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This paper proposes a novel iterative data-driven algorithm (IDDA) for the data-driven 

tuning of controllers for nonlinear systems. The IDDA uses an experiment-based solving of 

the optimization problems for nonlinear processes with linear controllers accounting for 

actuator constraints in terms of a quadratic penalty function approach. A Neural Network-

based identification provides the gradient information used in the search algorithm for 

controller tuning and ensures a reduced sensitivity with respect to the controller parameters. 

A case study dealing with the data-driven controller tuning for the angular position control 

of a nonlinear aerodynamic system is included to validate the new IDDA. 

Nomenclature 
 

Fv (N) = amplitude of oscillation 

g (m/s2) = gravitational acceleration 

Iv (kg m2) = moment of inertia of the rotor 

Jv (kg m2) = moment of inertia of the beam 

kv (N m s) = vertical angular momentum 

lm (m)  = effective arm of the aerodynamic force Fv 
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M (N m) = active torque 

Mv1 (N m) = return torque due to the gravitational forces 

Mr (N m) = reactive friction torque 

Uv (%) = Pulse Width Modulated duty cycle for the DC motor 

αv (rad) = pitch angle of the beam 

ωv (rad/s) = angular speed of the rotor 

Ωv (rad/s) = angular velocity of the beam 

I. Introduction 
ATA-DRIVEN optimization for controller tuning has the advantage of requiring no a priori model information 

about the controlled processes, or only a reduced amount of information obtained from process measurements [1]–

[10]. The easy interpretable performance indices are aggregated in cost functions (c.f.’s). The minimization of the 

c.f.’s in the framework of constrained optimization problems can fulfill different objectives such as reference 

trajectory tracking (including model reference tracking), control signal penalty, disturbance rejection, etc. These 

data-driven optimization techniques compensate for the impact of the model errors and uncertainties. 

The main data-driven technique used for the iterative data-driven controller tuning by an experiment-based 

update of controller parameters is the Iterative Feedback Tuning (IFT) [1]. IFT requires only a few experiments 

conducted on the real-world control systems (CS) in order to estimate the c.f. gradients used for the iterative solving 

of the optimization problems. However, this tuning does not guarantee robust stability or performance because it 

lacks the quantitative knowledge about the controlled process. 

Other popular data-driven techniques used for mechanical, aerospace and several complex applications are 

Simultaneous Perturbation Stochastic Approximation (SPSA) [2], Reinforcement Learning (RL) [11], approximate 

dynamic programming [12], model-free adaptive control [10], [13], [14], and data-driven monitoring [15]. These 

techniques also use Neural Networks (NNs) with supervised and unsupervised learning [16]–[20]. Predictive, 

adaptive fuzzy control [21]–[24], low-cost fuzzy control [25], [26] can also be used in this context by several fuzzy 

model transformations [25], [27]–[30]. 

The data-driven techniques are associated with appropriately defined optimization problems. Such optimization 

problems involve adaptive and predictive control [31], [32], learning, planning and optimal control [33], [34], and 

nature inspired optimization methods [35]–[38]. Defining the various c.f.’s involved in these applications may be 
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challenging as performance improvement should be targeted using few experiments and little information on the 

controlled process. 

Building upon recent results on data-driven techniques for the Iterative Learning Control (ILC) [8], the main 

contribution of this paper is the development of a new iterative data-driven algorithm (IDDA) for optimal controller 

tuning accounting for the operational constraints on the control signal. Other contributions are the NN-based 

identification for gradient estimation supported by a novel ILC-based mechanism for NN training and the data-

driven tuning that offers a reduced sensitivity with respect to the controller parameters. The proposed algorithm is 

general and applicable to nonlinear systems. It uses an experiment-based quadratic penalty function approach. The 

main advantages of IDDA are 

- being based on learning from experimental data from real-world CS, it can compensate for process model 

nonlinearities and parametric uncertainties. 

- it requires a small number of experiments, which results in cost-effective implementations. 

Our supervised learning approach used for the CS exploits only the nonlinear structure of the problem and no 

specific process model. It represents a tradeoff between the exploration of the environment, obtained by running 

input-output closed-loop CS trajectories, and the use of approximate environment models, which are merely 

approximations of the real-world CS. A similar, but not identical technique, using a RL approach is presented in 

[39]; this approach suggests gradient-based control policy improvements based on first principles models of the 

process whereas in our approach this is carried out using ultra-local models of the CS obtained via NNs. Another 

gradient learning approach based on first principles models of the reference input is suggested in [40], where an 

open-loop control strategy is used for motion primitives that allow for acrobatic flips for quadrocopters.  

The paper is organized as follows: Section II gives the formulation of the iterative controller tuning problem for 

nonlinear processes in the framework of optimal control with focus on the state-of-the-art, and Section III treats the 

gradient estimation needed in the search algorithm using nonlinear models identified by NNs. Some aspects 

concerning the sensitivity of the CS with respect to the controller parameters are discussed. A model-free 

mechanism for dealing with constraints in the optimization problem using quadratic penalty functions is offered. 

