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ABSTRACT

Motion planning is one of the fundamental challenging problems in the field of robotics. The
objective is to find the shortest path traversed by the robot encountering any type of obsta-
cles in the space. A number of intelligent path planning algorithms have been designed for
solving motion planning problems. This paper presents the performance analyses of vari-
ous robotic path planning algorithms for avoiding obstacles in a deterministic environment
both quantitatively and qualitatively. This paper also discusses the benefits and drawbacks
of each method and shows the simulation results of each algorithm on the explored space.
These algorithms are tested under various situations with different degrees of complexities.
The results analysis shows that with respect to time and path length, Rapidly Exploring
Random Tree (RRT) algorithm perform better in finding the optimal path and reaching the
specified target point in a given planning horizon.

Keywords: Path Planning Algorithms, Robotics, Deterministic environment, Planning, Plan
representation, Path optimization.

Computing Classification System (CCS): | Computing methodologies, 1.2 Artificial Intel-
ligence, 1.2.9 Robotics — planning.

1 Introduction

Path planning can be defined as finding a path from the initial position to a goal position passing
through all the obstacles in the real workspace. The basic motion planning problem is referred
to as the “piano movers problem” which is used for searching a collision-free path from the initial
state to the goal state (LaValle, 2006). One of the basic capabilities of robotic path planning is
autonomous routing that has several applications in the field of self-driving car, vacuum clean-
ing robot, etc. Path planning research works have been going on in various areas such as
robotic automation, space exploration, hydrokinetic turbine, automated harvesters, desalina-
tion plants, industrial robotics, military robots, medical robots, mobile robots, computer graph-
ics, video games, active noise control (Ginter and Pieper, 2011),(Haidegger, Kovacs, Precup,
Benyd, Benyd and Preitl, 2012),(Yacoub, Bambang, Harsoyo and Sarwono, 2014),(Vrkalovic,
Lunca and Borlea, 2018),(Aravind, Raja and Pérez Ruiz, 2017),(Chen, Luo, Mei, Yu and
Su, 2016) etc.



Robot path planning is concerned with generating the feasible path and avoiding possible col-
lisions with known and unknown obstacles in the state. Path planning defines the trajectories
in various state environments such as deterministic, nondeterministic, static, dynamic, dis-
crete, continuous (Mac, Copot, Tran and De Keyser, 2016) etc. Path planning algorithms can
be specifically classified as deterministic and nondeterministic state based algorithms con-
sidering the knowledge of the robot about its environment (Kavraki, Svestka, Latombe and
Overmars, 1996). In the deterministic state, the robot has the complete knowledge about its
environment, obstacles, position of start and goal state for execution of a task. The robots in
the deterministic environment take the advantage of knowing the environment before execu-
tion of a task. This complete knowledge of information can be specified as informative path
planning. The robot can avoid collisions with the known obstacles in the state and estimate the
feasible path by using the path planning algorithms (Yang, Qi, Song, Xiao, Han and Xia, 2016).
The more challenging environment is nondeterministic environment, where the environment is
full of ambiguous scenarios such as unstructured background, uncertain factors and unsafe
motion faced by the robot.

To generate a suitable path, various robot path planning algorithms are used. Recently, sev-
eral real world motion planning problems were solved by different approaches namely Sam-
pling based algorithms, Node based algorithms, Bio-inspired algorithms, Mathematical model
based algorithms and Multifusion algorithms. A short description of these algorithms is given
in Section 2. These algorithms are used for addressing the robot path planning problems in a
3D environment (Yang et al., 2016).

In our previous works (Gayathri and Uma, 2019),(Gayathri and Uma, 2018), we have analyzed
the knowledge representation and reasoning techniques for robotic path planning. Knowledge
representation and reasoning (KR& R) based planning techniques can represent the structural
domain knowledge that aids Description Logic (DL), temporal, ontological and spatial reason-
ing in a modeled environment. These can be used to successfully accomplish the tasks with
lesser computational time.

