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Abstract. This paper presents theoretical and application results concerning the 

development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, 

which will be viewed as controlled processes, in the field of automotive applications. The 

two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-

lock Braking Systems (ABS) and the vehicle speed in vehicles with the Continuously 

Variable Transmission (CVT) systems. The evolving Takagi-Sugeno-Kang fuzzy models 

are obtained as discrete-time fuzzy models by incremental online identification 

algorithms. The fuzzy models are validated against experimental results in the case of the 

ABS and the first principles simulation results in the case of the vehicle with the CVT. 

Key Words: Automotive Applications, Anti-lock Braking Systems, Continuously 

Variable Transmission Systems, Dynamics, Evolving Takagi-Sugeno-

Kang Fuzzy Models 

1. INTRODUCTION 

The main property of the evolving Takagi-Sugeno-Kang fuzzy models, which gives 

them advantages over other fuzzy ones, consists in computing the rule bases by a learning 

process, that is, by continuous online rule base learning as shown in the classical and 

recent papers exemplified by [1–10]. The Takagi-Sugeno-Kang fuzzy models are obtained by 

evolving the model structure and parameters in terms of online identification algorithms. 

The adding mechanism in the structure of online identification algorithms plays an 
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important role because it adds or removes new local models; the evolving structure and 

parameters are, therefore, ensured. 

A well-acknowledged classification of the online identification algorithms oriented on 

the evolving Takagi-Sugeno-Kang fuzzy models is presented in [11]. This classification 

highlights three categories of online identification algorithms, i.e., II and III, briefly pointed 

out as follows. Category I of the adaptive algorithms starts with the initial structure of the 

Takagi-Sugeno-Kang fuzzy model, given by other algorithms or by the experience of the 

specialist in the modeling or operation of the nonlinear dynamic system being modeled. The 

number of space partitions/clusters does not change over time, and these algorithms adapt 

just the parameters of the membership functions and the local models. Category II is 

represented by the incremental algorithms, which are applied in this paper, with examples 

referred to as the widely applied algorithms RAN [12, 13], SONFIN [14, 15], NeuroFAST 

[16, 17], DENFIS [18, 19], SCFNN [20, 21], eTS [22], [23], FLEXFIS [24, 25], and 

PANFIS [26]. These algorithms implement just adding mechanisms. Category III consists of 

evolving algorithms. Besides the adding mechanism, Category III also implements removing 

and some of these algorithms merging and splitting mechanisms as well. 

This paper presents a part of the recent results obtained by the Process Control group 

of the Politehnica University of Timisoara, Romania, in the development of evolving 

Takagi-Sugeno-Kang fuzzy models obtained by online incremental algorithms. The paper 

continues the work carried out in [27] concerning the presentation of real-world applications 

of the evolving Takagi-Sugeno-Kang fuzzy models that describe the dynamics of nonlinear 

systems in crane systems [28, 29], pendulum systems [30, 31], prosthetic hand fingers [32] 

and twin rotor aerodynamic systems [33]. The main difference with respect to [27] is that 

this paper applies incremental online identification algorithms to the derivation of evolving 

Takagi-Sugeno-Kang fuzzy models for other process applications in order to characterize 

their dynamics. Two automotive applications are treated in this paper: one concerns 

modeling of the longitudinal slip dynamics in the Anti-lock Braking Systems (ABSs) 

Laboratory [34], while the other one models the vehicle speed dynamics in the vehicles with 

the Continuously Variable Transmission (CVT) systems. 

The evolving fuzzy models presented in this paper and the online identification 

algorithms are important because they are developed with the intention to be used in the 

process control. Relevant process and control applications are presented in [35–43], with 

both crisp and fuzzy models. However, the online identification algorithms must be 

adapted accordingly in order to cope with the specific nonlinear elements and operating 

conditions of these processes [44–50]. 

