SymbolTable pSymbolTable) {

symbolTable = pSymbolTable;
}
/*...*/

}

information about the dependency between tasks invocations in a mode. There are twopublic

Mapmembers:
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• modesInputDependencies– for each mode there is an element, which has the mode name

as key and the object stored is aMap that for each element in the mode keeps anArrayList

with all elements on which it depends;

• modesOutputDependencies– for each mode there is an element which has the mode name

as key and the object stored is aMap that for each element in the mode keeps anArrayList

with all elements that depends on it.

In order to create the two dependency tables, first for each mode there are created

others two dependency maps, that later will be used to find out for what elements a port is

an input and for what element a port is an output. Each map maintains anArrayList for each

port . In order to compute this two tables, an internal class was defined that will be applied on

AModeDeclarationinstance at the beginning of mode declaration and for each element in the

mode declaration the input and the output ports lists are iterated, if they exists, and the node is

being put in one of the two maps, depending on what is the relation between the node and the

port. InCode 3.1.4are presented two methods, one that processesASensorUpdatenode and the

other oneAActuatorUpdatenode. Then after this tables were computed, for each anchored or

float task invocation in the mode, based on its input and output ports and using the two auxiliary

maps that were presented before, a list of input and output dependencies is created.

For each mode there is computed a list of task output ports that are outputs for tasks

that are being invoked as float tasks. This list is needed because a task can be invoked as an

anchored or as a float task in different modes and the output port is doubled buffered if the task

is invoked as an anchored task, and it is directly accessed if it is invoked as a float task.

3.2 Checker

Actually this section should be cold “Checkers”, because there are more then one checker. The

checkers are:

• TypeChecker– performs type checking;

• DependencyChecker– checks the program against closed loops;

• FrequencyChecker– checks the frequencies, offsets and everything related to time;
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Code 3.1.4Ports dependency computation.
public void outASensorUpdate(ASensorUpdate n){

putPortOutputFor(n.getSensorPortName().getText(), node);
}
public void outAActuatorUpdate(AActuatorUpdate n){

ADriverDeclaration driver = (ADriverDeclaration) symbolTable.
drivers.get(n.getDriverName().getText());

AActualPortList sourcePorts = (AActualPortList) ((AActualPorts)
driver.getSourcePorts()).getActualPortList();

LinkedList actualPorts = sourcePorts.getActualPort();
if (actualPorts != null) {

ListIterator sourceIterator = actualPorts.listIterator();
while (sourceIterator.hasNext()) {

AActualPort port = (AActualPort) sourceIterator.next();
putPortInputFor(port.getPortName().getText(), n);

}
}

}

• ModeSwitchChecker– checks mode switch condition;

• TimeSafetyChecker– checks time safety for each mode;

Next I will present the implementation for each of the checkers.

3.2.1 Type Checker

This checker performs type safety checks on all the elements of a mode. InCode 3.2.1is

presented theTypeCheckerclass declaration. What this checker dose is:

Code 3.2.1TypeChecker declaration
public class TypeChecker extends DepthFirstAdapter{

/*...*/
public TypeChecker(SymbolTable symbolTable,boolean dynamicGiotto){

this.symbolTable = symbolTable;
this.dynamicGiotto = dynamicGiotto;

}
/*...*/

}

• for each sensor update in a mode it checks to see if the sensor port that is updated exists

and that there are no to sensor updates in the same mode that refer to the same sensor;

• for each actuator update in a mode it checks to see if the actuator port and the driver

being used exist, that there is only one actuator update referring to the same actuator port

in a mode, and that the type of the actuator port and the type of the formal port of the

driver being used to update the actuator port are the same, and that the driver has only one

formal port;
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• for each mode switch, first checks for existence of destination mode, then checks that

only one mode switch with this destination mode is present in the mode, then checks that

the driver being used by the mode switch exists, and finally checks that the number and

type of formal ports of mode switch driver are the same with the number and type of

destination mode ports;

• for each anchored and float task invocation checks that the task exists, that there are no

two task invocations that refers to the same task in the same mode, then checks for the

existence of driver used to update the task input ports and finally checks that the number

and type of task input port are the same with the number and type of driver formal ports;

• also it checks that there are no two tasks invocations in the same mode that update the

same output port

3.2.2 Dependency Checker

This checker, checks the program against closed loops between float task invocations. The

algorithm that performs the check is implemented in a recursive method (Code 3.2.2) that has

two parameters, the first one is the current task name that was reached following the chain of

dependency lists and the second is the name of the task on which the function was applied first.

Using theDependencyTablefor the current node the list of node that depends on the current

node is obtained, and each node in this list is tested against the start node, and if they match

then an error is reported and the compiler stops, else if the node is an anchored or float task

invocation, then the method is called again with the start node set to this one.

3.2.3 Frequency Checker

The checks performed by this checker are:

• for each element in a mode, the frequency is checked, there are two types of checks

that are performed on the frequency: (1) the frequency can not be zero and (2) it must

by among the dividers of the mode period; inCode 3.2.3is presented the method that

performs this checks
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Code 3.2.2dependencyCheck method
private void dependencyCheck(TIdent crrNode,TIdent stNode){

ArrayList taskDependencies=(ArrayList)modeDependencies.get(
crrNode.getText());

Iterator depIt=taskDependencies.iterator();
while(depIt.hasNext()){

Node n=(Node)depIt.next();
if(n instanceof AFloatTaskInvocation){

AFloatTaskInvocation flNode=(AFloatTaskInvocation)n;
if(flNode.getTaskName().getText().compareTo(stNode.getText())==0){

dependencyError(crrNode,stNode);
}
final String flNameTmp=flNode.getTaskName().getText();
if(floatDep.contains(flNameTmp)){

dependencyError(flNode.getTaskName(), stNode);
}
floatDep.add(floatNameTmp);
dependencyCheck(flNode.getTaskName(),stNode);

}
if(n instanceof ALetTaskInvocation){

ALetTaskInvocation letNode=(ALetTaskInvocation)n;
if(letNode.getTaskName().getText().compareTo(stNode.getText())==0){

dependencyError(crrNode,stNode);
}
final String letNameTmp=letNode.getTaskName().getText();
if(letDep.contains(letNameTmp)){

dependencyError(letNode.getTaskName(), stNode);
}
letDep.add(letNameTmp);
dependencyCheck(letNode.getTaskName(),stNode);

}
}

}

Code 3.2.3checkFrequency method
private void checkFrequency(Token frequencyToken) {

final int modePeriod = Integer.parseInt(modePeriodToken.getText());
final int frequency = Integer.parseInt(frequencyToken.getText());
if (frequency == 0)

errorZero(frequencyToken);
if ((modePeriod % frequency) != 0)

errorFrequency(frequencyToken, modePeriodToken.getText());
}
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• for each sensor update and actuator update the offset is checked so that it is not greater

then period (Code 3.2.4), a similar check is performed for anchored tasks also, but in this

case you have to consider the duration also;

Code 3.2.4checkOffset method
private void checkOffset(TIdent node,TNumber pOffset,

TNumber pFrequency){
boolean checkOk = true;
if (pOffset != null) {

int period = modePeriod / Integer.parseInt(pFrequency.getText());
int offset = Integer.parseInt(pOffset.getText());
checkOk = offset <= period;
if (!checkOk) {

erroOffset(node);
}

}
}

• for each mode switch there is performed a check so that if the mode switch depends on a

sensor update then the sensor update is not allowed to have an offset

• for each float task invocation the list of dependencies is checked so that all the node the

task depends on or which depends on the task have the same frequency (Code 3.2.5);

Code 3.2.5checkDependencyFrequency method
private void checkDependencyFrequency(TIdent taskName,Token frequency){

...
//check for input dependency
//take each node that the task represented by taskName depends
//on and test that the frequencies are the same
//if they are not the same throw an error and stop
...
//check for output dependency
//take each node that depends on task represented by taskName
//and test that the frequencies are the same
//if they are not the same throw an error and stop
...

}

• for each anchored task invocation sensor update and actuator update a causality check is

performed, in order to make sure that I don’t get zero time to execute a float task; the

causality check works as follows: for each anchored task invocation and sensor update I

take the dependency list and if I can reach an anchored task, or an actuator update just

following the dependency list, and if in the list there is at least one float task invocation,

then the causality condition as described in previous chapter are checked; inCode 3.2.6I

present the methods that perform this checks.
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Code 3.2.6Causality check methods
//Search the dependencies until reach to a let task invocation or an
//actuator update then check causality conditiona
private void checkCausality(AFloatTaskInvocation floatTask,Node stNode){

...
if (dependencies != null) {

Iterator it = dependencies.iterator();
while (it.hasNext()) {

Node depNode = (Node) it.next();
if (depNode instanceof AFloatTaskInvocation)

checkCausality((AFloatTaskInvocation) depNode, stNode);
else

if (depNode instanceof ALetTaskInvocation)
checkCausality((ALetTaskInvocation) depNode, stNode);

else
if (depNode instanceof AActuatorUpdate)

checkCausality((AActuatorUpdate) depNode, stNode);
}//end while

}//end if
}
private void checkCausality(ALetTaskInvocation letTask,Node stNode){

...
if (startNode instanceof ALetTaskInvocation) {

// Let vs Let
...
if (stLetDuration + stLetOffset >= letOffset) //error

}
if (startNode instanceof ASensorUpdate) {

// sensor update vs Let
...
if (stOffset >= letOffset) //error

}
}

3.2.4 Mode Switch Checker

This checker, checks the condition that must hold in order to be able to switch from one mode

to another without overloading. There are three possible cases:

• the mode switch does not preempt any task, then there is no condition to be checked;

• the two modes are classicGiottomodes, in this case the oldGiottomode switch conditions

must be checked;

• the two modes areTSL modes, in this case theTSL mode switch conditions must be

checked.