As an extension of our previous works, this paper mainly focuses on algorithms that can fa-
cilitate safe and effortless movement of the robot after tackling the obstacles in the deter-
ministic environment. This paper mainly concentrates on three categories of path planning
algorithms namely sampling based algorithms, node based algorithms and bio-inspired algo-
rithms. The performance analyses of these path planning algorithms are discussed in this
paper. Hence, these algorithms are tested under various challenging situations and the result
analyses demonstrate that these algorithms find the optimal path with different computation
time and path lengths. In future, we have plans to integrate our previous works with this work
and find the optimal path using the algorithm which performs better with respect to the chosen
environment.

The rest of the paper is organized as follows. In section 2, comprehensive discussion of path
planning algorithms is presented. In section 3, explains the architecture of robotic path plan-
ner. Section 4 provides a comparison between various path planning algorithms and section



5 discusses the benefits and limitations of each algorithm by analyzing the performance of
different path planning algorithms. Finally, the paper is concluded in Section 6.

2 Path Planning Algorithms

Various path planning algorithms have been proposed to overcome the path planning prob-
lems under different environments (Yang et al., 2016),(Galceran and Carreras, 2013). This
section first lists the classification of three intelligent path planning algorithms for planning safe
and effortless motions of a robot in @ modeled environment. The comprehensive overview of
three different path planning algorithms is also presented in this section. Representation of
planning domain knowledge is necessary for an agent to act in the environment according to
the action sequence. The agent perceives the environment and undergoes a sequence of ac-
tions that transform initial state to the goal state (Meyer and Filliat, 2003). Planning domain is
represented by the states, actions and goal.

2.1 Classification of Path Planning Algorithms

Although, five approaches of 3D path planning algorithms are available for motion planning
problems, in this paper, we discuss the three main classification of 3D algorithms namely sam-
pling based algorithms, node based algorithms and bio-inspired algorithms. This is because
multifusion algorithms perform planning by combining the above said algorithms and the per-
formance of mathematical model based algorithms is lower with respect to the time complexity
when compared with above said algorithms (Yang et al., 2016). These categories are distin-
guished from each other by their unique characteristics. For instance, sampling based planner
is based on Monte Carlo Sampling approach in taking actions and node based algorithms are
based on grid based techniques in achieving the goal. These approaches are used for ad-
dressing the path planning problems in deterministic (informative) environment. The taxonomy
of path planning algorithms is illustrated in Figure 1.

Planning Representations
NodeBased Algorithms Bio-inspired Algorithms

Passive A* Algorithm Evolutionary Algorithm

Sampling Based Algorithms

Rapidly Exploring Random Probabilistic

Road Map
)

Tree (RRT)
Artificial Potential Field

(APF)

Genetic Algorithm
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Figure 1: Classification of Path Planing Algorithms



2.2 Sampling Based Algorithms

The principle use of this method is to generate a random sample in the environment as set of
nodes, cells or in other forms that search the specific goal point to achieve a feasible path. This
algorithm requires the prior knowledge of the environment for the agent to perform a task in the
state (Yang et al., 2016). The elements of sampling based algorithms can be separated into
two types namely active and passive elements. These elements are based on the roadmap
methods. Using active elements, the agent can achieve the best feasible path towards the goal
by its own processing procedure. Using passive elements, the agent generates a roadnet map
on the workspace that is based on the position of start and goal nodes. As a consequence,
combination of these two approaches can select the best feasible path using this road map.

2.2.1 Rapidly Exploring Random Tree (RRT)

RRT is a space-filling tree structure and this algorithm is designed efficiently. The intended RRT
algorithm efficiently searches the non-convex high dimensional spaces by using the random
sampling approach. The structure of RRT enables a greater exploration from multiple points in
the graph and the explorations are combined to produce a well-connected tree structure. RRT
intuitively considers Monte-Carlo Sampling approach in generating a random point into the
Voronoi regions. These regions are explored by the RRT algorithm in an attempt to generate
an optimal path with the minimum path distance.

RRT is extensively used for solving the path planning problems that involve collision, differential
constraints (in terms of bi-tree, non-holonomic or kinodynamic constraints). RRT explorer is
used to find the sub-optimal path in terms of global or local optimality (Kala, 2013). To avoid
obstacles, global optimality technique considers a different strategy (like move from the left,
right or in-between). Local optimality technique is used for maintaining the distances from the
obstacles. These two techniques are applied in RRT algorithm based on the surroundings so
that path is found through the interpolated points in the graph.