Section IV summarizes the IDDA algorithm. Section V discusses the application of the controller tuning approach to 

a representative case study which deals with the angular position control of a nonlinear aerodynamic system. The 

conclusions are then presented in Section VI. 
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II. Problem Statement 

We will consider a Single Input-Single Output (SISO) discrete-time control system (CS) described by the 

nonlinear process and controller equations: 
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where y is the process output, u is the control signal, r is the reference input, v is the zero-mean stochastic 

disturbance at the output accounting for a large class of disturbances, and ρ , ρnRρ∈ , is the parameter vector of the 

controller. Due to the nonlinear functions P and C the model (1) belongs to the class of nonlinear autoregressive 

exogenous (NARX) models. 

As shown in [41], several assumptions are made in relation with this CS model (1). The closed-loop CS is stable 

and the nonlinear operators P, C are smooth functions of their arguments. The nominal CS trajectory is denoted as 

)}(),(),({ kykukr nnn , Nk ...0= , where N is the length of the experiment. The notations for the changes around the 

nominal trajectories are )()()( krkrkr n−=δ  for the reference input, )()()( kukuku n−=δ  for the control signal, and 

)()()( kykyky n−=δ  for the process output. 

One major objective in the iterative controller tuning is to search for the controller parameters that solve the 

following optimization problem starting with the initial solution 0ρ : 
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subject to system dynamics (1) and to operational constraints, where SD  is the stability domain of the parameter 

vectors ρ  which ensure a stable CS [42]. The constraints can usually be formulated as inequality constraints 

imposed to )(ku  and )(ky , and to their rates with respect to time, )1()()( −−=Δ kukuku  and 

)1()()( −−=Δ kykyky . These constraints can be imposed to other variables as well [43]–[46], and they depend on 

the specific controlled processes that can include aerospace applications such as unmanned aerial vehicles and 

helicopters [47], [48]. These constraints imposed on )(ku  and )(kuΔ , related to the actuators, will be used in the 

controller tuning algorithms having beneficial effects on the overall CS performance. 
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The formulation of the c.f. in (2) targets the trajectory tracking of the desired system output dy  while the control 

effort is penalized by the weighting parameter 0≥λ , and the expectation {...}E  is taken with respect to the 

stochastic disturbance v. The optimization problem (2) in the unconstrained case is usually solved employing the 

recursive stochastic search algorithm: 
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where the search information is provided by the estimation of the c.f. gradient J with respect to the controller 

parameters. This can be done by using, for example, the second order information provided by the Gauss-Newton 

approximation of the Hessian matrix jR , or simply by using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) update 

algorithm as an estimate for the Hessian. The subscript j , N∈j , indicates the current iteration number, and jγ , 

0>γ j , indicates the step size. 

The main feature of IFT [1] is that the gradient information is extracted using special experiments conducted on 

the closed-loop CS. These experiments avoid the need for a process model but, at the same time, they require special 

operating regimes that are different from the nominal ones. The experiments generate the gradients of y and u with 

respect to the controller parameters, namely ρ∂∂ /y  and ρ∂∂ /u , which are next used to compute both the gradient 

of J and the matrix jR . Although the linearity is assumed, a nonlinear-based procedure is also feasible according to 

[41]. The gradients can be estimated, as shown in [49], not by finite difference approximations with perturbed ρ  but 

by using modified reference trajectories for small changes )(krδ , )(kuδ  and )(kyδ  around the nominal trajectories. 

The advantage of this approach is twofold. First, the closed-loop CS is not changed for the special purpose of 

obtaining the gradient estimate and the CS stability is not affected. Second, the experiments are carried out in the 

close vicinity of the nominal trajectories. The motivation for this is presented as follows using elements from [41]. 

Let the deviations around the nominal trajectories be expressed as the first order Taylor series expansion 
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It is assumed that a change in )}({ kun  is generated around the nominal trajectories )}(),(),({ kykukr nnn , Nk ...0= , 

first by modifying only the controller parameter hρ , ρ= nh ...1 , and then by changing the nominal reference 

trajectory )}({ krn . If there exists a reference input change )}({ krδ  that generates the same amount of change in 

)}({ kun , then the same amount of change in )}({ kyn  occurs, namely )}({ kyδ . The higher order terms referred to as 

h.o.t. in (4) are considered negligible. Imposing the equality to the last two terms in the expression of )(ku  in (4) 

leads to 
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from which the sequence )}({ krδ  can be obtained. For a linear time invariant controller it follows that 

hkSkr δρ=δ )()( , where )(kS  is a signal which depends on the nominal trajectories and on the nominal controller 

parameters [49]. 

These considerations suggest that conducting experiments with different perturbed reference inputs around the 

nominal trajectory leads to the same effect in the change of )}({ kun  and )}({ kyn  as when a single controller 

parameter is modified. The gradients of )(ku  and )(ky  with respect to the change in ρ  can then be estimated as 

shown in [41] and [49]. 

While this paper considers only the case of linear controllers, an extension to nonlinear controllers is also 

possible. We focus on the linear controllers because many CSs actually use the well understood PI or PID 

controllers for a large variety of applications [50]–[53]. 