In Code 3.2.7is presented the method that is called when leaving the mode switch node. As

it can be seen first the preemption test is performed by applying on thecrrMode an instance

of classCheckPreemption, which looks at each task invocation frequency in the mode, and if

it does not divide by mode switch frequency thenpreemptswill be set to true, otherwise it

will remain false. After the preemption test was performed and if this test returned true, then
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Code 3.2.7outAModeSwitch method
public void outAModeSwitch(AModeSwitch node){

...
crrMode.apply(checkPreemption);
if(checkPreemption.preempts){

// both modes are classic giotto modes
checkClassicGiotto(destMode, modeSwitchFreq);
if(!(destModeType && crrModeType)){
// at least one mode is a giotto+ mode

checkGiottoPlus(destMode, modeSwitchFreq);
}

}
}

the classicGiotto mode switch condition will be checked. The classicGiotto conditions test

is implemented in the methodCode 3.2.8. What this method does is: for each task invocation

Code 3.2.8checkClassicGiotto method
private void checkClassicGiotto(AModeDeclaration destMode,

int modeSwitchFreq)
}

in the source mode tests to see if the task invoke frequency does divide by the mode switch

frequency, if it does not divide tests to see if the task is invoked in the destination mode with

the same period, if not an error is thrown an the compiler stops. If at least one of the two modes

is aTSLmode, then theTSLmode switch conditions are tested. In order to find out if a mode

is a classicGiotto mode or aTSLone, an instance of the classClassicGiottoModeis apply on

the mode, this class is very similar withCheckPreemptionclass, it has a public memeber that

will be true if the mode is a classicGiotto mode and false otherwise. TheTSLmode switch

conditions are implemented byCode 3.2.9. First the list of anchored and float tasks of the

destination mode are got fromSymbolTable, then the inclusion test is performed (this would be

the firstTSLcondition), if this test returns true, then the second test is performed by the method

checkSecondCondition, the second condition ensure that the dependencies are preserved.

3.2.5 Time Safety Checker

This checker, checks the mode utilization based on mode period and the worse case execution

time of each task that is invoked in the mode, if mode utilization is greater then 1 then an error

is reported and the compiler stops. The mode utilization is computed as showed inCode 3.2.10.

Wherewcetis task worse case execution time and frequency is the task invocation frequency.
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Code 3.2.9checkGiottoPlus method
private void checkGiottoPlus(AModeDeclaration destMode,

int modeSwitchFreq){
final String destModeName = ...
final int destPeriod = ...
final int crrPeriod = ...
final Map destLetTasks=...
final Map destFloatTasks=...
if(Utils.include(crrFloatTasks, destFloatTasks) &&

Utils.include(crrLetTasks, destLetTasks)){
checkSecondConditions(crrMode, destMode,

crrMode.getModeName(), destMode.getModeName());
}
else if(Utils.include(destFloatTasks, crrFloatTasks) &&

Utils.include(destLetTasks, crrLetTasks)){
checkSecondConditions(destMode, crrMode,

crrMode.getModeName(), destMode.getModeName());
}
else{

// error
inclusionError(...);

}
}

Code 3.2.10Mode utilization computation
modeUtilization = modeUtilization

+ ((double) wcet / (modePeriod / frequency));

3.3 Code Generator

The code generation is made up of two parts:

• FTable– this class is used to generate a C file “ftable.c”, and its corresponding header

file “f table.h”, this files will be compiled into theE Machine, the file will contain:

– for each sensor declaration will be added a variable declaration, that will be associ-

ated with the sensor, and a function, that will be called when the sensor is updated;

– for each actuator will be added again both a variable, and the function that will be

called when actuator is updated;

– for each output port there will be defined two variables, because a port is double

buffered, the initialization function, and a copy function that will copy the infor-

mation from the local variable into the global variable, if the task that writes to an

output port is a float task then only the local variable is used;

– for each task will be added, for each formal port a variable, and also the function

that will be executed when the task is released;
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– for each driver there will be added two function one that will be the condition that

guards the driver, and the second the function that will be called when the driver is

to be called, for each mode in which the driver is used there will be added two new

such functions, the reason for this is that a task can be invoked in a mode as a float

task, and then in another as an anchored task;

– a trigger table, usually this table will contain only one trigger, which is the timer;

– task table, this will contain the list of all the tasks, and what is the function associated

with each task;

– driver table, this will contain the list of drivers, the function associated with each

diver;

– condition table, this will contain the list of condition and the function associated

with each condition;

– port table, this will contain the list of sensor, actuator and output ports and the

address of the variable associated with each port;

• ECode– this will be used to generate theE codefor theGiottoprogram.

Further I will not detailed any more theFTableclass, because I made only a few modifications

to it, instead I will detailed theECodeclass, because I consider it to be more interesting.

Before I present how theE codeis generated a few observations must be made regard-

ing what I mean when I say that an element is enabled:

• sensor update – a sensor update is enabled if: (1) there is no float task that depends on it

and(|unit− (offset/unitPeriod)| ∗ frequency) mod nUnit = 0, or (2) there is a float

task that depends on the sensor update then(unit ∗ frequency) mod nUnit = 0

• actuator update – an actuator update is enabled if:(|unit − (offset/unitPeriod)| ∗

frequency) mod nUnit = 0

• mode switch – a mode switch is enabled if(unit ∗ frequency) mod nUnit = 0

• anchored tasks – an anchored task is enabled if(|unit−(offset/unitPeriod)|∗frequency) mod nUnit =

0
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• float task – a float task is enabled if(unit ∗ frequency) mod nUnit = 0

TheE codegeneration works as follows:

• first for each mode the small unit period is computed using an isntance ofModeUnitclass

(the unit period is defined in the previous chapter);

• the period of each mode is divided in a number of unit periods and for each such a unit

period the following set of operations is performed:

– for all anchored tasks on which depends no float task and that are finished at the

current unit the copy driver is called;

– for each actuator update, that is enabled at this unit, first the driver is called to update

the port then the corresponding device function is called;

– for each sensor update, which is enabled and on which there is a mode switch that

depends on, the corresponding device function is called;

– for each enabled mode switch, the mode switch condition check is generated, then

on the true branch will be generated the the jump to the address where the mode

switch is implemented, and on the false branch the jump to task address is generated;

– mode switch address, first the mode switch driver is called, then the jump to the task

address for desired unit from the destination mode, or a future instruction referring

to the same address as the jump, depending on the preempted tasks;

– task address, first for all enabled sensor updates on which there is an anchored task

that depends on, but no dependent float task the device function is called, next for

all anchored tasks that are enabled, the update driver is called, then the task is re-

leased, next for each enabled sensor update on which there is at least a float task that

depends on, a future instruction is generated with the time set to the offset and the

address where the sensor device function is called, for each anchored task on which

there is a float task that depends on a future instruction is generated with the time set

to offset+duration and the address where the copy function for the task output ports

is called, for each enabled float task a future instruction is generated with the time

set to the biggest offset on which the task depends on, the list of float tasks that this
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task depends on (this list is encoded in a 32 bit integer, based on the fact that I can

not have more then 32 tasks) and the address where the task is released;

– at the end a last future instruction is generated with the period set to the unit period

and the address set to the next unit.
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Chapter 4

Case Study

In order to testTSL in a control application I have implemented a simulator for theThree

Tanks System (3TS), the3TS Simulatoris written in Java, I have also implemented a controller

(3TS Controller), also written in Java, that can be used to control the3TSplant. The3TS

Controller, could also be used as a viewer, for the evolution of the3TS Simulatorsignals.

Also I have implemented a reduced version of3TS Controllerin TSL. The communication

between the controller (Java orTSL) and the simulator is done via sockets, I choose this type of

communication because is totally platform independent, in order to do this a protocol (Control

Protocol) was implemented. Next I will present the3TS Plant, then I will presentControl

Protocoland each application in different section.

4.1 Three Tanks System (3TS) Plant

In this section I will present the 3TS plant, I will build a mathematical model for the plant, and

I will design the control structures and algorithms.