Single-RRT The position of start and the goal points are set in the collision-free space of
the configuration. Single RRT algorithm generates a tree from the starting point towards the
goal point by using random sampling approach. This approach is used to generate random
points which are considered as nodes in the graph. Then the algorithm intuitively terminates
to generate a tree at certain point by using the stopping configuration method (Knispel and
Matousek, 2013). This method runs till the expansion of tree reaches the specified goal point.
The pseudocode of RRT is illustrated in Algorithms 1.

Algorithm 1. RRT algorithm
Input: Configuration space (C-space)
Output: Path generated from initial node to goal node
Begin
Set the initial node (V; <= gstart € Cyree) and goal node (V; <— qgoai € Cyree) in configuration space
(C-space).



while (! Pathfound) do
Qrand = random_state(V; < P,) [0 <P, > 1]
Qneqr = min(distancecost(qrand > Ggoal ))
new = Qnear + Stepsize
if checkpath(qpew > Qnear ) then
V; ¢ Qnew +add _vertex (V; < V1, Vo, V3, V4...V,)
E; < qnew +add _edges (E; «+— E1,E9,E3,E4 ... Ey)
end if
if distancecost < Threshold then
Pathfound = True
else
Return
end if
end while
end

Bi-directional RRT Bi-directional search algorithm is called as the balanced search algo-
rithm that generates a tree simultaneously from the initial positions and from the opposite
directions (goal positions). The first tree initiates and grows from the source towards the goal.
The second tree initiates and grows from the goal towards source. Then both the trees are
stopped at certain point where it meets each other. At this point, the tree finds the best so-
lutions by balancing searches (Knispel and Matousek, 2013). RRT Bi-directional tree search
has more power to connect a tree and finds the solution faster than the single tree search RRT
algorithm. To connect the two end nodes, path distance is calculated using

N—-1
d(p) = > V(w2 —21)> + (y2 — 11)? (1)
=1

Probabilistic Road Map (PRM) PRM is the probabilistically complete algorithm that finds
the solution with a high probability and generates a number of samples in the graph (Kannan,
Gupta, Tiwari, Prasad, Khatri and Kala, 2016). PRM is based on the roadmap methods. The
roadmap method generates a roadnet from the start state to goal state in the space.

An analysis of PRM operating in configuration space (C-space) be an open subset [0, 1]* and
the distance (d) be the Euclidean metric on C* space. The local planner for the PRM connects
points x,y € C. The measure p denotes the volume of a region of space that represents p([0,1]%)
=1. If A c Cis a subset and x is a random point chosen by sampling function (Al-Hmouz,
Gulrez and Al-Jumaily, 2004) is

Pr(z e A) = pp(A) (2)

(Cf'ree)

The probabilistic planner generates vast number of nodes and multiple edges in the space.
The Probabilistic planner operates in two phases (Mac et al., 2016). First phase is the offline
roadmap (learning or construction) phase and the second phase is the online planning (query)



phase. In Construction phase, a simple graph is build in the map. A simple graph of map is
probabilistic because it selects random points in the collision-free map. The roadmap vertices
are connected with all other random point vertices by using the local planning algorithm. A
common local planning algorithm is used to connect the sample vertices in a straight line and
add edges if the sample points are in the collision-free graph.

In query phase, the roadmap graph is used for planning the path of the robot. During this
phase, it finds the optimal path from the start node to goal node by using any of the graph
search algorithm (depth first search, breadth first search, heuristic search and replanning
methods). Hence, the resulting path of this algorithm is too complicated and it contains a lot of
possible redundant moves. The problem is solved by using the RRT algorithm that generates a
tree based on the position of start and goal states in the space (Knispel and Matousek, 2013).

