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ABSTRACT 

This paper proposes an approach to fuzzy modeling of magnetic levitation systems. These 

unstable and nonlinear processes are first linearized around several operating points, and 

next stabilized by a State Feedback Control System (SFCS) structure. Discrete-time 

Takagi-Sugeno (T-S) fuzzy models of the stabilized processes are derived on the basis of 

the modal equivalence principle, and the rule consequents contain the state-space models 

of the local SFCS structures. Optimization problems are defined which aim the 

minimization of objective functions defined as the squared modeling error considered as 

the difference between the real-world process output and the fuzzy model output. The 

variables of the objective functions are represented by a part of the parameters of the 

input membership functions. Simulated Annealing algorithms are implemented to solve 

these optimization problems and to obtain optimal T-S fuzzy models. Real-time 

experimental results validate the fuzzy modeling approach and the new optimal T-S fuzzy 

models for a Magnetic Levitation System with Two Electromagnets (MLS2EM) laboratory 

equipment. 
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1. INTRODUCTION 

The process taken into consideration and modeled in this paper is a complete laboratory system 

based on the Magnetic Levitation System with Two Electromagnets (MLS2EM) (Inteco, 2008). The 

magnetic levitation problem for a metallic sphere maintained in an electromagnetic field is a classical 

nonlinear and unstable application. Therefore the derivation of optimal Takagi-Sugeno (T-S) fuzzy 

models is a challenging problem. 

In this paper, a state-feedback control solution is first designed such that to guarantee the stability of 

the sphere. Other state-feedback control solutions are designed in literature. A state-feedback control 

scheme based on the alphabeta filter for controlling the magnetic levitation system or a disturbance 

observer merged into the K-filter-based output-feedback controller can be used to cancel the external 

disturbances and model mismatch as discussed in (Lee et al., 2007a) and (Yang et al., 2009). High 

gain adaptive output feedback controllers and robust stabilizing controllers for magnetic levitation 

systems are designed in (Michino et al., 2009) and (Satoh et al., 2009). 

Second, a discrete-time dynamic T-S fuzzy model of the process is derived in this paper. This 

derivation starts with the continuous-time models which are obtained on the basis of the local 

linearization of the process models at nine operating points. The local models are next discretized 

accepting a zero-order hold and placed in the rule consequents of the T-S fuzzy model of the process. 

Several approaches to fuzzy modeling of magnetic levitation systems are given in the literature. They 

can be viewed in the general framework of fuzzy models with several process (Baranyi et al., 2003), 

(Škrjanc et al., 2005), (Haber et al., 2010), (Johanyák, 2010), (Vaščák and Madarász, 2010), (Babu 

Devasenapati and Ramachandran, 2011), (Xi et al., 2011). The nonlinear dynamic equations of the 

magnetic levitation systems are represented in (Yu and Huang, 2009) by a T-S fuzzy model; the 

optimal gains are found by using particle swarm optimization and quantum-inspired evolutionary 

algorithms. In order to model the nonlinear magnetic bearing systems, a linear T-S fuzzy model is 

proposed in (Yu et al., 2003); this model is obtained using a linear self-constructing neural fuzzy 

inference network applied to an optimal fuzzy controller, which can operate in a widely range of shaft 

positions. A T-S fuzzy model for nonlinear magnetic bearing systems is offered in (Hong et al., 1997). 

A fuzzy neural network modeling approach is proposed in (Yongzhi et al., 2011) to model gap sensor 

in high-speed maglev trains; this model-based fuzzy network scheme incorporates intelligence into 

the sensor, which can estimate the correct true gap in a range of temperature after proper training. A 

design method of parallel distributed compensation controller based on T-S fuzzy models for magnetic 

bearing of high-speed motors is proposed in (Wang and Wang, 2010). 

A Simulated Annealing (SA) algorithm is used in order to get optimal T-S fuzzy models for the process 

aiming high performance fuzzy control systems as a future step. This algorithm will optimize the 

parameters of the T-S fuzzy model in the context of an appropriately defined optimization problem 

which aims the minimization of an objective function targeting a small difference between process’s 

output (i.e., the sphere position) and T-S fuzzy model’s output. The new SA algorithm proposed in this 



 

paper can be considered in the context of many evolutionary-based nature-inspired optimization 

algorithms employed in the numerical solving of various optimization problems for specific objective 

functions. An SA algorithm is used to optimize the fuzzy controller parameters in angular position 

control of DC servo systems (Precup et al., 2011b). Genetic algorithms are applied to the optimization 

of parameters of switch reluctance motors (Xiu and Xia, 2007). A real-coded genetic algorithm is used 

to simultaneously adjust both the membership functions and model parameters in the consequents of 

T-S fuzzy models (Lee et al., 2007b). 