Two issues have been addressed in the literature: (i) the number of gradient experiments, which can be 

prohibitive when number of parameters is increasing [41], [54], and (ii) the constrained approach [55], [56]. This 
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paper will show that the nonlinear tuning accounting for operational constraints gives good results, and it is also 

efficient as it requires a relatively small number of iterations and experiments. 

III. Data-driven Estimation of Gradients Using Neural Networks 

A. Gradient Estimation Using Neural Networks 

Artificial NNs, which are well known universal approximators for dynamic systems, [41], [57], are well suited 

for gradient estimation. Each time the gradient information is needed, the nonlinear reference input/process output ( 

r/y ) map and the nonlinear reference input/control signal ( r/u ) map can be both identified using data collected 

during a normal experiment in which the c.f. is evaluated. Let these two maps r / y and r / u be 

 ))(),...1(),(),...1(()( ryyry nkrkrnkykyMky −−−−=  (6) 

and 

 ))(),...1(),(),...1(()( ruuru nkrkrnkukuMku −−−−= , (7) 

respectively. 

The variables hy ρ∂∂ /  and hu ρ∂∂ /  can be estimated by finite difference approximations as 
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where 1=δρ h  is considered, and the numerators are equivalent to carrying out two simulations, namely one with 

the nominal controller parameter vector ρ  and another one with the thh  controller parameter perturbed with hhδρμ . 

The scalars hμ  are chosen to account for only small changes around the nominal reference input trajectory )}({ krn  

where the analysis holds. The perturbed trajectories with respect to )}({ krn  are calculated using (4) and (5). The 

variables y  and u  are obtained by filtering the nominal and the perturbed reference trajectories through the 

nonlinear functions ryM  and ruM , respectively. 

Equations (6) to (8) indicate that the gradients with respect to the controller parameters changes are obtained by 

changing the reference trajectory. This approach is applicable to both linear and nonlinear systems. The closed-loop 
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operation of the CS is also an advantage. It should be mentioned that if estimation error terms, such as the bias, 

occur in the identified models, they are canceled by the difference operation in (8). 

This approach offers three notable advantages. First, as the simulation with a perturbed reference is conducted in 

the vicinity of the nominal trajectory for which the NN is trained, this allows using simple NN architectures with 

few neurons. While the resulting models will only be valid near the nominal trajectories, and not in a wide operating 

range, they will nevertheless help reducing the time needed for the experiment. Second, the numerical differentiation 

issues that occur in noisy environments will be mitigated because the obtained trajectories are not affected by the 

noisy data involved in NN training. Third, the closed-loop system has a typical low-pass filter behavior that also 

simplifies the identification. 

B. Neural Network Gradient Estimation Using Iterative Learning Control 

We are using a simple feed-forward NN architecture consisting of one hidden layer with hyperbolic tangent 

activation functions and a single output layer neuron with a linear activation function. The corresponding input-

output map of this NN is 

 ))(),(()()1(ˆ kkkky T xVσW=+ , (9) 

where 1
10 ]...[ +∈= HT

Hwww RW  is the vector of the output layer weights, 

])(...)(1[ 11 xVxVσ T
HH

TT σσ=  is the vector of the hidden layer neurons outputs having hyperbolic activation 

tangent activation functions Hmxxm ...1 ),tanh()( ==σ , and the superscript T indicates the matrix transposition. 

The first term in σ  corresponds to the bias of the output neuron. Each hidden layer neuron is parameterized by its 

vector of weights 110 ]...[)( +∈= nunu
mmm

Tm vvv RV , Hm ...1= , which multiplies the input vector 

]...[ 10 nu
T xxx=x . Each vector mV  includes the weight 0

mv  of the bias of thm  neuron. Here 1+nu  is the 

number of inputs to the network, and H is the number of hidden layer neurons. The time domain index is Nk ...0= . 

This NN is further treated as an iterative multiple-input and multiple-output (MIMO) nonlinear dynamic system: 
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where 
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where j is the iteration index, iv
j

w
j uu ,  are the input vectors, and the previously defined weight vectors i

jj VW ,  are 

considered as the state vectors of the dynamic system. The jX  vector can be regarded as a time-series disturbance 

which is the same at each iteration, but it can be also regarded as a time-varying parameter vector of the nonlinear 

system (10). The vector jY  is the output of the nonlinear dynamic system (10). 

An ILC-based supervised learning (training) algorithm is further used to minimize the tracking error 

djj YYE −=  between the actual NN output and a desired output 1])1(...)1([ +∈+= NT
ddd Nyy RY , where 

)1()...1( +Nyy dd  are the desired process outputs at the time moments 1...1 +N . The input at each iteration can be 

derived in the framework of norm-optimal ILC as the solution to the optimization problem 
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RuuuU  is the stacked vector of inputs, 0fTRR =  and 

0fTQQ =  are symmetric positive definite diagonal matrices, djj YYE −= ++ 11  is the tracking error for the 

iteration 1+j , and 2|||| •  is the general notation for the Euclidean norm of the vector • . The penalty Q  on the 

vector jU  is used in order to prevent over-fitting. 