Artificial Potential Field (APF) Artificial Potential Field (APF) is widely used in robot path
planning problems. APF is based on the reactive planning technique that reacts immediately
and takes an instant action that guides the robot to move away from the obstacles given the
direction to reach the goal. This technique operates based on two forces (Ahmed, Abdalla and
Abed, 2015)

1. Repulsive Force

2. Attractive Force

Repulsive force technique is applied to the mobile robot such that it takes immediate action
and thus moves away from the obstacles. All the obstacles repel away from the robot and the
force is inversely proportional to the distance from the obstacle. Target point is attracted by
the attractive force. The combination of these two forces is called as the total potential force.
The total potential force is used for guiding the robot to reach the target point that can be
represented as

Ui(x) = Ua(x) + Up(2) 3)

In forumula 3, U; (x) denotes the total potential force at state x, U,(x) is attractive potential
force at state x, U,. (x) represents the repulsive potential force at state x.

Additionally, APF uses a scalar function which is called as a potential function that contains
two values (Pimenta, Fonseca, Pereira, Mesquita, Silva, Caminhas and Campos, 2005). The
first is the minimum value and the second is the maximum value. Minimum value is marked as
the target point and the maximum value is marked as obstacles.

The most common problem in the artificial potential field is local minima problems. The local
minima problem occurs in the following three main conditions and the sum of all forces is zero
(Ahmed et al., 2015).

e The position of the robot, target point and the obstacles are present in the same line
where the obstacles are placed in the middle of the robot and the target point.



e The goal point appears within the obstacles region so that the robot can move away from
the obstacles by using the repulsive force technique. This problem is commonly known
as “Goals non-reachable with obstacles nearby” (Hamani and Hassam, 2012).

e Robot faces a complex environment that contains a non-convex obstacle so that the robot
cannot avoid the obstacle and reach the target point under artificial potential field.

These types of problems can be solved by using the chaos optimization method (Chen, Wu
and Lu, 2015).

2.2.2 Node based algorithms

The principle method of this algorithm is exploring the decomposed graph to search the optimal
path in the graph. The decomposition graph based on grid methods can be divided into three
categories namely approximate cell decomposition, exact cell decomposition and adaptive cell
decomposition. Node based algorithms explore a set of nodes in the map to find the optimal
path according to certain decomposition.

A* algorithm A*is a grid-based search algorithm that controls the robot to obtain the shortest
path between source and destination on the explored space. It works similar to the Dijkstra’s
algorithm, but A* uses the heuristics estimate function for finding the shortest path. This algo-
rithm is used to compute the shortest path that involves checking many adjacent matrix nodes
in the graph. The nodes are explored towards the regions that converge to the goal indicated
by the heuristics function (Kala, Shukla, Tiwari, Rungta and Janghel, 2009).

The total travel cost from the start node to goal node via the shortest path is calculated by the
heuristic function.

g(n) = Cost from start node to the goal node
h(n) = Cost from the current node to the goal node

The total travel cost approximation is done using

f(n) = g(n) + h(n) (4)

The total travel cost can be approximated by the heuristic function and the least travel cost
node can be considered as the most promising node in the graph.

2.2.3 Bio-inspired algorithms

This kind of method deals with the NP-hard problems to generate a near optimal path based
on stochastic approaches. Evolutionary algorithm, a category of bio-inspired algorithm stems
from analyzing the behavior of certain species. Evolutionary algorithm have many categories
but this paper mainly analyzes Genetic algorithm (GA). GA is the most famous population-
based optimization method.



Genetic Algorithm (GA) Genetic Algorithm is a search-based optimization technique that
evolves towards better solutions. GA is used to solve the optimization problem that is mod-
eled by selection, genetic and evaluation techniques (Hosseinzadeh and Izadkhah, 2010). GA
maintains a population of candidate solutions in optimization problem. Each candidate solution
is coded as a binary string called as chromosome. A set of chromosomes form a population
that is evaluated and ranked by their fithess function. Here, the total number of populations is
considered as the number of paths in the workspace. Fitness function plays a vital role in GA
because it provides the convergence and stability (Qu, Xing and Alexander, 2013).

The fitness function for a path (p) is defined as

F(p)=f(p) +C (5)

1

P) = d) + wns )

+ wrh(p) (6)

In (6), d(p) is a path distance, s(p) is path safety, h(p) is the smoothness of path and C is a
constant. The parameters w,, wg, wy, are the weights of the path length, safety and smoothness
for a feasible path p.