This paper offers a relatively simple approach to fuzzy modeling of magnetic levitation systems. Our 

approach starts with the derivation of an initial T-S fuzzy model of the process obtained by the modal 

equivalence principle; this fuzzy model is characterized by a set of local linearized state-space models 

of the process which are placed in the rule consequents. A part of the parameters of the input 

membership functions is next optimized by our SA algorithm in order to solve the optimization 

problems which aim the minimization of the sum of squared modeling errors. The discrete-time 

treatment of models is carried out. 

The main advantage of our approach is that the performance of the optimal T-S fuzzy model is 

verified through by real-time experiments on the MLS2EM laboratory equipment and not only by 

simulation. Although our approach cannot guarantee that the global minimum of the objective 

functions is reached, it is shown that a serious decrease of the objective function is exhibited, and this 

clearly indicates the performance improvement offered by our T-S fuzzy model. 

The paper is organized as follows. Section 2 is dedicated to the mathematical modeling of the process 

and to the design of T-S fuzzy models. The main aspects concerning the implementation of our SA 

algorithm are discussed in Section 3. Real-time experimental results are presented in Section 4 to 

validate the new optimal T-S fuzzy models. The concluding remarks are highlighted in Section 5. 

 

2. FUZZY MODELS OF MLS2EM PROCESS 

2.1 Process Modeling 

The block diagram of the ML2SEM considered as a controlled process is presented in Figure 1, where 

and EM1, EM2 are the upper and lower electromagnet, m is the mass of the sphere, Fem1 and Fem2 

are the electromagnetic forces, and Fg is the gravity force (Inteco, 2008). 

Our approach starts with the modeling of the nonlinear MLS2EM which can be obtained from the 

following first principle equations: 
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where the characteristic variables are: 

- the control signal 1u , which is applied to the upper electromagnet (EM1), 

- the disturbance input 2ud = , which is applied to the lower electromagnet (EM2), 

- the state variables: 1x  is the sphere position, 2x  is the sphere speed, 3x  and 4x  are the 

currents in the upper and lower electromagnetic coil, respectively; 

- the controlled output (output variable) 1xy = . 

 

Figure 1. Block diagram of ML2SEM. 
 
The numerical values of the parameters are given in (Inteco, 2008). 

Due to the nonlinearities of the systems, we are carrying out the linearization of the nonlinear model 

(1) at nine operating points Aj(x10, x20, x30, x40) (with j – the index of the operating point) to meet the 

fuzzy models. Therefore, the linearized state-space models are: 
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and the matrix elements are: 
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The fourth-order model detailed in equation (1) is next reduced to the following third order state-space 

model of the MLS2EM which is obtained in terms of neglecting the lower electromagnet, 02 =u : 
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The parameters of the matrices TcbA ,,  are: 
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In order to stabilize the sphere in the MLS2EM, a state-feedback control structure is designed. First, 

the closed-loop system poles detailed in Table I are imposed. The pole placement method is used to 

obtain the state-feedback gain matrix: 
 

[ ]0075.0536=T
ck . (6) 

 
Therefore the following closed third order continuous-time state-space linearised model is obtained: 
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where the numerical values of the matrices T
ux cbA ,,  in discrete time are detailed in Table I. 

 
TABLE I. NUMERICAL VALUES OF MATRICES IN DISCRETE-TIME LINEARIZED THIRD-ORDER MODELS OF 

CLOSED-LOOP STABILIZED ML2SEM 
Closed-loop system poles Operating 

points *
1p  *

2p  *
3p  

Numerical values of the matrices in discrete Time 
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2.2 Approach to Takagi-Sugeno Fuzzy Modeling 

In order to capture both the static nonlinearity and the linear dynamics of the process, the derivation of 

a discrete-time dynamic T-S fuzzy model of the process is presented as follows. The steps of our 

modeling approach are: 

• definition of the membership functions of the input variables  1x  and 3x , 

• derivation of an initial T-S fuzzy model of the process, which has the state variables 1x  and 

3x  as input variables, and the discrete-time state-space models of the process with the 

matrices id ,A , id ,B  and id ,C , 9,1=i , in the rule consequents, 

• definition of optimization problem where the vector variable of the objective function consists 

of a part of the parameters of the input membership functions of the T-S fuzzy model, 

• application of SA algorithm to obtain the optimal input membership function parameters which 

lead to the optimal dynamic T-S fuzzy model. 