The paper is organized as follows: an overview of incremental online identification 

algorithms is presented in the next section. Several results related to the derivation of the 

evolving Takagi-Sugeno-Kang fuzzy models for the two automotive applications are 

given in Section 3. The examples of fuzzy models are validated against experimental 

results in case of the ABS and the first principles simulation results in the case of vehicle 

with the CVT. The conclusions are outlined in Section 4. 
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2. OVERVIEW ON INCREMENTAL ONLINE IDENTIFICATION ALGORITHMS 

The basic version of incremental online identification algorithm is implemented using 

the theoretical aspects described in [27] and [33] in terms of the software support of eFS 

Lab presented in [51] and [52]. The flowchart of the basic version of incremental online 

identification algorithm is presented in Fig. 1, where TSK is the abbreviation of Takagi-

Sugeno-Kang. This algorithm proceeds in accordance with the following steps described 

as follows and also given in [27] and [33]: 

 

Fig. 1 Flowchart of basic version of incremental online identification algorithm [27] 

Step 1. The rule base structure is initialized by setting all the parameters of rule 

antecedents so as to initially contain just one rule, namely nR = 1, where nR is the number 

of rules. The subtractive clustering is next applied to compute the parameters of the 

evolving Takagi-Sugeno-Kang fuzzy models using first data point p1, with the general 

expression [22] of data point p in the input-output data set at discrete time step k, with 

notation pk: 
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where T stands for matrix transposition. 
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The expression of the input-output data set is: 

 ,}...1|{ 1 n

k Dkp  (2) 

where D is the number of input-output data points or data points or data samples or 

samples. 

The rule base of Takagi-Sugeno-Kang fuzzy models with affine rule consequents, also 

called the first-order Sugeno fuzzy inference systems in some software programs and 

toolboxes implementations, is: 

 ,...1 ,... THEN  IS  AND ... AND  IS  IF:  Rule  110 11 Rnniiiinini nizazaayLTzLTzi   (3) 

where zj, j = 1 … n, are input variables, n is the number of input variables, LTij, i =1 … 

nR, j = 1 … n, are input linguistic terms, yi is the output of the local model in the rule 

consequent of the rule with index i, i =1 … nR, and ail,  i =1 … nR, l = 0 … n, are the 

parameters in the rule consequents. 

A more flexible input-output map of the Takagi-Sugeno-Kang fuzzy models can be 

ensured if other expressions are included in the rule consequents. However, this 

complicates the parameter estimation specific to the rule consequents. 

The Takagi-Sugeno-Kang fuzzy model structure considered in this paper includes the 

algebraic product t-norm as an AND operator and the weighted average defuzzification 

method. This leads to the expression of output y of the Takagi-Sugeno-Kang fuzzy model: 
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where the firing degree of rule i  and the normalized firing degree of rule i  are i(z) and 

i, respectively, and the parameter vector of rule i  is i, i =1 … nR. The expression of the 

firing degree is: 

 ,...1  ),(...)()())(),...,(),((AND)( 22112211 Rniniininiii nizzzzzz  z  (5) 

and the expression of the parameter vector is: 

 ....1  ,]...[ 10 R
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The other parameters specific to the incremental online identification algorithm are 

initialized as follows using [22]: 
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RRC  is the fuzzy covariance matrix related to the clusters, I is the 

nR(n+1)
th

 order identity matrix,  = const,  > 0, is a large number, 
kθ̂  is an estimation 

of the parameter vector in the rule consequents at discrete time step k, and rs, rs > 0, is the 
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spread of all Gaussian input membership functions ij, i =1 … nR, j = 1 … n, of the fuzzy 

sets of input linguistic terms LTij: 

 ,...1  ,...1  ],))(/4(exp[)( 2*
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 njnizzrz Rjijsjji   (8) 

*

 jiz  i =1 … nR, j = 1 … n, are the membership function centers, *

1p  in (7) is the first cluster 

center, *

1z  is the center of rule 1 and also the projection of *

1p  on axis z in terms of (1), and 

)( *

11 pP  is the potential of *

1p . 

Step 2. Data sample index k is incremented, viz. replaced with 1k , and next data 

sample pk that belongs to the input-output data set defined in (2) is read. 

Step 3. The potential of each new data sample Pk(pk) and the potentials of the centers 

)( *

lkP p  of existing rules (clusters) with index l are recursively updated as: 
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Step 4. The possible modification or upgrade of the rule base structure is carried out 

by means of the potential of the new data compared to the potential of the existing rules’ 

centers. The rule base structure is modified if certain conditions mentioned in [22], [27-

34] are fulfilled. 

Step 5. The parameters in the rule consequents are updated using either the Recursive 

Least Squares (RLS) algorithm or the weighted Recursive Least Squares (wRLS) 

algorithm. These updates result in updated vectors 
kθ̂  and Ck, k = 2 … D. 

Step 6. The output of evolving Takagi-Sugeno-Kang fuzzy model at next discrete time 

step k+1 is predicted as 
1

ˆ
ky : 
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where the general expression of (10) and the expressions of the vectors are: 
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Step 7. The algorithm continues with step 2 until all data points of the input-output 

data set presented in expression (2) are read. 