A nonlinear least squares method is applied in order to obtain the analytical solution to the optimization problem 

(12). The linearization of ,...0)),(,()1( 111 Nkkky i
j

T
jj ==+ +++ xVσW  is carried out around i

jj VW ,  for small 

variations of iv
j

w
j uu ,  by considering the output as a nonlinear function of the weight vectors 

,...0)),(,,()1( 111 Nkkfky i
jjj ==+ +++ xVW  and the input vector )(kx  as a parameter vector. The Taylor series 

expansion yields 
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Neglecting the higher order terms in (13) we obtain: 
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Stacking the 1+N  outputs over the time argument k we then obtain 
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As ,11 jjjdjjjdjj UΨEYUΨYYYE +=−+=−= ++
 the quadratic optimization problem (12) can be rewritten 

as 
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Using the matrix derivative with respect to vectors and noting that X is symmetric due to the fact that R and Q 

are symmetric, we obtain the analytic solution of the optimization problem (16): 
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The optimal vector *
jU  contains the increments of the NN weights. Using the notation 
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(12), the first two equations in (10) could be written as 
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The iterative weight adjustment equations (18) are of ILC type [58], and they depend on the error at the current 

iteration. The norm-optimal ILC formulation is more general since the c.f. also incorporates the penalty on the 

weights, and it allows for a degree of freedom in the learning. 

C. Generating Second Order Gradient Information 

Obtaining the first order gradient information by introducing perturbances in the reference trajectory is valid 

only for small deviations around the nominal trajectory. Hence, the first order gradient information is accurate only 

for small amplitude deviations of the controller parameters around the nominal ones. 

This idea can be further extended to obtain the second order gradient information. Let RR →:f  be a smooth 

function of real scalar argument ρ . Assume that a first order model obtained by Taylor series expansion is used to 

describe the behavior of f in the vicinity of *ρ : 
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The gradient of f with respect to ρ  can be accurately estimated at *ρ=ρ  for small deviations 1δρ  
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However, for a larger deviation 12 δρ>δρ  around the nominal argument, the value )( 2* δρ+ρ=ρf  cannot be 

accurately represented by the first order model, requiring the use of a second order model obtained from the Taylor 

series expansion 

 .))((
2
1)(ˆ)()( 22*2**2* δρρ′′+δρ⋅ρ′+ρ≈δρ+ρ=ρ ffff  (21) 

This will lead to the following estimate of the second order derivative of f with respect to ρ , at *ρ=ρ : 
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This will be further used to estimate the second order gradients of )(ky  and )(ku . 

In the first step, for each controller parameter hρ  we will calculate, using (5), the )}({ krδ  deviation from the 

nominal reference trajectory corresponding to a perturbance amplitude hhδρμ . The scaling factor hμ  is used to 

ensure small amplitude deviation of the reference trajectory. This will allow to estimate the gradients of the 

controlled output and of the control signal with respect to any controller parameter, as indicated in (8). 

In the second step, we will consider the second order model as a more accurate representation of the controlled 

output’s deviation around the nominal trajectory: 
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where ),( ρρ δ+ky  and ),( ρρ δ+ku  are obtained experimentally with a nominal reference input affected by a 

deviation )}({ krhδ , and the hh uy ρ∂∂ρ∂∂ /ˆ,/ˆ , 
ρ= nh ...1  estimates are computed according to (8). Let us assume at 

this step that )}({ krhδ  is obtained from (5) for a certain hhδρμ  and that all the other deviations hinii ≠=δρ ρ ,...1,  

are null. For a scaled amplitude deviation )}({ krhδ⋅ε  with 1>ε  obtained from the deviation hhδρεμ , the new 

perturbed trajectories corresponding to ),( ρρ δ+ky  and ),( ρρ δ+ku  can be recorded, and the estimates of 

2

2

2

2 ),(,),(

hh

kuky
ρ∂

∂
ρ∂

∂ ρρ  can be obtained from (23). 

In the third step, the deviations )}({ , kr jiδ  are obtained from (5) for the deviations iεμδρ  and 
jεμδρ , 

jinji ≠= ρ ,..1, . This is equivalent to simultaneously perturbing two parameters of the controller. The recorded 

quantities ),( ρρ δ+ky  and ),( ρρ δ+ku  obtained with the new reference perturbed by )}({ , kr jiδ  are then employed 

to estimate 
jiji

kuky
ρ∂ρ∂

∂
ρ∂ρ∂

∂ ),(ˆ
,),(ˆ 22 ρρ  from (23) for the already known first order information obtained in the previous 

step. 

The NN-based identification allows us to reduce the number of experiments needed in this approach. Second 

order gradient information estimates can conveniently be obtained via simulation using the closed-loop identified 

models. This second order gradient information is useful for the calculation of the Hessian matrix jR  used in the 
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search algorithm (3), and in the introduction of the sensitivity functions of controlled output and control signal with 

respect to the controller parameters in the initial c.f. as it will be shown in the next section. 