The derivation of the initial T-S fuzzy model starts with the setting of the largest domains of variation 

of the two state variables uses in all MLS2EM operating regimes: 
 

765.188.757 ,2.02.0 31 ≤≤−≤≤− xx . (8) 
 
The fuzzification part of the T-S fuzzy model consists of the linguistic terms assigned to the input 

variables and defined as follows. For the input variable 1x , three linguistic terms, 3,1,,1
=jTL jx , with 

triangular membership functions are defined and referred to as 1,1x
TL , with the universe of discourse 

[ ]02.0− , 2,1x
TL , with the universe of discourse [ ]1.01.0− , and 3,1x

TL , with the universe of 



 

discourse [ ]2.00 . The expressions of these triangular membership functions are: 
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where the initial modal values of the membership functions are the parameters jxa ,1 , jxb ,1 , and jxc ,1 , 

3,1=j , given in Table II. The parameters 3,1,,1 =ja jx  and 3,1,,1 =jc jx  are fixed, and the 

parameters 3,1,,1 =jb jx  are variable. 

 
TABLE II. MODAL VALUES OF THE LINGUISTIC TERMS 

Triangular membership functionsLinguistic terms, 
3,1,,1

=jTL jx  jxa ,1  jxb ,1  jxc ,1  

1,1xTL  -0.2 -0.1 0 

2,1xTL  -0.1 0 0.1 

3,1xTL  0 0.1 0.2 

 

For the input variable 3x , three linguistic terms, 3,1,,3
=jTL jx , are defined. The first and third one 

are modeled by trapezoidal membership functions, and the second one is modeled by a Gaussian 

membership functions. The universes of discourse of the membership functions of these linguistic 

terms are: [ ]3785.4757.8−  for 1,3xTL , [ ]3785.4753.3  for 2,3xTL , and [ ]765.183785.4  for 

3,3xTL . The expressions of the trapezoidal membership functions are: 
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The initial modal values of the membership functions are the parameters }3,1{,,3 ∈ja jx , 

}3,1{,,3 ∈jb jx , }3,1{,,3 ∈jc jx , and }3,1{,,3 ∈jd jx , given in Table III. The parameters 



 

}3,1{,,3 ∈ja jx , 1,3xb , 3,3xc  and }3,1{,,3 ∈jd jx  are fixed, and the parameters 1,3xc  and 3,3xb  are 

variable. 
 

TABLE III. PARAMETERS OF TRAPEZOIDAL LINGUISTIC TERMS 
Trapezoidal membership functions Linguistic terms, 

}3,1{,,3
=jTL jx  }3,1{,,3 =ja jx  }3,1{,,3 =jb jx  }3,1{,,3 =jc jx  }3,1{,,3 =jd jx  

1,3xTL  -8.757 -8.757 -1.251 4.3785 

3,3xTL  4.3785 11.259 18.765 18.765 
 

The expression of the Gaussian membership function is: 
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−
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The parameter 2,3xb  is fixed, and the parameter 2,3xa  is variable. The initial values of these two 

parameters are 3785.42,3 =xa  and 753.32,3 =xb . 

Figure 2 shows the initial membership functions of 1x  and 3x . 

(a) (b) 

Figure 2. Initial membership functions of the input variables 1x  and 3x . 
 
The rule consequents correspond to the discrete-time state-space models characterized by the 

matrices id ,A , id ,B  and id ,C , 9,1=i , detailed in Table II. These models are obtained by 

discretization of the continuous-time state-space linearized models (5) using the sampling period 

Ts=0.005 s. 

The modal equivalence principle guarantees the equivalence between the fuzzy models and the 

nonlinear state-space ones. Therefore the rule base of the discrete-time dynamic T-S fuzzy model is 

expressed as: 
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where k stands for the index of the current sampling interval, i stands for the index of the current rule, 

and j stands for the index of the current linguistic terms. 

In our case, the complete rule base of the discrete-time dynamic Takagi-Sugeno fuzzy model consists 

of nine rules 9,1 , =iRi , expressed as: 
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The SUM and PROD operators are used in the inference engine, and the weighted average method is 

employed for defuzzification. 