3TS system is made up of three identical cylindrical tanks (T1, T2, T3), having the

same transversal sectionA. The three tanks are interconnected through pipes having the same

sectionS (S << A(m2)). Each thank has a tap through which the fluid drains. TankT2 has

a supplementary tap. There are also two pumpsP1 andP2, which are connected toT1 and

T2, respectively, The pumps are powered by two DC-motors. In order to be able to simulate

perturbations in the system, the interconnection pipes as well as the draining pipes are equipped

with a tapαi wherei ∈ {S1, S2, g2, e1, e2, e3}.
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4.1.1 Mathematical Modeling

In Fig. 4.1 it is presented the block schema for 3TS plant. Further in this subsection I will

present the mathematical model for 3TS system.
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Figure 4.1: 3 Tanks System

The level of the fluid in the the tanks depends on:

• the filling flow capacities ofT1 andT2 (qp1, qp2);

• the draining flow capacities of the six taps:

– qe1, qe2, qe3, qg2 - emptying flow capacities (these represent the perturbations);

– q13, q32 - the interchange flow capacities;

The interconnection flow capacities are considered to be oriented:

q13 > 0, ifh1 > h3(T1 −→ T3);

q13 < 0, ifh1 < h3(T3 −→ T1);

respectively:

q32 > 0, ifh3 > h2(T3 −→ T2);

q32 < 0, ifh3 < h2(T2 −→ T3);

In order to be able to mathematically model the process the physical phenomena that

takes place must be known.
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The main equation for 3TS system is Bernoulli’s equation. The equation relates the

speed and the pressure off moving fluid.

p +
δv2

2
+ δgh = const. (4.1)

Considering the “homogeneous environment” andS << A, then the speed of the

draining fluid could be approximated by the following relation:

v ≈
√

2g∆h (4.2)

where∆h represents the fluid level deference between interconnected tanks.

First I will model the case when there is only one tank (1TS) then I will model the case

when there are two tanks interconnected (2TS) and in the end I will present the mathematical

model for 3TS plant.

4.1.1.1 1TS Plant

The plant is presented inFig. 4.2

s

P u =x
q

T

h

A

q

a

a

uc p

Mh

e

e

Figure 4.2: One Tank System

The evolution of the volume of the fluid in the tank is characterized by the following

equation:

ḣA =
∑

[qin − qout] = qP (4.3)
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where

• qin represents the in flow capacity, and for for 1TS plant it is represented by pump capacity

(qP );

qP = cuc (4.4)

• qout represents the out flow capacity, and it is represented by the flow capacity of the fluid

that drains throughµe (qe).

qe = µeS
√

2gh (4.5)

Combining equations (4.3), (4.4), and (4.5) results:

ḣ =
1

A
(cuc − µeS

√
2gh) (4.6)

Linearizing the equation (4.6) in the neighborhood of the fixed point (h0, uc0, andµe0) results:

∆̇h =
1

A
(c∆uc − µe0S

√
2g

1

2
√

h0
∆h− S

√
2gh0∆µe) (4.7)

In Fig. 4.3 I present the results of simulating the found mathematical model for the

1TS plant in Matlab,the Simulink schema can be found inAppendix E.

4.1.1.2 2TS Plant

The plant is presented inFig. 4.4.

Writing the equation (4.3) for each of the two tanks I get:

ḣ1 =
1

A
(qp1 − q13 − qe1) (4.8)

ḣ3 =
1

A
(q13 − qe3) (4.9)
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Figure 4.3: 1TS Matlab simulations
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Figure 4.4: 2 Tanks System
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where

q13 = µS1 · S · sgn(h1 − h3)
√

2g|h1 − h3| (4.10a)

qe1 = µe1 · S ·
√

2gh1 (4.10b)

qe3 = µe3 · S ·
√

2gh3 (4.10c)

qp1 = c1uc1 (4.10d)

Combining equations (4.8), (4.9), and (4.10) I get:

ḣ1 =
1

A
(c1uc1 − µS1 · S · sgn(h1 − h3)

√
2g|h1 − h3| − µe1 · S ·

√
2gh1) (4.11a)

ḣ3 =
1

A
(µS1 · S · sgn(h1 − h3)

√
2g|h1 − h3| − µe3 · S ·

√
2gh3 (4.11b)

Linearizing the mathematical model (4.11) in the neighborhood of (h10, h30) I get:

˙∆h1 =− S
√

2g

A
sgn(h10 − h30) ·

√
|h10 − h30| ·∆µs1

− S
√

2g

A
µs10sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h1

+
S
√

2g

A
µs10sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h3

− S
√

2g

A
·
√

h10 ·∆µe1 −
S
√

2g

A
µe10 ·

1

2
√

h10

∆h1 +
c1

A
∆uc1

˙∆h3 =
S
√

2g

A
sgn(h10 − h30) ·

√
|h10 − h30| ·∆µs1

+
S
√

2g

A
µs10 · sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h1

− S
√

2g

A
µs10 · sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h3

− S
√

2g

A
·
√

h30 ·∆µe3 −
S
√

2g

A
µe30 ·

1

2
√

h30

∆h3

In Fig. 4.5 I present the results of simulating the found mathematical model for the

2TS plant in Matlab,the Simulink schema can be found inAppendix E.
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Figure 4.5: 2TS Matlab simulations
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4.1.1.3 3TS Plant

The plant is presented inFig. 4.1. The mathematical model for 3TS plant is equivalent to the

mathematical model tor two 2TS plants and one tank is common to both plants.

2TS1

ḣ1 =
1

A
(qp1 − q13 − qe1)

ḣ3 =
1

A
q13 − qe3

2TS2

ḣ2 =
1

A
(qp2 + q32 − qe2 − qg2)

ḣ3 =
1

A
−q32 − qe3

Combining the equations for2TS1 and2TS2 I get the following mathematical model for 3TS

plant:

ḣ1 =
1

A
(qp1 − q13 − qe1)

ḣ2 =
1

A
(qp2 + q32 − qe2 − qg2)

ḣ3 =
1

A
q13 − q32 − qe3

where

q13 = µS1 · S · sgn(h1 − h3)
√

2g|h1 − h3| (4.16a)

q32 = µS2 · S · sgn(h3 − h2)
√

2g|h3 − h2| (4.16b)

q20 = µg2 · S ·
√

2gh2 (4.16c)

qei = µei · S ·
√

2ghi (4.16d)

qpi = ciuci (4.16e)
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Linearizing the model in the neighborhood of (h10, h20, h30) I get:

˙∆h1 =−
√

2g

A
sgn(h10 − h30) ·

√
|h10 − h30| ·∆us1

−
√

2g

A
us10sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h1

+

√
2g

A
us10sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h3

−
√

2g

A
·
√

h10 ·∆ue1 −
√

2g

A
ue10 ·

1

2
√

h10

∆h1 +
c1

A
∆uc1

˙∆h2 =

√
2g

A
sgn(h30 − h20) ·

√
|h30 − h20| ·∆us2

+

√
2g

A
us20sgn(h30 − h20) ·

1

2
√
|h30 − h20|

·∆h3

−
√

2g

A
us20sgn(h30 − h20) ·

1

2
√
|h30 − h20|

·∆h2 −
√

2g

A
·
√

h20 ·∆ue2

−
√

2g

A
ue20 ·

1

2
√

h20

·∆h2 −
√

2g

A

√
h20∆ug2

−
√

2g

A
ug20

1

2
√

h20

∆h2 +
c2

A
∆uc2

˙∆h3 =

√
2g

A
sgn(h10 − h30) ·

√
|h10 − h30| ·∆us1

+

√
2g

A
us10 · sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h1

−
√

2g

A
us10 · sgn(h10 − h30) ·

1

2
√
|h10 − h30|

·∆h3

−
√

2g

A
sgn(h30 − h20) ·

√
|h30 − h20| ·∆us2

−
√

2g

A
us20 · sgn(h30 − h20) ·

1

2
√
|h30 − h20|

·∆h3

+

√
2g

A
us20 · sgn(h30 − h20) ·

1

2
√
|h30 − h20|

·∆h2

−
√

2g

A
·
√

h30 ·∆ue3 −
√

2g

A
ue30 ·

1

2
√

h30

∆h3

In Fig. 4.6 I present the results of simulating the found mathematical model for the

3TS plant in Matlab,the Simulink schema can be found inAppendix E.
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uc1=uc2=10 ue1=ue2=ue3=ug2=us1=us2=0.5 uc1=uc2=10 ue1=ue2=ue3=ug2=us1=us2=1

Figure 4.6: 3TS Matlab simulations
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4.1.2 Controllers Design

The aim of the controller is to maintain constant the level of the fluid in tanksT1 andT2 (h1 and

h2, respectively), using the fill flow capacitiesqp1 andqp2 and the tankT3. The perturbations

are considered to be:

• the level of the fluid in tankT3;

• drain of the fluid throughout emptying taps, marked by flow capacities:qe1, qe2, qe3, q20.