D. Model-Free Controller Tuning for Reduced Sensitivity with Respect to Controller Parameters 

The model-based optimization defined in [59] aims to minimize performance indices of the CS’s integral 

squared error and the sensitivity model. 

We will consider the generalized c.f. 
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where 0fT
yy ΓΓ =  and 0fT

uu ΓΓ =  are diagonal positive definite matrices, and 
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are the sensitivity functions of the controlled output and of the control signal with respect to the controller 

parameter vector ρ . Using sensitivity functions with respect to the controller parameters allows for a more cautious 

controller tuning strategy, which results in a more robust CS. While these sensitivity functions cannot be analytically 

formulated because the process model is unknown, they can be estimated as it will be further shown. 

The c.f. (24) can be evaluated for the current iteration using the gradient estimation method. This model-free 

approach is different to that in the model-based paradigm where these sensitivity functions can be evaluated 

analytically using appropriate sensitivity models. The sensitivity models for the controller parameters at the current 

iteration are estimated using the parameters from the previous iteration. The c.f. gradient estimation with respect to 

ρ  is 
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where 
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The first and the second order gradient information are estimated using the approach described in the previous 

sections. The minimization of the c.f. can be carried out by a search algorithm similar to (3). The degrees of freedom 

in the design influence the choice of the weighting matrices 
yΓ  and uΓ . The gradient of the c.f. can be evaluated 

using the sensitivity functions with the controller parameters at the current iteration. 

E. A Mechanism for Constrained Optimization Using Penalty Functions 

The optimization problem in the data-driven tuning context is defined as 
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where the c.f. J can penalize, for example, the expected mean squared control error 22 )],()([),( ρρ kykrke −= , 

where e is the control error. There are many different discrete sum-type c.f.’s that can be selected for the optimal 

tuning of controllers. 

The control signal can be penalized as well and, as shown in Section III.D, weighted sensitivity functions with 

respect to the controller parameters can be also added to the c.f. 

The interior point barrier algorithm provides a solution for this type of problems in the deterministic case. As 

shown in [60] for inequality constraints concerning only the control signal saturation, the constrained optimization 

problem is transformed into an unconstrained optimization problem by using the penalty functions. The logarithmic 

barrier penalty function becomes unbounded as the constraints are closer to being violated, as always is the case in 

the stochastic framework. A solution to this problem is given in [60], where the quadratic penalty functions are used. 

We propose the following augmented c.f. which accounts for the inequality constraints with regard the control signal 

saturation and the control signal rate: 
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where the positive and strictly increasing sequence of penalty parameters 0}{ ≥jjp , ∞→jp , guarantees that the 

minimum of the sequence of augmented c.f.s 
0)}(~{ ≥jp j

J ρ  will converge to a solution to the constrained optimization 

problem (28), the subscript m, cm ...1= , is the constraint index, 0)( >ρmq  is the thm  constraint. 

The optimization problem (29) is solved using a stochastic approximation algorithm which makes use of the 

experimentally obtained gradient of )(~ ρ
jpJ . 

The quadratic penalty function )(ρφ  in (29) uses the maximum function which in this case is non-differentiable 

only at zero. Given that )(ρφ  is of a Lipschitz type and non-differentiable at a set of points of zero Lebesgue 

measure, the algorithm visits the zero-measure set with a probability zero when a normal noise distribution is 

assumed [60]. Therefore, using 
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the gradient of )(~ ρ
jpJ  at the current iteration j with respect to the parameter hρ  is 

 ∑
= ρ∂

∂
−−

ρ∂
∂

=
ρ∂

∂ c

m h

m
mj

hh

p qqpJJ
j

1
})()}(,0{max{)()(~

ρρρρ . (31) 

The first term in (31), corresponding to the gradient of the original c.f., requires knowing the gradient ρ∂∂ /)(ky , 

and the second term in (31) requires the gradients of the control signal with respect to ρ  and the gradient of the 

control signal rate with respect to ρ . All these variables can be estimated using the NN-based identification 

mechanism given in (8). The derivative of the control signal rate with respect to the parameter vector ρ  is estimated 

using the finite differences approximation approach for the sampling period tδ  
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The nonlinearity in the penalty function induces gradient estimation errors, such as bias, and also changes the 

normal distribution of the measured constraints. Under linearity and Gaussian noise assumptions, the constraints 

0)( >ρmq  are measured without any bias because the control signal is linearly affected by noise. While there is no 

problem if the quadratic penalty functions are dominated by 0 or by )(ρmq− , estimation errors will occur when the 

constraints are close to zero. The algorithm will work with a reasonable degree of accuracy even for small bias 

errors in the estimation. 

As the constraints are weighted in the c.f. only when they are violated, our approach allows to initially use 

solutions that do not respect all the inequality constraints. In the long run, as the length of the sequence 0}{ ≥jjp  

increases, the impact of gradient due to the violated constraints is decisive and the reference trajectory tracking 

objective is neglected in order to fulfill the constraints in the optimization problem. The measurement noise, which 

adds a persistent excitation to the signals, is useful for the NN-based identification. 