 

3. SIMULATED ANNEALING ALGORITHM 

SA is used as a representative nature-inspired biologically-inspired optimization algorithm to solve the 

optimization problem: 
 

)(minarg
          

* ρρ
ρ

J
D∈

= , (15) 

 
where ρ  is the parameter vector of the fuzzy model which collects all variable parameters of the 

membership functions of the input linguistic terms, and this vector is defined as: 
 

T
xxxxxx bacbbb ][ 3,32,31,33,12,11,1=ρ , (16) 

 
)(ρJ  is the objective function with the definition: 
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*ρ  is the optimal parameter vector of the fuzzy model which stands for the solution to the optimization 

problem (15), )(ρky  is the output of the SISO process at the k th sampling interval, )(, ρmky  is the 



 

output of the fuzzy model at the k th sampling interval, )()()( ,, ρρρ mkkmk yye −=  is the modeling 

error at the k th sampling interval, and N  is the length of the time horizon. 

As shown in (Kirkpatrick et al., 1983), (Geman and Geman, 1984), SA algorithms start with a high 

temperature and an initial solution to the optimization problem. Considering the initial solution 

represented by the vector ϕ  with the corresponding fitness value )(ϕC  of the fitness function C, the 

next probable solution represented by the vector ψ  is chosen from the vicinity of ϕ , and it will have 

the fitness value )(ψC . SA algorithms provide a probabilistic framework for solution acceptance. 

Defining: 
 

)()( ψψ CCC −=Δ ϕϕ , (18) 
 

the probability of ψ  to be the next solution, referred to as ψp , is 

 

⎩
⎨
⎧

θΔ
>Δ
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ϕ

ϕ

otherwise,)/exp(
,0  if1

ψ

ψ
ψ C

C
p  (19) 

 

where θ  represents the current temperature value specific to the algorithm. If nrp >ψ , where nr , 

10 ≤≤ nr , is a randomly selected number, then ψ  will be the new solution. Otherwise, a new 

solution must be generated. As it can be observed in this framework, there is a valid probability of 

replacing the current solution with a higher cost solution. 

This process is repeated for an a priori set number of steps, and the temperature is next reduced. SA 

algorithms end when the temperature value is so low that it does not allow any modification of the 

fitness function, the last value representing the solution to the optimization problem. 

Our SA algorithm is implemented in order to solve the optimization problems (9). This SA algorithm is 

adapted from the class of SA algorithms proposed in (Precup et al., 2012) and applied to the optimal 

tuning of fuzzy controllers, and the differences between the algorithm proposed in this paper and 

presented as follows and the SA algorithms given in (Precup et al., 2012) are synthesized in terms of: 

- the new SA algorithm is implemented for a significantly larger number of variables of the 

objective function )(ρJ  gathered in the vector parameter ρ , 

- the relationship (19) is modified such that to aim the minimization and not the maximization of 

)(ρJ . 

Moreover, as defined in (Precup et al., 2011a), two indices are introduced in the algorithm, the 

success rate rs  and with the rejection rate rr . rs  focuses the acceleration of the cooling process by 

forcing a jump in temperature when the minimum value of )(ρJ  changes for an a priori set number of 

times at the same temperature level. rr  is reset only when small values of )(ρJ  are obtained and not 

when the temperature is decreasing. 



 

The steps of our SA algorithm, which ensures the minimization of the objective function )(ρJ  defined 

in (17), are: 

- Step 1. Set 0=μ , 0=rs  and the minimum temperature minθ . Choose the initial temperature 

0θ . 

- Step 2. Generate a random initial solution ϕ  and compute its fitness value )(ϕC . 

- Step 3. Generate a probable solution ψ  by disturbing ϕ , and evaluate the fitness value 

)(ψC . 

- Step 4. Compute ψϕΔC  using (18). If 0≤Δ ϕψC , then accept ψ  as the new solution. 

Otherwise, set the value of the random parameter nr , 10 ≤≤ nr , and compute ψp  according 

to (19). If nrp >ψ , then ψ  is the new solution. 

- Step 5. If the new solution is accepted, then update the new solution and C, increment rs  and 

set 0=rr . Otherwise, increment rr . If rr  has reached its maximum value maxrr , the algorithm 

is stopped; otherwise, continue with step 6. 

- Step 6. Increment rs . If rs  has reached its maximum value rs , go to step 7; otherwise 

increment μ . If μ  has reached its maximum value maxμ , go to step 7; otherwise, go to step 2. 

- Step 7. Alleviate the temperature according to the temperature decrement rule (Precup et al., 

2012): 
 

μ+μ θα=θ cs1 , const=αcs , 1<αcs , 1≈αcs . (20) 
 

- Step 8. If minθ>θμ  then go to step 3, otherwise the algorithm is stopped indicating that it has 

reached the end. 