There are two possible situations that should be consider: (1)if there is no perturbation,

then as showed inSection 4.1.1.1the mathematical model has an integrator behavior, and a

good controller for such a mathematical model would be a P Controller, and (2) if there are

some perturbations in the system then will be used a PI Controller.

4.1.2.1 P Controller

This controller will be used only if there is no perturbation acting up on the tank for which the

controller is working. Since there is no perturbation, the tank can be consider to be independent,

resulting that can be used the 1TS mathematical model (4.6) for the controller design.

Transfer function for 1TS mathematical model without perturbations is:

HP (s) =
c

A

1

s
(4.18)

Controller transfer function is:

HR(s) = kR (4.19)

Using equation (2.7) and choosingtc = 60s I get:

kR =
A

20c
(4.20)

In Fig. 4.7I present the results of simulating the control of 1TS plant using the P Con-

troller I design for a reference value of 0.6m,the Simulink schema can be found inAppendix

E.
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Figure 4.7: 1TS with P Controller simulation results

4.1.2.2 PI Controller

The PI controller will be used if there is any perturbation acting up on the tank for which the

controller is working.Since as I showed inSection 4.1.1.3the 3TS plant is equivalent to two

2TS plants, having a common tank, I will use the 2TS plant mathematical model for controller

design. The controller for the first tank (T1) will be designed using the mathematical model

of the 2TS plant made up of T1 and T3, while the controller for the second tank(T2) will be

designed using the mathematical model of the 2TS plant made up of T2 and T3. The method

used to design the two controllers isThe Frequency Domain Controller Designmethod.

PI Controller transfer function is:

HR(s) =
kR

sTi

(1 + sTi) (4.21)

PI Controller for T1 - Bode diagrams for system transfer function and closed system transfer

function are presented inFig. 4.8.
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(a) (b)

(c)

Figure 4.8: Bode diagrams:(a)system; (b)closed system,kR = 1 (c)closed system,kR = 10

From Fig. 4.8acan be read the dominant time constant (Tdom) for the plant:Tdom = 70s I

chooseTi = 15s and I plot the Bode diagrams for closed system forkR = 1 (Fig. 4.8b).

If I chooseϕres = 45o then from figure (b) I can see that I have to raise the diagram with

20db, which is equivalent to multiply by 10, thus resultskR = 10. Hence for tankT1 I get the

following PI Controller:

HR(s) =
10

15s
(1 + 15s) (4.22)

In Fig. 4.9I present the results of simulating the control of 2TS(T1-T3) plant using the

PI Controller I design for a reference value of 0.4m and all perturbations set to 0.5, in Matlab,the

Simulink schema can be found inAppendix E.

PI Controller for T2 - Bode diagrams for system transfer function and closed system transfer

function are presented inFig. 4.10.

From Fig. 4.10acan be read the dominant time constant (Tdom) for the plant:Tdom = 65s I

chooseTi = 15s and I plot the Bode diagrams for closed system forkR = 1 (Fig. 4.10b). If I
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Figure 4.9: 2TS(T1-T3) with PI Controller simulation results

chooseϕres = 45o then from figure (b) I can see that I have to raise the diagram with 17.5db,

which is equivalent to multiply by 5.3, thus resultskR = 5.3. Hence for tankT1 I get the

following PI Controller:

HR(s) =
5.3

15s
(1 + 15s) (4.23)

In Fig. 4.11I present the results of simulating the control of 2TS(T2-T3) plant using the

PI Controller I design for a reference value of 0.4m and all perturbations set to 0.5,the Simulink

schema can be found inAppendix E.

The PI controllers will be implemented so that the P and I components are distinct as

shown inFig. 4.12.
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(a) (b)

(c)

Figure 4.10: Bode diagrams:(a)system; (b)closed system,kR = 1 (c)closed system,kR = 10

In Fig. 4.13 I present the results of simulating the control of 3TS plant using the

PI Controllers I design before, for a reference value of 0.5m forh1 and 0.4 forh2, and all

perturbations set to 0.5,the Simulink schema can be found inAppendix E.

As it can be seen from the simulation resultsσ1 > 20%, which is too much so I have

introduce Anti Windup Reset (AWR) in order to reduce theσ1. The block schema for the

controller with AWR is presented inFig. 4.14.
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Figure 4.11: 2TS(T2-T3) with PI Controller simulation results

1
1−z−1
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1
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−

w

e

u

Figure 4.12: PI Controllers implementation

Figure 4.13: 3TS with PI Controllers simulation results
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Figure 4.14: PI Controller with ARW

In Fig. 4.15 I present the results of simulating the control of 3TS plant using the PI

Controllers I design before with ARW, for a reference value of 0.5m forh1 and 0.4 forh2, and

all perturbations set to 0.5,the Simulink schema can be found inAppendix E.
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Figure 4.15: 3TS with PI Controllers with ARW simulation results
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4.2 Control Protocol

I have implemented this protocol in order to have a simple way to communicate between the

regulator client and the process server. The protocol is build over TCP/IP. I have implemented

a full version of the protocol in Java and in C I have implemented only the regulator client.

In Fig. 4.16I present the structure of a packet fromControl Protocol. As it can be seen from

DATA nTYPE DATA 1

Figure 4.16: Control Protocol packet structure

the figure the first byte in the packet will represent the packet type, after this byte there can be

a fix or a variable number of bytes representing packet data. If packet data has a fix number of

bytes then data length is known from the type (a type can not be used both with fix and variable

data length). If the packet data has a variable length then the first byte after the type byte will

represent data length. For a full description of the protocol you should look atAppendix B.

Further I will present the Java and C implementation of the protocol.

4.2.1 Java implementation

Control Protocolwas implemented in the packagecontrol.net, the package contains only four

classes:

• ControlProtocol– in this class are defined aspublic static final bytemembers all the

possible packet types and all the error codes, there are also defined a few utilitystatic

methods;

• ControlProtocolException– this represents an exception, the class extendsjava.lang.Exception;

• ProcessServer– this class represents the server (the process is considered to be the

server); the constructor for this class takes a single parameter that represents the port

on which the server will listen, still in the constructor aServerSocketis created for the

specified port, but the server will not start listening for clients until thestart() method is

called; whatstart() method does, is to create a new thread in which the server will start
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listening for clients, and if a client is accepted then an instance ofServerWorker, which

is an internal class, will be created and put in a list of clients, in order to take care of the

client in a separate thread, while the server will continue to wait for others clients; what

worker dose is: wait for packets from the client and for each packet if it is necessarily it

will raise an event to notify the presence of the packet; in the server class there are also

defined method that allows to the upper layer to send a packet to all client (broadcast);

there is also a stop method that will send a packet to all clients telling them that the server

is going down and then it will close all the workers and the server main thread.

• RegulatorClient– this class represents the client (the regulator is considered to be the

client); the constructor will take two parameters: (1) aStringthat will represent the server

address, and (2) anint that will represent the port on which the server is listening, in the

constructor there will be created aSocket, that will connect to server, after the connection

was establish a synchronization packet is send to the server that will have to reply with

the same packet, otherwise the client will shutdown; there is also astart() and astop()

method, thestart()method will create a new thread, where the client will wait for packets

send by the server and it will raise an event if necessarily to notify the upper layer, the

stop()method will send a packet to the server telling it that the client is going down and

then stops the thread; there are also others methods defined, that can be used by the upper

layer to send a packet to the server.

4.2.2 C implementation

It is just a partial implementation of the regulator client, but still enough to be able to control

the process. The implementation is made in one file C filerg cleint.c, and the corresponding

header filerg client.h. The implementation consists of the following functions:

• init rg client()– initialized the connection and sends the synchronization packet;

• a couple of functions that are used to send a particular type of packet;

• read sensors()– used to read a packet send by server and that represents the new fluid

levels in the three tanks.
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As it can be seen the error cases are not treated and also the only valid packet that should be send

by the server is the one that represents the new signals values, if any other packet is sent, then

the regulator will report a broken protocol and will stop. This condition is satisfied because the

server can accept to types of clients (giotto clientandjava client), the only difference between

them is that togiotto clientsthe server will send only packets that represents new signals value

and will ignore all other packets.

4.3 3TS Simulator

3TS Simulatorit is implemented in Java. The main class issimulator.Simulator3TS. The user

guide for the application is presented inAppendix C. When implementing the simulator I tried

to decoupleUser Interfaceas much as possible from the logic. Having this idea in mind, I have

split the application in three packets:

• simulator.model – contains all classes used to simulate the process;

• control.net – this was presented before and what is used from this is the server.

• simulator.ui – contains all classes used to create user interface;

4.3.1 Package simulator.model

This package contains all the class used to simulate 3TS process. InFig. 4.17 I present the

UML diagram for the classes in this package.