As emphasized in [31] and exemplified for a popular nature-inspired evolutionary-

based optimization algorithm, RLS and wRLS in step 5 can be replaced with other 

optimization algorithms. Some classical and nature-inspired evolutionary-based 

algorithms and various applications subjected to optimization problems are presented in 

[53–64], with focus on Charged System Search and Gravitational Search algorithms. 

Along with limiting model complexity, i.e., number of rules and parameters, to allow 

for model generalization, there is a need to limit minimal model complexity to avoid 
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trivial solutions. A way of doing it is to insert the constraints related to the optimization 

problem solved in step 5 because providing adequate learning data is not sufficient. 

However, not only upper constraints but lower ones as well should be considered as, for 

example, using a simple model with just one rule could mean that the evolving Takagi-

Sugeno-Kang fuzzy model is not a meaningful way of modeling the system. 

3. TWO AUTOMOTIVE APPLICATIONS 

3.1. Modeling the longitudinal slip in the anti-lock braking systems 

The continuous-time nonlinear state-space model of the ABS process is derived on the 

basis of [34] and [65]: 
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where  is longitudinal slip, J1 and J2 are inertia moments of the wheels shown in Fig. 2, 

x1 and x2 are angular velocities, d1 and d2 are friction coefficients in the axes of the 

wheels, M10 and M20 are the static friction torques that oppose the normal rotation, 
1M  is 

the brake torque, r1 and r2 are the wheels radii, Fn is the normal force that the upper wheel 

pushes upon the lower wheel, () is the friction coefficient, 
1x  and 

2x  are angular 

accelerations of the wheels, u is the control signal applied to the actuator, namely the 

direct current (DC) motor which drives the upper wheel, and the actuator’s nonlinear 

model is reflected in the nonlinear map b(u). 

 

Fig. 2 ABS experimental setup in the Intelligent Control Systems Laboratory  

of the Politehnica University of Timisoara, Romania [65] 
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Longitudinal slip  is defined as: 

 ,0 ),/()( 2221122  xxrxrxr  (13) 

the controlled output of the ABS process is  if the longitudinal slip control is targeted, 

and notation y =  is employed in this sub-section in relation with the Takagi-Sugeno-

Kang fuzzy models presented in Section 2. 

Setting the sampling period to 0.01 s, several values of u have been generated in order 

to cover different ranges of magnitudes and frequencies. Output y =  has been measured 

from the ABS equipment. The evolution of the system input versus time is presented in 

Fig. 3, which includes the input data for both training and validation (testing). 

 

Fig. 3 ABS process inputs versus time expressed as training data  

and validation (testing) data [34] 

The input signal illustrated in Fig. 3 has been applied to the laboratory equipment to 

generate input-output data points (zk, yk), k = 1 … D, needed to be applied to the 

algorithm. Fig. 3 illustrates the inputs that correspond to the set of D = 240 data points of 

the training data and the inputs of the other set of D = 60 data points of the testing data. 

The output values computed by the Takagi-Sugeno-Kang fuzzy models and measured 

from the equipment will be next presented. 

A part of the real-time experimental results is exemplified in Fig. 4 as the time 

responses of y versus time of the Takagi-Sugeno-Kang fuzzy model with the input vector: 

 ,]      [ 211

T

kkkkk yyuu z  (14) 

with wRLS applied in step 5 of the incremental online identification algorithm, and the 

real-world ABS. The response of the real-world ABS shown in Fig. 4 is one of the results 

of the real-time experiments on the laboratory equipment. 
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Fig. 4 Longitudinal slip position y =  versus time of the Takagi-Sugeno-Kang fuzzy 

model (red) and real-world ABS (blue) on the validation (testing) data set [34] 

As shown in [34], this fuzzy model has evolved to 9 rules and has 117 identified 

parameters. The performance is acceptable; it can be improved but this is constrained by the 

number of data samples considered for this process. A reduced number of data samples have 

been used, so the mode complexity has an upper bound in order to allow for model 

generalization. 

3.2. Modeling of the vehicle speed in the vehicles  

with continuously variable transmission systems 

The nonlinear system represented by the vehicle with the CVT system is presented in 

[66] as a vehicular power train system, which consists of other sub-systems, i.e., the 

internal combustion engine, the torque converter, the CVT and the vehicle. The main 

equations which model these sub-systems are given as follows. 