IV. The IDDA Algorithm 

The proposed iterative data-driven algorithm (IDDA) consists of the following steps. 

Step S1. Starting with an initial value of ρ , choose the upper and lower bounds for the control signal, the upper and 

lower bounds for the control signal rate and the desired control criterion, namely the c.f. )(ρJ . Choose the 

tolerances Ntol  for stopping the stochastic search algorithm. Set the iteration index for ρ  and 0}{ ≥jjp  to 0=j . 

Choose the sequence 0}{ ≥jjp  and the initial step size 0γ . 

Step S2. Conduct the normal experiment with the current jρ  for the nominal reference input. Evaluate the c.f. 

)(~
jJ ρ . 

Step S3. Train the models j
ryM  and j

ruM  using the ILC approach. Calculate the perturbed reference trajectories 

)}({ krhΔ  using (5) to be introduced in (8). Use the models j
ryM  and j

ruM  to estimate ρ∂∂ /)(ˆ ky , ρ∂∂ /)(ˆ ku  and 

ρ∂Δ∂ /)(ˆ ku  using (8) and (32). Evaluate the gradient of the c.f. by means of (31). 

Step S4. Calculate the next controller parameter vector 1+jρ  
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Step S5. If the gradient at the current iteration is below a specified threshold 
NtolJest

j

<
∂
∂

=

}
~

{
ρρ

ρ
, stop the algorithm. 

Otherwise, set 1+= jj  and jump to step S2. 

V. Case Study 

The case study deals with the angular positioning on vertical motion of an experimental twin-rotor aerodynamic 

system [61], with a horizontal rotor which produces vertical motion and a vertical rotor producing horizontal motion 

(Fig. 1). An adjustable counterweight beam is positioned at the middle of the main beam supporting the two rotors. 

The horizontal motion is not allowed in this case study, so the horizontal position is considered fixed. The 

nonlinear equations describing the vertical motion are [61] 
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where uU v =  is the control signal, yv =α  is the process output, and 1vM  depends on the constant parameters A, B 

and C of the mechanical ensemble and on vα . 

 

 

Fig. 1 The twin-rotor aerodynamic experimental setup [61]. 
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The nonlinearity of the system is also due to the static nonlinear mapping of the control signal u to the rotor 

angular speed and of the rotor angular speed to the aerodynamic force. The parameters in (34) are [61] 
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This nonlinear model is used only to obtain an initial controller, but not in the actual tuning process. 

A. Neural Network-Based Identification 

The NN architecture used in the identification and subsequently in the gradient estimation consists of one hidden 

layer with six neurons and one output layer with one neuron. As shown in Section III.B, hyperbolic tangent 

activation functions are employed in the hidden layer, and a linear function is employed as the output neuron 

activation function. 

This nonlinear autoregressive exogenous (NARX) NN architecture is used for both ryM  and ruM . The inputs of 

the two NNs are ])1()()1()(1[)( −−= krkrkykykT
ryx  for ryM  and 

])1()()1()(1[)( −−= krkrkukukT
rux  for ruM . The outputs of the NNs are the closed-loop output and the 

control signal given in (6) and (7), respectively. 

The training of the two NARX NN architectures is carried out in the ILC framework using the guidelines given 

in Section III.B. Each neuron in the hidden layer has five parameters, i.e., four weights and one bias. The output 

layer has seven weights including the bias. We trained the weight vectors 17×∈RW  and 6...1 ,15 =∈ × ii RV . The 

initial values of the hidden neurons parameters are chosen from a normal distribution centered at zero with variance 

1. Because of the special structure of the NN which is linear in the output weights vector W, a least squares 

initialization of W was performed. 

The NN-based identification is carried out on the nominal trajectories of the closed-loop for the initial controller 

parameters presented in the next section. 

We will restrict our further discussion to the identified map ryM . For an experiment of a duration of 90 s, we 

used 898 samples for training. For the norm-optimal ILC problem, the weighting matrices were chosen as 898IR =  

and 370005.0 IQ ⋅= , where ζI  is the general notation for the thζ  order identity matrix. 

Fig. 2 illustrates the training error and of the output neuron weights throughout the NN training iterations. 
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Fig. 2 Neural network training error during iterations. 

 

The training error norm at the first iteration results after the least squares initialization of the output weights 

vector W. Results for NNs trained using the ILC framework show a decrease of the training error of about three 

orders of magnitude in after four iterations, which conclusively demonstrate the efficiency of this ILC-based NN 

training. 

B. Controller Tuning for Tracking Error Minimization and Reduced Sensitivity 

This case study considers a discrete-time linear PI controller with the transfer function 

)1/()()( 11
21

1 −−− −ρ+ρ= qqqH  and with the parameter vector ][ 21 ρρ=ρ . The initial parameter vector obtained 

experimentally is T]001.0012.0[0 =ρ . 