As it can be seen from the UML diagram all the models are driven from the same class

(Model), which extends another classMyPropertyChangeSupport. Next I will describe each

class:

MyPropertyChangeSupport – this class is from the packetcontrol.util, it is an abstract class,

its main purpose is to add support forPropertyChangeevent in the subclasses;

Model – this is also an abstract class and it is extended by all models;

TapModel – this class implements the logic for a tap, it has adoublemember that represents

the open coefficient, it also keeps two references to aTankModel, if both are notnull then
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MyPropertyChangeSupport

PumpModel Model3TS

Model

TapModelTankModel

2 3 6

Figure 4.17: UML diagram for simulator.model package

the tap is between two tanks else it is an emptying tap, this class has also a method that

based on the tanks references and the open coefficient computes the flow capacity through

the tap, the class can also trigger an event every time the open coefficient changes ;

PumpModel – this class implements the logic for a pump, this class has threemembers: pump

capacity, the command given to the pump (in [V], and the pump debit computed on the

first two), the class can trigger an event when command has changed or debit has changed;

TankModel – this class implements the logic for a tank, this class has aSetof taps that are

connected to the tank, aSetof pumps that are connected to the tank, adoublemember

representing the hight of the tank, and anotherdoublemember representing the fluid level,

there is also a method that takes as a parameter the sample time, and based on pumps

and taps debit it will compute the speed of variation of the fluid, that will be integrated

to obtain the actual fluid level, the class can trigger an event every time the fluid level

changes;

Model3TS – this class implements the logic for the 3TS process simulation and it uses the

previous three models in order to do this, the class has anint member representing the

sample time, in order to simulate 3TS process a thread is created that after sample time

milliseconds will compute the new fluid level in each tank;
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4.3.2 Package simulator.ui

For each mode there is a graphical component used to control that model parameters. InFig.

4.18it is presented the UML diagram of the class in this package.

java.swing.JPanel

PumpSlider PeriodSlider

MySlider

TapSlider

TankPanel

Figure 4.18: UML diagram for simulator.ui package

Next I will present each class in the packet:

MySlider – this class will be used only as a base class, it represents a slider;

PumpSlider – extendsMySliderand it is used to update the command given to the pump, it

has aPumpModelmember for which the command is given;

TapSlider – extendsMySliderand it is used to update the open coefficient of a tap, there is a

TapModelmember for which the coefficient is controlled;

PeriodSlider – extendsMySliderand it is used to update the simulation sample time, there is

aModel3TSmember for which the sample time is updated;

TankPanel – this is used to graphically represent the the evolution of the fluid level in a tank,

there is aTankModelmember which is represented by the component.
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4.4 3TS Controller

4.4.1 3TS Controller

3TS Controlleris implemented in Java. The main class iscontroller.Controller3TS. The user

guide for the application is presented inAppendix D. As3TS Simulatorthis too is implemented

with the idea of separating the user interface from the application logic. It is made up of three

packets:

• controller.model – contains all classes used to implement the regulator logic;

• control.net – this was presented before and what is used from this is the client;

• controller.ui – contains all classes used to create user interface.

Next I will present each packet exceptcontrol.netin a separate subsection.

4.4.2 Package controller.model

The classes in this package implements the logic of the application. InFig. 4.19can be seen

the UML diagram for this package. Further I will detail each of this classes:

MyPropertyChnageSupport

SignalModel

AbstractTableModel

PIControllerModelPolynomModel GeneralControllerModel

ControllerModel

Figure 4.19: UML diagram for controller.model package

SignalModel – this class implements a model for a signal, it has anArrayList member which

is used to store data, what is interesting about this class is that when accessing an element

whose index is not in the rage then zero will be return and no Exception is thrown, also it

can trigger an event when a new value is added;
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ControllerModel – this is the base class for all controllers, it has anint member that represents

regulator sample time, it also has anArrayList of SignalModel for commands, another

one for feedback signals, and another one for error signals and an array of doubles for

references and new computed commands, it can trigger an event when the sample time

has changed;

PIControllerModel – this class implements the PI Controller with ARW, it has as members

kR andTi based on this it will compute the numerical algorithm parameters, it also im-

plements the abstract methodcomputeCommandsthat is inherit fromRegulatorModel, in

this method, based on the feedback signals, error signals, and commands signal the PI

numerical algorithm is implemented;

PolynomModel – this class extendsAbstractTableModelbecause it is also used as a model

for a JTablecomponent, it has anArrayList member that will be used to store polynom

coefficients;

GeneralControllerModel – this class implements a general numerical control algorithm, it

has two members of typePolynomModel, one forp coefficients and another one forq co-

efficients, the class implementscomputeCommandsfrom the superclass, in this method

actually is implemented the general numerical algorithm based onp coefficients,q coeffi-

cients, feedback signals, error signals, and commands signals, inCode 4.4.1I present the

computeCommandsmethod for the general algorithm (computeCommandsmethod for PI

controller is just a particular case of this).

4.4.3 Package controller.ui

The classes in this package are used to create user interface for the3TS Controller. In Fig. 4.20

can be seen the UML diagram for this package. Further I will detail each of this classes:

DiagramPanel – this is used for plotting a signal, the signal is represented by aSignalModel

member, every time a value is added to the signal the component is repainted;

DiagramDialog – this class is used to display a dialog, that will draw the diagram for a signal

and it will compute the quality indicators if it is the case;
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Code 4.4.1computeCommands method for general numerical control algorithm
public void computeCommands() {

//initializations
...
double yk=ySignale.getScaledValue(ySignale.getSize()-1);
double ek=referances[0]*ySignale.getScaleFactor()-yk;
// add p coefficients
final Iterator p=pCoefficient.iterator();
int index=pCoefficient.getRowCount();
while(p.hasNext()){

inal double crrP=((Double)p.next()).doubleValue();
newCommands[0]+=-crrP*uSignale.get(uSignale.getSize()-index);

index--;
}
//add p coefficients
final Iterator q=qCoefficient.iterator();
index=qCoefficient.getRowCount();
while(q.hasNext()){

final double crrQ=((Double)q.next()).doubleValue();
if(index==1)

newCommands[0]+=crrQ*ek;
else

newCommands[0]+=crrQ*eSignale.get(eSignale.getSize()
-index+1);

index--;
}
....
// limit the command [0,10]
....
// store command and error

}

JDialog JPanel

DiagramDialog DiagramPanel PolynomPanelPIControllerPanel

GeneralControllerPanel

Figure 4.20: UML diagram for controller.ui package
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PIControllerPanel – this class is used to create a graphical component that can be used to set

the parameters for aPIControllerModelinstance;

GeneralControllerPanel – this class is used to create a graphical component that can be used

to set the parameters for aGeneralControllerModelinstance;

PolynomPanel – this class is used to create a graphical component that can be used to add,

remove, or change a coefficient from aPolynomModelinstance.

4.4.4 TSL 3TS Controller

I have implemented only the PI Controller with ARW algorithm. The implementation consists

of two pars:

• one that is written in C, and implements the control algorithm as well as the communica-

tion with the plant, this represents the functionality;

• and the part that is implemented inTSL, representing the timing.

4.4.5 C implementation

C implementation consist of: (1)Control Protocolimplementation, this was presented inSub-

section 4.2.2and (2) the regulator implementation and the implementation of the driver used to

read sensors and write actuators.

In Code 4.4.2I present the C implementation for the PI with ARW control algorithm.

One can clearly see the separation between P and I components. All the parameters of the

algorithm (kR, Ti, and sample time) are read from a file in the initialization function (discussed

in Subsection 4.2.2).

4.4.6 TSL implementation

In Fig. 4.21I present the structure of the program. As it can be seen from the figure the program

has four modes:P P, P PI, PI P, andPI PI. All four modes have:

• the same period;
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Code 4.4.2P Rg function
double P_Rg(double w,double y, double kR,double kRi,

double Tri,type_circular_array *u,type_circular_array *ulim,
type_circular_array *ui,type_circular_array *e){

double uk;
double ek;
double uik;
ek=w-y;
uk=kR*ek;
uik=(uk-kRi*ek)*Tri/kRi;
circular_array_add(u,uk);
if(uk<0.0){

uk=0.0;
}
if(uk>10.0){

uk=10.0;
}
circular_array_add(ulim,uk);
circular_array_add(ui,uik);
circular_array_add(e,w-y);
return uk;

}

sen_h2

sen_h1
rg1_P

act_pumps

rg2_P

period 500ms
MODE P_P

sen_h2

sen_h1

act_pumps

rg2_P

period 500ms
MODE PI_P

rg1_PI

sen_h2

sen_h1

act_pumps

period 500ms

rg1_PI

rg2_PI

MODE PI_PI

sen_h2

sen_h1
rg1_P

act_pumps

period 500ms
MODE P_PI

rg2_PI

Figure 4.21: TSL program structure
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• two tasks;

• two sensors update with an offset of 100ms (senh1 and senh2);

• six sensors update with zero offset;

• one actuator update (actpumps);

• three mode switches.

The execution will always start with theP P mode. The program can switch from any mode to

any other mode.