In GA, three main operators namely reproduction or selection, crossover and mutation are used
to generate a solution to optimization problem. The number of paths can be estimated during
the reproduction cycle. This computation is based on the path’s fithess value that depends on
the suitable path according to the problem. Path estimation is determined by the path length,
processing time and the number of steps in each path of the population. The length of the path
can be optimized using fitness value.

During the reproduction operation, crossover is applied to the parent chromosomes with a
probability which determines the frequency of crossover. The principle use of this operator is
to interchange two parent chromosomes in generating better solution. Then, the operator can
search the best solution by using the two existing solutions.

A mutation operator changes the order of gene’s value (location or direction) within the chro-
mosomes. This operator is used to check every gene’s value and decides whether it should
be mutated or not. Then, it finds the best solution based on the decision made. Finally, every
gene’s value is re-evaluated by their fithess function and the value is stored immediately after
making changes in the specified location.

3 Representation and Architecture of Robotic Path Planner

Path planning enables point-to-point motion of a robot in order to reach the designated target
location. The robot finds the path avoiding the obstacles in configuration. A systematic repre-
sentation of robotic path planning architecture comprising of configuration space, path planner
and controller is shown in Figure 2.
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Figure 2: Architecture of robotic path planner



3.1 Configuration Space

With respect to the robotic architecture, configured space given as input of path planner. The
configured space has the following premises. They are

e Environment of a robot’s motion is a 2-D workspace, where several obstacles are repre-
sented by their absolute coordinates, and the height of obstacles are not considered.

e The information of the static obstacles and positions are well known.
¢ No dynamic obstacles are introduced in the environment.

¢ Robots moves with a fixed speed.

3.2 Path Planner

A planner constructs a plan that can be executed by the agent. A planner is used to plan a
sequence ordered of actions in solving the path planning problems such as a control system.
A planner interacts with basic functions such as environment map, collision checker, path opti-
mizer, path smoother, path finder and path planning algorithms. These modules are explained
below.

3.2.1 Environment map

An environment map is generated by mapping the configuration space coordinates into workspace
coordinates.

3.2.2 Path planning algorithms

There are various path planning algorithms proposed by various researchers. The explanation

of these algorithms have already been provided in Section 2.

3.2.3 Collision checker

Collision checker using its sensors identify the obstacles in the space and the information is
fed to the path planning algorithm. This will enable a robot to handle several obstacles in the
space and navigate in the free space.

3.2.4 Path finder

Path finder is responsible for finding alternate traversable paths from the start node to the
end node. This includes the steps taken in a particular direction using the entire sequence of
actions and rewards.

3.2.5 Path optimizer

A path optimizer searches optimal path on random sampled nodes by connecting configured
pairs.



3.3 Controller

The controller provides the directions such as left, right, forward or reverse to an actuator
based on the path generated by the path planner. In our work, we have not integrated the path
planner with the controller and hence we have not configured the controller with any of the
parameters.

So, in our work we have applied the path planner to find the optimal path with minimum time
and minimum distance given a start location, goal location and set of obstacles distributed in
the workspace. The next section explains the experimental setup and the analyses that has
been performed in an elaborative manner.

4 Comparative Analysis of Path Planning Algorithms

This section discusses the experiment that has been carried out to analyze the various path
planning algorithms.

4.1 Experimental Setup

In order to execute the path planning algorithms implemented in MATLAB 2016a version, 64-bit
machine with i5 processor having 4GB RAM capacity is used. The implemented RRT algorithm
can be downloaded from
https://drive.google.com/file/d/1un3VI8vmfUXF6_pPURUJXrrxrrdjQiTW

4.2 Evaluation Metrics

In this paper, the path length and the processing time are considered as metrics for evaluating
the agent performance. In evaluating the various path planning algorithms, parameters are
considered and the details are given in the following section.

4.3 Explanation of the Parameters for RRT

The parameters that is required for the execution of algorithms to model static environment is
explained in this section. The initial graph is given as an input image. In the image, obstacles
are represented as black region and the path is represented as white region. The image
map has 500 x 500 resolution. Parameters considered for the implementation of RRT are as
follows.

The step size of the robot is 20ft, maximum failed attempt value is 10,000 (iterations) and the
distance threshold value which is always proportional to the step size is set as 20 m. The
algorithms were tested under various positions of start and goal coordinate points and the
results are shown in Table 1.