The purpose is to compare the results when the sensitivity with respect to the change in controller parameter is 

taken into account. The two performance indices to be minimized together with the corresponding optimization 

problems are 
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and 
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The sampling period is set to 0.1 s and the experiment length is set to 90 s. The desired trajectory specified as a 

reference input to the CS is a step-signal of amplitude 0.1 rad (approximately 5.72°) for 35 s, a ramp-type signal for 

20 s, and then no signal (zero) for the remaining 35 s. 

The common objective of the two optimization problems is to minimize the reference tracking error. In addition, 

the objective of the second problem is to reduce the sensitivity of the CS with respect to changes in 1ρ . The 

weighting parameter α  in (37) was set to 10000=α . 

For the sake of comparing the performance of the CSs with optimized controller by IDDA applied to (36) and to 

(37), another sensitivity performance criterion is defined as 

 ∑
=

−=
N

k

initialfinal kyky
N

J
1

2}))()((1 , (38) 

where )(kyinitial  for each CS is recorded with the optimized controller and )(ky final  is obtained after the 

parameter 1ρ  was disturbed by 1%. 

Results illustrating the efficiency of using IDDA to minimize )(1 ρJ  and )(2 ρJ  are presented in Fig. 3 and in 

Fig. 4, respectively. Other details are given in Table 1. 
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Fig. 3 Results concerning the application of IDDA to the minimization of )(1 ρJ  in (36). 

 

 

 

Fig. 4 Results concerning the application of IDDA to the minimization of )(2 ρJ  in (37). 
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Table 1  Comparison of IFT applied to the optimization problems (36) and (37) 

 1J  2J  

Final controller parameters T]0147.00254.0[19 =ρ  T]0076.00184.0[9 =ρ  
Final sensitivity criterion 81088.5 −⋅=J  8105.3 −⋅=J  

}{ jγ  6.0)1/(9.0 +j  6.0)1/(6.0 +j  

iR  
2I  2I  

 

The results presented in Table 1 show that the sensitivity with respect to disturbances in the controller is lower 

for the criterion 2J . This validates the proposed data-driven approach. 

We did not consider the constraints in this case study, since it may be possible that a sensitivity reduction is not 

achieved due to the violation of constraints. This approach allows for a cautious controller tuning by introducing the 

sensitivity with respect to the controller parameters in the c.f. This has the equivalent effect of introducing a 

weighted penalty on the control signal the c.f. Therefore, the proposed tuning method can result in more robust CSs. 

There are two additional aspects referring to the minimization of 1J , which deserve mentioning. 

In the first simulation scenario we ran our learning algorithm multiple times starting with the same initial 

controller parameters 0ρ . At this point, only the random NN weight-initialization led to different results in NN 

training, which in turn led to gradient estimation errors. These estimation errors propagate from one iteration to the 

next. After 20 runs, the results show a standard deviation of 9105.6 −⋅  (or 0.0014% of the mean value) for the final 

value of 1J , which can be considered as insignificant. The variations of the final controller parameters were also 

insignificant. 

In the second simulation scenario we started each time with different controller parameters in order to investigate 

their impact on the optimization. The controller parameters were perturbed by random normally-distributed values 

such that the variations for each controller parameter were within a ±3% domain. After 20 runs, the standard 

deviation for the final value of 1J  of was about 91027.25 −⋅  (or 0.0056% of the mean value), which were about 4 

times larger than in the previous scenario. The standard deviation of the final controller parameter values was also 

larger, but the mean values were the same as those shown in Table 1 for 1J . 
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Our algorithm leads to the same final solution even when starting with different initial points. It also indicates a 

convex c.f. even if the underlying problem is nonlinear. These effects are to be expected, because the desired 

response to be tracked is close to the initial responses and we do not require drastic performance modifications. 

However, if the disturbances on the controller parameters are larger, which results in larger differences between the 

initial response and the desired response, our algorithm is producing different local minima. 

 

C. Controller Tuning for Constrained Optimization 

We consider another optimization problem in which the constraints imposed to the control signal rate are taken 

into account. As in the previous section, the main goal is to minimize the reference tracking error. The problem is 

formulated as 
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Let’s consider the specific case where the control signal rate assumes values within the 02.0)(02.0 ≤Δ≤− ku  

interval, and 900 samples are collected during the experiment, which will result in 1800 inequality constraints. For 

the sake of comparison, we will use two gradient search algorithms are used for IFT. We use first the steepest 

descent search algorithm and then the BFGS update algorithm to get a Gauss-Newton approximation of the Hessian 

matrix iR  considered in the first step [62]. The initial approximation for iR  in the BFGS algorithm is an identity 

matrix which is recursively updated. When one ore more constraints become active/inactive, iR  resets back to the 

identity matrix since the c.f. is different due to the penalty function weighted by the factor jp . 

The initial parameter vector of the controller is the same as in the previous section, namely 

T]001.0012.0[0 =ρ . The sequences 6.0)1/(3.0 +=γ jj  and 5.015}{ jp j ⋅=  are the same in both cases. The results 

are presented in Fig. 5. 
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Fig. 5 Results concerning the application of IDDA to the minimization of )(1 ρJ  in (39), which deals with the 
constrained case. 