P P mode - this mode is used when there is no perturbation acting up onT1 or T2, the control

lows for the two tanks are of P type;

P PI mode - this mode is used when there is no perturbation acting up onT1, but there is

perturbation acting up onT2, for T1 there will be used a P control low, while forT2 there

will be used a PI control low

PI P mode - this mode is used when there is no perturbation acting up onT2, but there is

perturbation acting up onT1, for T2 there will be used a P control low, while forT1 there

will be used a PI control low

PI PI mode - this mode is used when there is perturbation acting up onT1 or T2, the control

lows for the two tanks are of PI type;

Full TSLprogram and theE codegenerated for it can be seen inAppendix A.

4.4.7 Simulation results

In this section I will present the results of usingTSLController.

In Fig. 4.22I present the results of using the PI Controller for tankT1 and P Controller

for tank T2. The simulation conditions are:h10 = 0.5m, h20 = 0.4m, µe1 = 0.5, andµe2 =

µe3 = µs1 = µs2 = µg2 = 0.

In Table 4.1andTable 4.2can be found the quality indicators forT1 andT2.
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Figure 4.22: PIP mode simulation results

σ1 20%
ts 72[s]
tr 147[s]
t1 167[s]
tm 244[s]
tc 818[s]

Table 4.1: PIPT1 quality indicators
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σ1 0%
ts 42[s]
tr 129[s]
t1 342[s]
tm 342[s]
tc 120[s]

Table 4.2: PIPT2 quality indicators

In Fig. 4.23I present the results of using the PI Controller for tankT1 and PI Controller

for tank T2. The simulation conditions are:h10 = 0.5m, h20 = 0.4m, µe1 = µe2 = µe3 =

0.5,µs1 = 0.3,µs2 = 0.4, andµg2 = 0.

In Table 4.3andTable 4.4can be found the quality indicators forT1 andT2.

σ1 8%
ts 114[s]
tr 208[s]
t1 302[s]
tm 379[s]
tc 639[s]

Table 4.3: PIPI T1 quality indicators

σ1 17%
ts 119[s]
tr 217[s]
t1 266[s]
tm 381[s]
tc 835[s]

Table 4.4: PIPI T2 quality indicators

In Fig. 4.24I present the results for the following simulation conditions:h10 = 0.5m,

h20 = 0.4m, I start with all perturbation set to zero, then I setµe1 = 0.4, µs1 = 0.5, and

µe3 = 0.6, and in the end I setµue2 = 0.5, andµus2 = 0.6.
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Figure 4.23: PIPI mode simulation results
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Figure 4.24: Multi- mode simulation results
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Chapter 5

Conclusions

In this thesis I have presented how I had implemented the compiler for theTSL, starting from

a previous implementation of aGiotto compiler. Then I had presented the solution to a control

problem usingTSL for the implementation of the control low. From the case study one can

easily observe that there are three main steps that must be followed when solving a control

problem usingTSL:

• plant modeling and controller design;

• implementation of the control low in C, this represents the functionality;

• writing theTSLprogram, which represents the timing.

5.1 Outlook and Future Work

The anchored tasks were introduced inTSLbecause of the need to communicate between groups

of tasks that have different elements, otherwise the float tasks would have been enough. In a

future version we plan to remove anchored tasks and to have only float tasks, but in order

to do this a mechanism to be able to communicate between float tasks groups with different

frequencies is needed. A solution for this could be to use generalized ports (communicators)

that can be both read and write by tasks, an actuator is a special case of port that can only be

written, while a sensor is a special port that can only be read. Then in aTSLprogram there will

be acommunicator update, similar to a sensor or actuator update, that will have a frequency

and will use a driver to update the port (the driver will read from some tasks).
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In the currentTSLimplementation, there can be executed only one mode, a good idea

would be able to run a number n of modes in parallel, but a mode will contain only tasks that

have the same frequency.

An important limitation ofTSLis that when switching from one mode to another then

either the tasks are removed or added, but not both, in other words you are not able to replace

tasks when you switch from one mode to another. In order to overcome this limitation for

each task there will be specified a nominal execution time (NET), this of course is platform

independent and it will allow to compare relatively tasks. The idea for this NET comes from

the fact that if two taskst1 andt2 are given, and if on a platformt1 is faster thent2, then this

will be the case on any other platform.

In the current implementation of theTSL CompilerandE Machine the compiler gen-

erates C code for eachTSLprogram, that has to be compiled and static linked in theE Machine.

This implies that theE Machinemust be compiled after each compilation ofTSLprogram. A

solution to this would be to use dynamic linking.



Appendix A

TSL 3TS Regulator Program

TheTSLprogram that implements the regulator is:

sensor
c_double sen_h1 uses getH1; //reads h1
c_double sen_h2 uses getH2; //reads h2
c_int sen_e1 uses getE1; //read T1 e1 evacuation valve state
c_int sen_e2 uses getE2; //read T2 e2 evacuation valve state
c_int sen_e3 uses getE3; //read T2 e3 evacuation valve state
c_int sen_g2 uses getG2; //read T2 g2 evacuation valve state
c_int sen_s1 uses getS1; //read T1-T3 s1 inverconnection valve state
c_int sen_s2 uses getS2; //read T2-T3 s2 inverconnection valve state

actuator
c_double_arr act_pumps uses updateCommand; // update pumps command

output
c_double out_u1 := c_zero_double; //command for first pump
c_double out_u2 := c_zero_double; //command for second pump

//tasks

//General regulator for h1
task rg1_PI(c_double h1) output(out_u1) state(){
release PI_Rg1(h1, out_u1)
}

//General regulator for h2
task rg2_PI(c_double h2) output(out_u2) state(){
release PI_Rg2(h2, out_u2)
}

//P regulator for h1
task rg1_P(c_double h1) output(out_u1) state(){
release P_Rg1(h1, out_u1)
}

//P regulator for h2
task rg2_P(c_double h2) output(out_u2) state(){
release P_Rg2(h2, out_u2)
}

//drivers

//update rg1 input
driver update_rg1(sen_h1) output(c_double h1){
if c_true() then double_to_double(sen_h1,h1)
}
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//update rg2 input
driver update_rg2(sen_h2) output(c_double h2){
if c_true() then double_to_double(sen_h2,h2)
}

//update command limit task input
driver update_comm_limit(out_u1,out_u2) output(c_double u1, c_double u2){
if c_true() then double2_to_double2(out_u1,out_u2,u1,u2)
}

//actuator update
driver update_act_pumps(out_u1,out_u2) output(c_double_arr commands){
if c_true() then double2_to_double_arr(out_u1,out_u2,commands)
}

//mode switch drivers
driver P_P_to_P_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_P_to_P_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver P_P_to_PI_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_P_to_PI_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver P_P_to_PI_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_P_to_PI_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver P_PI_to_P_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_PI_to_P_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver P_PI_to_PI_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_P_to_PI_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver P_PI_to_PI_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if P_P_to_PI_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver PI_P_to_P_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_P_to_P_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver PI_P_to_P_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_P_to_P_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver PI_P_to_PI_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_P_to_PI_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver PI_PI_to_P_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_PI_to_P_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}

driver PI_PI_to_P_PI(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_PI_to_P_PI_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
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}

driver PI_PI_to_PI_P(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2) output(){
if PI_PI_to_PI_P_cond(sen_e1,sen_e2,sen_e3,sen_g2,sen_s1,sen_s2)
then empty_switch_driver()
}
start P_P{

mode P_P() period 500{
//sensor update
senfreq 1 do sen_h1 offset 100;
senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_e1 offset 0;
senfreq 1 do sen_e2 offset 0;
senfreq 1 do sen_e3 offset 0;
senfreq 1 do sen_g2 offset 0;
senfreq 1 do sen_s1 offset 0;
senfreq 1 do sen_s2 offset 0;

//actuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

//mode switch
exitfreq 1 do P_PI(P_P_to_P_PI);
exitfreq 1 do PI_P(P_P_to_PI_P);
exitfreq 1 do PI_PI(P_P_to_PI_PI);

floatfreq 1 do rg1_P(update_rg1);
floatfreq 1 do rg2_P(update_rg2);
}

mode P_PI() period 500{
//sensor update
senfreq 1 do sen_h1 offset 100;
senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_e1 offset 0;
senfreq 1 do sen_e2 offset 0;
senfreq 1 do sen_e3 offset 0;
senfreq 1 do sen_g2 offset 0;
senfreq 1 do sen_s1 offset 0;
senfreq 1 do sen_s2 offset 0;

//actuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

//mode switch
exitfreq 1 do P_P(P_PI_to_P_P);
exitfreq 1 do PI_P(P_PI_to_PI_P);
exitfreq 1 do PI_PI(P_PI_to_PI_PI);

floatfreq 1 do rg1_P(update_rg1);
floatfreq 1 do rg2_PI(update_rg2);
}

mode PI_P() period 500{
//sensor update
senfreq 1 do sen_h1 offset 100;
senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_e1 offset 0;
senfreq 1 do sen_e2 offset 0;
senfreq 1 do sen_e3 offset 0;
senfreq 1 do sen_g2 offset 0;
senfreq 1 do sen_s1 offset 0;
senfreq 1 do sen_s2 offset 0;

//actuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

//mode switch
exitfreq 1 do P_P(PI_P_to_P_P);
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exitfreq 1 do P_PI(PI_P_to_P_PI);
exitfreq 1 do PI_PI(PI_P_to_PI_PI);

floatfreq 1 do rg1_PI(update_rg1);
floatfreq 1 do rg2_P(update_rg2);
}

mode PI_PI() period 500{
//sensor update
senfreq 1 do sen_h1 offset 100;
senfreq 1 do sen_h2 offset 100;
senfreq 1 do sen_e1 offset 0;
senfreq 1 do sen_e2 offset 0;
senfreq 1 do sen_e3 offset 0;
senfreq 1 do sen_g2 offset 0;
senfreq 1 do sen_s1 offset 0;
senfreq 1 do sen_s2 offset 0;

//actuator update
actfreq 1 do act_pumps(update_act_pumps) offset 300;

//mode switch
exitfreq 1 do P_P(PI_PI_to_P_P);
exitfreq 1 do P_PI(PI_PI_to_P_PI);
exitfreq 1 do PI_P(PI_PI_to_PI_P);

floatfreq 1 do rg1_PI(update_rg1);
floatfreq 1 do rg2_PI(update_rg2);
}
}

TheE codegenerated by the compiler for the previous program is:

//output port initialization
call(init(out_u1))
call(init(out_u2))

//jump to start mode
jump(mode_address[P_P,0])

//mode P_P
//mode_address[P_P,0]
call(dev(sen_s2))
call(dev(sen_g2))
call(dev(sen_e3))
call(dev(sen_e2))
call(dev(sen_e1))
call(dev(sen_s1))
if(condition_P_P_P_PI,switch_address[P_P,0,P_PI,0,P_P_to_P_PI])
if(condition_P_P_PI_P,switch_address[P_P,0,PI_P,0,P_P_to_PI_P])
if(condition_P_P_PI_PI,switch_address[P_P,0,PI_PI,0,P_P_to_PI_PI])
jump(task_address[P_P,0])

//switch_address[P_P,0,P_PI,0,P_P_to_P_PI]
call(driver(P_P_to_P_PI))
jump(task_address[P_PI,0])

//switch_address[P_P,0,PI_P,0,P_P_to_PI_P]
call(driver(P_P_to_PI_P))
jump(task_address[PI_P,0])

//switch_address[P_P,0,PI_PI,0,P_P_to_PI_PI]
call(driver(P_P_to_PI_PI))
jump(task_address[PI_PI,0])

//task_address[P_P,0]
future(100,sensor_update_address[sen_h1,P_P,0])
future(100,sensor_update_address[sen_h2,P_P,0])
future(100,task_release_address[rg1_P,P_P,0])
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future(100,task_release_address[rg2_P,P_P,0])
future(100,mode_address[P_P,1])
return

//sensor_update_address[sen_h1,P_P,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,P_P,0]
call(dev(sen_h2))
return

//task_release_address[rg1_P,P_P,0]
call(driver(update_rg1))
release(task(rg1_P))
return

//task_release_address[rg2_P,P_P,0]
call(driver(update_rg2))
release(task(rg2_P))
return

//mode_address[P_P,1]
future(100,mode_address[P_P,2])
return

//mode_address[P_P,2]
future(100,mode_address[P_P,3])
return

//mode_address[P_P,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[P_P,4])
return

//mode_address[P_P,4]
future(100,mode_address[P_P,0])
return

//P_PI mode
//mode_address[P_PI,0]
call(dev(sen_s2))
call(dev(sen_g2))
call(dev(sen_e3))
call(dev(sen_e2))
call(dev(sen_e1))
call(dev(sen_s1))
if(condition_P_PI_P_P,switch_address[P_PI,0,P_P,0,P_PI_to_P_P])
if(condition_P_PI_PI_P,switch_address[P_PI,0,PI_P,0,P_PI_to_PI_P])
if(condition_P_PI_PI_PI,switch_address[P_PI,0,PI_PI,0,P_PI_to_PI_PI])
jump(task_address[P_PI,0])

//switch_address[P_PI,0,P_P,0,P_PI_to_P_P]
call(driver(P_PI_to_P_P))
jump(task_address[P_P,0])

//switch_address[P_PI,0,PI_P,0,P_PI_to_PI_P]
call(driver(P_PI_to_PI_P))
jump(task_address[PI_P,0])

//switch_address[P_PI,0,PI_PI,0,P_PI_to_PI_PI]
call(driver(P_PI_to_PI_PI))
jump(task_address[PI_PI,0])

//task_address[P_PI,0]
future(100,sensor_update_address[sen_h1,P_PI,0])
future(100,sensor_update_address[sen_h2,P_PI,0])
future(100,task_release_address[rg1_P,P_PI,0])
future(100,task_release_address[rg2_PI,P_PI,0])
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future(100,mode_address[P_PI,1])
return

//sensor_update_address[sen_h1,P_PI,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,P_PI,0]
call(dev(sen_h2))
return

//task_release_address[rg1_P,P_PI,0]
call(driver(update_rg1))
release(task(rg1_P))
return

//task_release_address[rg2_PI,P_PI,0]
call(driver(update_rg2))
release(task(rg2_PI))
return

//mode_address[P_PI,1]
future(100,mode_address[P_PI,2])
return

//mode_address[P_PI,2]
future(100,mode_address[P_PI,3])
return

//mode_address[P_PI,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[P_PI,4])
return

//mode_address[P_PI,4]
future(100,mode_address[P_PI,0])
return

//mode PI_P
//mode_address[PI_P,0]
call(dev(sen_s2))
call(dev(sen_g2))
call(dev(sen_e3))
call(dev(sen_e2))
call(dev(sen_e1))
call(dev(sen_s1))
if(condition_PI_P_P_PI,switch_address[PI_P,0,P_PI,0,PI_P_to_P_PI])
if(condition_PI_P_P_P,switch_address[PI_P,0,P_P,0,PI_P_to_P_P])
if(condition_PI_P_PI_PI,switch_address[PI_P,0,PI_PI,0,PI_P_to_PI_PI])
jump(task_address[PI_P,0])

//switch_address[PI_P,0,P_PI,0,PI_P_to_P_PI]
call(driver(PI_P_to_P_PI))
jump(task_address[P_PI,0])

//switch_address[PI_P,0,P_P,0,PI_P_to_P_P]
call(driver(PI_P_to_P_P))
jump(task_address[P_P,0])

//switch_address[PI_P,0,PI_PI,0,PI_P_to_PI_PI]
call(driver(PI_P_to_PI_PI))
jump(task_address[PI_PI,0])

//task_address[PI_P,0]
future(100,sensor_update_address[sen_h1,PI_P,0])
future(100,sensor_update_address[sen_h2,PI_P,0])
future(100,task_release_address[rg1_PI,PI_P,0])
future(100,task_release_address[rg2_P,PI_P,0])
future(100,mode_address[PI_P,1])
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return

//sensor_update_address[sen_h1,PI_P,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,PI_P,0]
call(dev(sen_h2))
return

//task_release_address[rg1_P,PI_P,0]
call(driver(update_rg1))
release(task(rg1_PI))
return

//task_release_address[rg2_P,PI_P,0]
call(driver(update_rg2))
release(task(rg2_P))
return

//mode_address[PI_P,1]
future(100,mode_address[PI_P,2])
return

//mode_address[PI_P,2]
future(100,mode_address[PI_P,3])
return

//mode_address[PI_P,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[PI_P,4])
return

//mode_address[PI_P,4]
future(100,mode_address[PI_P,0])
return

//mode PI_PI
//mode_address[PI_PI,0]
call(dev(sen_s2))
call(dev(sen_g2))
call(dev(sen_e3))
call(dev(sen_e2))
call(dev(sen_e1))
call(dev(sen_s1))
if(condition_PI_PI_P_PI,switch_address[PI_PI,0,P_PI,0,PI_PI_to_P_PI])
if(condition_PI_PI_PI_P,switch_address[PI_PI,0,PI_P,0,PI_PI_to_PI_P])
if(condition_PI_PI_P_P,switch_address[PI_PI,0,P_P,0,PI_PI_to_P_P])
jump(task_address[PI_PI,0])

//switch_address[PI_PI,0,P_PI,0,PI_PI_to_P_PI]
call(driver(PI_PI_to_P_PI))
jump(task_address[P_PI,0])

//switch_address[PI_PI,0,PI_P,0,PI_PI_to_PI_P]
call(driver(PI_PI_to_PI_P))
jump(task_address[PI_P,0])

//switch_address[PI_PI,0,P_P,0,PI_PI_to_P_P]
call(driver(PI_PI_to_P_P))
jump(task_address[P_P,0])