The subscript μ  in this SA algorithm indicates the iteration index. The fitness functions C 

implemented in this SA algorithm (dedicated to solving the optimization problem (15)) is the objective 

functions defined in (16). 

Our SA algorithm is mapped onto the optimization problem (15) by means of the following relations 

between the fitness and objective functions and the parameter vectors as well: 
 

ϕ==ϕ== ρψρρψρ   ,  ),()(  ),()( CJCJ . (21) 
 

 

 

 



 

4. EXPERIMENTAL RESULTS 

The modeling approach and the Simulated Annealing algorithm presented in the previous sections are 

applied and exemplified in order to obtain a fuzzy model for the stabilized MLS2EM. A part of the 

results and implementation details is presented as follows. 

For the accepted case study, the values of the maximum consecutive rejections and the maximum 

success were set to 100max =rr  and 50max =rs , respectively. The initial temperature was chosen as 

10 =θ . The SA algorithm has stopped after 84 iterations, when the temperature value was 

009.0
84 109.04626 −⋅=θ . The initial solution is represented by the vector ϕ : 

 
T]259.113785.4251.11.001.0[ −−=ϕ=ρ , (22) 

 
and the final solution is represented by the vector ψ : 
 

T]424.1168.463.013.00547.0075.0[* −−== ψρ . (23) 
 
The experimental results include the evolutions of the: 

- step reference input r = 0.01 at the initial time moment, Figure 3, 

- modeling error versus time before and after optimization, Figure 4, 

- objective function versus the iteration index in SA algorithm, Figure 5, 

- sphere position as output of the T-S fuzzy models, before and after optimization, Figure 6, 

- sphere position as output of the SISO process and of the T-S fuzzy models, before and after 

optimization, Figure 7 and Figure 8, respectively. 

 

Figure 3. Reference input versus time applied to both real-world process and modeled process. 
 



 

 

Figure 4. Evolution of the modeling error versus time before and after optimization. 
 

Figure 4 shows the performance enhancement ensured by our T-S fuzzy model. The modeling error 

converges to zero in both cases: before and after optimization, but it can be seen that it converges 

faster to zero after optimization than before. 

The evolution of the objective function versus the iteration index illustrated in Figure 5 shows that the 

solution to the optimization problem (15) obtained by our SA algorithm ensures a strong decrease of 

the objective function. Although the minimum of the objective function cannot be guaranteed, Figure 5 

highlights that the improvement can continue by considering a larger number of iterations. 

 

Figure 5. Evolution of the objective function versus the iteration index in SA algorithm. 
 



 

 

Figure 6. Real-time experimental results of modeled process before and after optimization with 
SA algorithm. 

 

Figure 6 points out that the evolution of the sphere as output of our T-S fuzzy model after applying of 

the SA algorithm (the straight line) is faster, with a smaller settling time and an aperiodically evolution. 

These performance indices are much better compared to those of the initial T-S fuzzy model, i.e., 

before the application of the SA algorithm (the interrupted line). The straight line also shows that the 

desired sphere position, yk = 0.007 m, is reached. 

 

Figure 7. Real-time experimental results of SISO process and of T-S fuzzy model of process 
before optimization with SA algorithm. 

 



 

 

Figure 8. Real-time experimental results of SISO process and of T-S fuzzy model of process 
after optimization with SA algorithm. 

 

It can be seen that the behavior of the sphere in Figures 7 and 8 in both cases (SISO process and T-

S fuzzy model) before (the straight line) and after optimization with SA algorithm (the interrupted line) 

have a similar evolution. In the second case, the response is faster, with a smaller settling time and an 

aperiodically evolution. These performance indices are much better compared to those of the initial T-

S fuzzy model. However, the results can be different for other applications (Ruano et al., 2003), 

(Hermann et al., 2009), (Milojković et al., 2010), (Kovács et al., 2011), (Kumbasar et al., 2011), 

(Iwasaki et al., 2012), (Liu et al., 2012), (Papadopoulos et al., 2012). 

 

5. CONCLUSIONS 

The paper has proposed an approach to the fuzzy modeling of magnetic levitation systems. This 

approach is based on the implementation of SA algorithms to optimize the parameters of T-S fuzzy 

models initially obtained in terms of the modal equivalence principle. 

A new T-S fuzzy model of an MLS2EM laboratory equipment is offered. The new modeling approach 

is important because it is applicable with adequate but not complicated generalizations to a wide 

category of industrial applications. Similar other T-S fuzzy models can be obtained in order to be 

further used in the T-S fuzzy controller design and tuning. 
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