 

Fig. 5 clearly shows that the proposed approach iteratively adjusts the controller parameters in order to minimize 

the reference tracking error. The c.f. shown in Fig. 5 is the original one )(1 ρJ  from (39), augmented with the penalty 

function. The constraints imposed to the control signal rate are violated in the steepest descent algorithm at the 

seventh iteration, after which the tuning deactivates the constraints. The constraints are violated in the BFGS 

algorithm at the fourth iteration, after which the tuning reduces the control signal rate until it reaches the upper 

bound. This is achieved in seven iterations compared to fifteen iterations for steepest descent. The small number of 

iterations considerably reduces the time spent for controller tuning. The final parameter vectors for the controllers, 

after the tuning is done, are T]0011.00189.0[15 =ρ  and, respectively, T]0017.00187.0[7 =ρ . The final 

responses for all the CS signals are almost identical. 

 

 



This article can be cited as M.-B. Radac, R.-E. Precup, E.M. Petriu, S. Preitl, Iterative Data-Driven Controller Tuning with Actuator Constraints 
and Reduced Sensitivity, Journal of Aerospace Information Systems, doi: 10.2514/1.I010154, 2014. 
Copyright©2014 by the American Institute of Aeronautics and Astronautics 

D. Discussion of the results and comparisons 

The number of iterations is low and comparable with the number of iterations needed for the RL approach 

reported in [39]. While the learning algorithm for offline gradient information reported in [39] uses approximate first 

principles process models, our approach does not use any specific process models but NN-based identified models 

for the closed-loop CS. On the other hand, the line-search employed in [39] requires additional evaluations of the 

control policy in real environment conditions, whereas we use a BFGS algorithm to reduce the number of real-world 

experiments. Our approach also addresses the constrained environment, in addition to its advantage of providing a 

model-free tuning. 

As shown in this section, we used a BFGS algorithm in order to compare it with our pure gradient algorithm, 

because both apply to the same structure of the optimization problem and use the same collected data. It has been 

shown that the BFGS algorithm outperforms the pure gradient descent algorithm. 

While the SPSA algorithm [2] can be used in the optimization, it is different from our algorithm because it does 

not exploit the problem structure. Given the low dimension of the search space, the gradient estimation mechanism 

can still propagate the gradient information only from measurements of the augmented c.f. It should be noted that 

the SPSA algorithm does not outperform our new algorithm, because it requires more experimental evaluations of 

the c.f., and it scales poorly for a large number of parameters, which will require a prohibitive number of 

experiments. 

Our approach uses identified CS models that are valid only in the vicinity of the nominal trajectories at the 

current iteration. Since the closed-loop CS typically has a low-pass behavior, we can use simple NN architectures 

for identification purposes. 

When estimating the gradient, the perturbed reference trajectories used as NN inputs are very similar to the 

nominal reference input, which avoids NN generalization problems and results in low gradient estimation errors. 

Our identification approach does not need specially designed trajectories to be run on the real-world CS because we 

do not need closed-loop CS models that are valid in a wide operating range. The NN models used during the 

iterations are independent of each other, being valid only near the nominal trajectories of their corresponding 

iterations. 
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VI. Conclusion 

The proposed IDDA, which solves an optimal control problem based on the minimization of the mean squared 

control error with constraints imposed to the control signal and to the control signal rate, can successfully be used 

for controller tuning, resulting in a reduced sensitivity of the CS with respect to variations of the controller 

parameters. 

The NN-based identification mechanism reduces the number of experiments conducted on the real-world process 

compared to the experiment-based gradient estimation approaches by avoiding the gradient estimation from real-

world experiments. In addition, the NN training is efficiently performed using an ILC framework by considering the 

NN as a nonlinear dynamic system in the iteration domain, providing the basis for a systematic convergence analysis 

and guarantee. Our approach can be extended with an ILC-based reference input tuning in order to achieve more 

aggressive maneuvers for the considered aerodynamic experimental setup. 

Our algorithm offers several advantages. First, other integral-type constraints can be added to the optimization 

problem without requiring additional experiments and without increasing the complexity; nonlinear controllers can 

also be tuned. Second, the model needs only to be valid around the nominal trajectory, where the gradients are 

generated, and not in a wider operating range. Third, the numerical differentiation problems in noisy environments 

are avoided by the use of the identified CS models. Fourth, the optimization approach using quadratic penalty 

functions ensures the operation in a noisy environment avoiding the shortcoming of the Interior Point Barrier 

algorithm. Finally, by avoiding gradient estimation using a controller parameters perturbation approach, the 

controller is not updated until a gradient search direction which stabilizes the CS is computed. 

The tuning capabilities of our algorithm show a good compromise between an exhaustive search of the state 

space/environment strategy and a model-based strategy by using limited information about the environment and 

therefore requiring only a reasonable search effort. 

A limitation of our IDDA is that it does not guarantee the convergence to the global optimum. A convergence 

analysis to the global optimum has to be carried out. Future research will be focused on the thorough comparison of 

our algorithm’s performance with those obtained by similar model-free approaches. 
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