//task_address[PI_PI,0]
future(100,sensor_update_address[sen_h1,PI_PI,0])
future(100,sensor_update_address[sen_h2,PI_PI,0])
future(100,task_release_address[rg1_PI,PI_PI,0])
future(100,task_release_address[rg2_PI,PI_PI,0])
future(100,mode_address[PI_PI,1])
return
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//sensor_update_address[sen_h1,PI_PI,0]
call(dev(sen_h1))
return

//sensor_update_address[sen_h2,PI_PI,0]
call(dev(sen_h2))
return

//task_release_address[rg1_PI,PI_PI,0]
call(driver(update_rg1))
release(task(rg1_PI))
return

//task_release_address[rg2_PI,PI_PI,0]
call(driver(update_rg2))
release(task(rg2_PI))
return

//mode_address[PI_PI,1]
future(100,mode_address[PI_PI,2])
return

//mode_address[PI_PI,2]
future(100,mode_address[PI_PI,3])
return

//mode_address[PI_PI,3]
call(driver(update_act_pumps))
call(dev(act_pumps))
future(100,mode_address[PI_PI,4])
return

//mode_address[PI_PI,4]
future(100,mode_address[PI_PI,0])
return
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Control Protocol

Control Protocol valid packets:

• synchronize request– it is send by the client and the server will respond with the same

packet:

0

• command– this represents a command packet, data has a variable length:

1 byte lengthlength byte 1

• set period– this is sent by the client and tells the server what is the period for sending

the new values of the signals, the length of data is constant and is 2:

MSB LSB2

• new values– this is a packet that is send by the server and represents new signals values

it has a variable length:

3 byte lengthlength byte 1

• net delay– this is a packet that it is used to determine the delay introduced by the network,

the client will send this packet and the server will response with a packet that has the same

type but no data:
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ID4

• error – this is an error packet, it can be send both by the server and client and it has only

one byte of data, that will represent the error code:

5 error code

• stop – this can be send both by the server or client and tells the partner that it is going

down, it has no data:

6

• sensor request– this is send by the client, and tells the server to send the new signals

values, it has no data:

7

• regulator request – this is send by the client and tells the server that the client wants to

be a regulator, initially the client is considered to be in the view mode, if there is already

a regulator then the server sends an error packet, else responses with the same packet, this

packet has a single byte of data representing the regulator type:

8 RG type

• disconnect regulator– this is send by the client and tells the server that if it is a regulator

then it wants to be disconnected, this packet has no data:

9



Appendix C

3TS Simulator User Guide

Figure C.1: 3TS Simulator screenshot

As it can be seen from the screenshotFig. C.1 the application main window is split in 3 panels:

control panel – this panel allows the user to:

• set the functioning mode, the mode can bemanualor auto, if the simulator will be

use without a regulator then it should be used in manual mode, else it should be in



94 3TS Simulator User Guide

auto mode; in auto mode the user will not be able to control the command given to

the pumps;

• change the command given to pumps, this is possible only in manual mode;

• change the opening coefficient of the valves;

• set the port on which the server will listen and start the server;

simulation control panel – this panel allows the user to:

• set the simulation sample time;

• start, stop, or restart the simulation

simulation panel – this panel takes no input from the user it is just a viewer for the simulation.
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3TS Controller User Guide

Figure D.1: 3TS Controller screenshot

As it can be seen from the screenshotFig. D.1 the main application window is split in 3 panels:

control panel – allows the user to:

• set the address and port on which the server is listening and connect to the server, if

the connection to the server was not establish then the user can’t do any thing since
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all others controls are disabled until the connection is established;

• switch between the view and control mode, in view mode the program receives data

from the server and plots it, while in the control mode the program actually controls

the 3TS simulated process;

• start or stop the controller and save simulation data; simulation data will be saved in

two formats:(1) each signal will be saved in a file located in the application directory,

named after the signal, and having the extensiondat, the file will contain all the

values for the signal separated by semicolon, and (2) each signal will be saved in a

jpg image file, this file will be also locate din the application directory and will be

named after the signal it will represent ;

controller panel – this panel will be activated only if the program is in control mode and the

controller is stop, the user can choose between two types of controllerss: (1)a PI con-

troller and (2) a general controller, in both cases the user will be able to set the reference,

controller parameters,and sample time ;

view panel – in this panel are plotted the main signals, if one double clicks on one of the

diagrams then a dialog will be showed for that diagram (Fig. D.2).

In Fig. D.2can be seen theDiagram Dialogfor h2. The dialog is split in two parts, the

first one is represented by a table that will contain the quality indicators for the signal, and the

second part where the signal diagram is drawn. If the user selects an indicator from the table,

then a line will be drawn on the diagram to represent that indicator, there can be more the one

indicators selected at the same time. For instance in the figure there are selectedhinf andtr,

this will result in drawing to lines on the diagram, a horizontal one forhinf and a vertical one

for tr. There is also drawn a supplementary line representing the reference for the computed

time indicators. There is also a save button that will save the diagram in ajpg image file, the file

will be located in the application directory and will be named after the signal it is representing

plus the suffixfancy.
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Figure D.2: Diagram Dialog screenshot
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Appendix E

Matlab programs and Simulink schemes

1TS-MM - Simulink schema for 1TS plant and the Matlab program associated with it:

Figure E.1: 1TS Simulink schema

Matlab const.m program:

%File with constants for mathematical modeling of the 1TS plant

%Inputs
c=0.0000155; %m3/(V*sec)
uc=10; %V
u=0.5;

%Constants
A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2

2TS-MM - Simulink schema for 2TS plant and the Matlab program associated with it:

Matlab const.m program:

c=0.0000155; %m3/(V*sec)
uc=10; %V
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Figure E.2: 2TS Simulink schema



101

u1=0;
u2=0;
us=0;

A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2

3TS-MM - Simulink schema for 3TS plant and the Matlab program associated with it:
Matlab const.m program:

c=0.0000155; %m3/(V*sec)
A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2
Km=27;

ue1=1;
ue3=1;
us1=1;
ue2=1;
ug2=1;
us2=1;

uc1=10;
uc2=10;

1TS-Controller - Simulink schema for 1TS plant with P Controller and the Matlab program

associated with it:
Matlab const.m program:

c=0.0000155; %m3/(V*sec)

u=0;

A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2
Km=27;

h0=0.3; %m
u0=0

%regulator P
tr=60;
kR=3*A/(tr*c

2TS-Controller - Simulink schema for 2TS plant with PI Controller and the Matlab program

associated with it:
Matlab const.m program:

c=0.0000155; %m3/(V*sec)
A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2
Km=27;
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Figure E.3: 3TS Simulink schema
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Figure E.4: 1TS with P Controller Simulink schema
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Figure E.5: 2TS with PI Controller Simulink schema
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h10=0.4;
h30=0.3;
ue10=0.5;
ue30=0.5;
us10=0.5;

%A matrix
a11=-S/A*sqrt(2*g)/2*(us10*sign(h10-h30)/sqrt(abs(h10-h30)) + ue10/sqrt(h10));
a12=us10*S/A*sign(h10-h30)*sqrt(2*g)/2/sqrt(abs(h10-h30));
a21=us10*S/A*sign(h10-h30)*sqrt(2*g)/2/sqrt(abs(h10-h30));
a22=-S/A*sqrt(2*g)/2*(us10*sign(h10-h30)/sqrt(abs(h10-h30))+ue30/sqrt(h30));

%b matrix
b1=c/A;
b2=0;

%c matrix
c1=1;
c2=0;

A=[a11 a12;a21 a22];
b=[b1;b2];
c=[c1 c2];
d=[0];

%compute TF
[bb,aa]=ss2tf(A,b,c,0,1);
H11=tf(bb,aa);

bb1=[bb11 bb10];
aa1=[aa12 aa11 aa10];

H111=tf(bb1,aa1)

%controller parameters
Ti=15;
kR=10;
br0=kR;
br1=kR*Ti;
ar0=0;
ar1=Ti;
ar=[ar1 ar0];
br=[br1 br0];
Hr=tf(br,ar)
H0=Hr*H11

%SRA simulation parameter
ue1=0.5;
ue3=0.5;
us1=0.5;
%overridde values do not remove
c=0.0000155; %m3/(V*sec)
A=0.0154; %m2;
S=0.00005; %m2;
g=9.81; %m/sec2
Km=27;

3TS with controllers - Simulink schema for 3TS plant with PI Controllers and the Matlab

program associated with it:

Matlab const.m program:

c=0.0000155; %m3/(V*sec)
A=0.0154; %m2;
S=0.00005; %m2;
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Figure E.6: 3TS with PI Controller Simulink schema
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g=9.81; %m/sec2
Km=27;

ue1=0.5;
ue3=0.5;
us1=0.5
ue2=0.5;
ug2=0.0;
us2=0.5;

Ti1=15;
kR1=10;

Ti2=15;
kR2=5.3;

h10=0.5;
h20=0.4;

Te=0.5;

kARW1=1/Ti1
kARW2=1/Ti2
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