Increase in the step size value leads to lesser computation time. The objective function of RRT
algorithm is to find the shortest path with minimum execution time. RRT algorithm runs from
the starting point until the expansion of tree reaches the specified goal point. Otherwise, the


https://drive.google.com/file/d/1un3V98vmfUXF6_pPURuJxrrxrrdjQiTW

Table 1: Quantitative analysis of RRT Algorithm

Start position of robot  Target position of robot
Iterations (Coordinate positions (Coordinate positions

Processing Time Path Length

of source) of goal (Sec) (m)
1 Source =[10, 10] Goal = [490, 490] 1.256922e+02 8.207567e+02
2 Source = [5, 5] Goal = [400, 400] 4.007778e+01 7.184744e+02
3 Source =[5, 5] Goal =[100, 100] 1.819326e+01 2.810579e+02
4 Source =[5, 5] Goal = [400, 350] 3.226578e+01 6.909495e+02
5 Source =[10, 5] Goal =[300, 250] 3.796443e+01 7.315111e+02

algorithm will display an “no path found” error message when it reaches the maximum failure
value.

4.3.1 Simulation results for single RRT

The performance of RRT algorithm is being evaluated considering the path length of the gen-
erated shortest path and the execution time of the algorithm. The results obtained for different
positions of start and goal co-ordinate values are shown in Table 1. Table 2 shows the sim-
ulation results for RRT in which a tree is generated based on the position of start and goal
locations and the shortest path is found from start to goal position avoiding all the obstacles in
the testbed image.

4.4 Explanation of the Parameters for Bi-RRT

Bi-directional RRT algorithm works similar to Single RRT algorithm, but the main difference is
that it explores the tree from the two faces of the nodes. The first face of node generates tree
from the source point towards the goal and the second face of node generates tree from the
goal point towards the source. The results obtained are shown in Table 3.

4.4.1 Simulation results for Bidirectional RRT

The performance of Bi-RRT algorithm is being evaluated considering the path length of the
generated shortest path and the execution time of the algorithm. The results obtained for
different positions of start and goal co-ordinates values are shown in Table 3. Table 4 shows
the simulation results for Bi-RRT in which a tree is generated simultaneously from the start
position and goal position. The tree generated from source to goal in blue in color and the tree
generated from goal to source is red in color. The algorithm completes when two trees merges
and this indicates that the best path is found in the testbed image.

4.5 Explanation of the Parameters for PRM

The input parameter of PRM is the number of vertices (K) and the experiment is performed
considering the value of (k) as 50 and 100. Although increase in the number of vertices will



Table 2: Simulation Results for RRT

Testbed image for Simulation showing path  Path Length Processing Time
Simulation of RRT generated using RRT (m) (sec)
e CASE 1 s——
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Table 3: Quantitative analysis of Bi-RRT Algorithm

Start position of robot

Target position of robot

Processing Time

Path Length

Iterations (Coordinate positions (Coordinate positions (Sec) m)

of source) of goal
1 Source =[10, 10] Goal =[490, 490] 5.323438e+01 7.996150e+02
2 Source =[5, 5] Goal = [400, 400] 2.995807e+01 7.550670e+02
3 Source =[5, 5] Goal =[100, 100] 3.098862e+01 5.390868e+02
4 Source = [10, 10] Goal =[100, 100] 2.073294e+01 1.770750e+02

Table 4: Simulation Results for Bi-RRT

Testbed image for

Simulation showing path  Path Length  Processing Time

Simulation of Bi-RRT generated using Bi-RRT  (m) (sec)
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Table 5: Quantitative analysis of PRM Algorithm

Start position of robot
lterations  (Coordinate positions
of source)

Target position of robot
(Coordinate positions

of goal

Processing Time Path Length

(Sec)

(m)

1 (k=50)  Source = [10, 10] Goal = [490, 490] 1.940287e+01  8.700981e+02
2 (k=50)  Source = [10, 10] Goal = [300, 300] 1.674716e+01  5.542155e+02
3 (k=50)  Source =[5, 5] Goal = [500, 400] 1.571003e+01  8.751453e+02
4 (k=50)  Source =[10, 5] Goal = [500, 400] 9.181762e+00  7.577930e+02
5 (k=100) Source = [10, 10] Goal = [490, 490] 1.850295e+01  8.385454e+02

lead to higher computation time, shortest path can be found. The algorithm was tested under
various position of start and goal coordinate points and results are shown in Table 5.