The internal combustion engine corresponds to a Honda Civic 1.6i SR 1598 cc car, 

which produces 113 PS DIN at 6300 rpm and 143 Nm of torque at 4800 rpm. The engine 

is also characterized by the moment of inertia Jeng = 0.284 kg m
2
 and the engine speed is 

constrained. The engine speed dynamics is modeled as an inertia system: 
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which indicates the nonlinear torque characteristic. 

The torque converter (which consists of a pump, a turbine and a stator) is usually 

modeled by using the capacity factor/torque ratio versus speed ratio steady-state curves 2 

and 3 given in the form of look-up tables. Data on such tables is given in [66]. 
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The metallic V-belt driven CVT is dedicated to low-torque engine up to 200 Nm. This 

CVT is characterized by gear ratio iCVT. The overall transmission equations are: 
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where nonlinear map 4 is given as a look-up table with the parameters presented in [66]. 

The vehicle is a compact hatchback weighting about 1200 kg and an equivalent 

rotational moment of inertia Jveh = 150 kg m
2
, and the common size of the wheels is 15” 

with 185/85 tires. The equations that characterize the vehicle dynamics are: 
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Summing up the equations of the sub-systems using the structure, connection and 

parameters given in [66], the first principles model of the vehicle with CVT system is: 
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where the characteristic variables are input variable u = throttle(%), state variables x1 = 

eng and x1 = w, and the output variable represented by the vehicle speed y = vv (km/h). 

The nonlinear state-space model has been linearized in [66] around several operating 

points in order to allow for relatively simple controller designs. 

Setting the sampling period to 0.1 s, several values of u have been generated in order 

to cover relatively wide ranges of magnitudes and frequencies. Output y = vv has been 

obtained as the response of the nonlinear state-space model, which is the first principles 

model given in (18). The evolution of the system input versus time is presented in Fig. 5, 

which includes the input data for both training and validation (testing). 

The input signal illustrated in Fig. 5 has been applied to the system model given in 

(18) in order to generate input-output data points (zk, yk), k = 1 … D, needed to be applied 

to the algorithm. Fig. 5 shows the inputs that correspond to the set of D = 3000 data 

points of the training data and the inputs of the other set of D = 3000 data points of the 

testing data. The output values computed by the Takagi-Sugeno-Kang fuzzy models and 

obtained as the response of the system model given in (18) will be next presented. 
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Fig. 5 Vehicle with CVT system inputs versus time expressed  

as training data and validation (testing) data 

A part of the real-time experimental results is exemplified in Fig. 6 as the time 

responses of y versus time of the Takagi-Sugeno-Kang fuzzy model with the input vector 

considered in (14), and the first principles model given in (18). The same input vector has 

been used as in the previous process model for the sake of simplicity. But the RLS has 

been applied for this automotive process application in step 5 of the incremental online 

identification algorithm. 

 

Fig. 6 Vehicle speed y = vv versus time of the Takagi-Sugeno-Kang fuzzy model (red) and real 

output (blue, i.e., output of first principles model) on the validation (testing) data set 

This fuzzy model has evolved to 5 rules and has 65 identified parameters. The performance 

is very good although the number of parameters is rather small. Since the responses 

presented in Fig. 6 are very close, the zoomed responses are illustrated in Fig. 7. 



 Automotive Applications of Evolving Takagi-Sugeno-Kang Fuzzy Models 241 

 

Fig. 7 Zoomed vehicle speed y = vv versus time of the Takagi-Sugeno-Kang fuzzy model 

(red) and real output (blue, i.e., output of first principles model) on a part of the 

validation (testing) data set 

4. CONCLUSIONS 

This paper has presented some results obtained by the Process Control group of the 

Politehnica University of Timisoara, Romania, in the application of evolving Takagi-

Sugeno-Kang fuzzy models to two automotive process applications. A relatively simple 

incremental online identification algorithm, previously used by the authors in other 

nonlinear systems applications, has been applied to obtain the structure and parameters of 

the Takagi-Sugeno-Kang fuzzy models. 

The main limitation of the models and the algorithm is the performance dependence 

on the parameters of the incremental online identification algorithm. This leads to 

parametric sensitivity and robustness problems, which can be solved by the proper 

definition and solving of optimization problems that include parametric sensitivity and 

robustness models related to the algorithm itself. The model-based fuzzy control of these 

automotive processes on the basis of evolving Takagi-Sugeno-Kang fuzzy models will be 

treated as a future research direction. 
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