4.5.1 Simulation results for PRM

The performance of PRM algorithm is being evaluated considering the path length of the gen-
erated shortest path and the execution time of the algorithm. The results obtained for different
positions of start and goal co-ordinates values are shown in Table 5. Table 6 shows the simu-
lation results for PRM. Large number of random nodes are generated when k value is more. It
is found that when large numbers of random nodes are present, optimal path is achieved with
a high probability.

4.6 Explanation of the Parameters for A*

The input parameter of A* is the connection matrix and the experiment is performed consid-
ering the dimension of a matrix as [3 x 3] and [5 x 5]. Increase in the matrix dimension will
always give better result than the lower dimension matrix. In a coded matrix, ‘1’ is marked as
possible moves and ‘0’ as impossible moves. The default position of the robot is marked as
‘2’ in the matrix. The algorithm was tested using various matrices and the different coordinate
positions of source and goal points. The results are shown in Table 7.

4.6.1 Simulation results for A*

The performance of A* algorithm is being evaluated considering the path length of the gener-
ated shortest path and the execution time of the algorithm. The results obtained for different
positions of start and goal co-ordinates values are shown in Table 7. Table 8 shows the simu-
lation results for A*. It is found that the robot successfully navigates through all the obstacles
and finds the optimal path when a matrix with higher dimension is used.

4.7 Explanation of the Parameters for Artificial Potential Field (APF)

The input parameter of APF algorithm is attractive and repulsive potential functions. The scal-
ing factor for attractive potential is 300000 (ratio of 1: 300000) and the repulsive potential is



Table 6: Simulation Results for PRM

Testbed image for Simulation showing path  Path Length Processing Time
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Table 7: Quantitative analysis of A* Algorithm

Start position of robot

Target position of robot

Processing Time Path Length

Iterations (Coordinate positions (Coordinate positions
(Sec) (m)
of source) of goal

1[3 x 3] Source =[10, 10] Goal = [490, 490] 1.160474e+02 7.432590e+02
2[3 x 3] Source =[5, 5] Goal = [190, 190] 7.602119e+01 3.026346e+02
3[3x 3] Source=[10,10] Goal = [190, 290] 4.268528e+01 3.662742e+02
4[3 x 3] Source =[5, 5] Goal = [370, 370] 7.710836e+01 5.630509e+02
5[5 x 5] Source =[5, 5] Goal = [370, 370] 3.462974e+01 5.345476e+02

300000 (ratio of 1:300000). A scale of 1:300000 means that 1 cm on the map represents an
actual distance of 300000 cm (or 3000 m or 3 km). Initial robot angular direction is mentioned
as w /8, so that the robot moves away from the obstacles at specified angles namely forward,
left, right, left diagonal and right diagonal. Maximum robot speed is 10 m/sec. Distance thresh-
old value is set as 30 m so that the robot can select the nodes within this threshold value. The
algorithm was tested under various positions of start and goal coordinate points and the results
obtained are shown in Table 9.

4.7.1 Simulation results for Artificial Potential Field (APF)

The performance of Potential Field algorithm is being evaluated considering the path length of
the generated shortest path and the execution time of the algorithm. The results obtained for
different positions of start and goal co-ordinates values are shown in Table 9. Table 10 shows
the simulation results for Potential Field in which the robot reaches the goal avoiding all the
obstacles in the testbed image when repulsive and attractive forces are applied.

4.8 Explanation of the Parameters for Genetic Algorithm

The objective function of GA algorithm is the length of the path. Number of populations, number
of generations and fixed number of points are considered as the input parameter of GA. The
optimization variable is fixed number of points in the map that is equal to the maximum number
of robotic turns in the map. All the points are connected by a straight line and each point in the
path is a mark representing point of turn.

Increase in the number of points in the map results in larger computation time, useless turns
and high path length. Specifying less number of points also make a robot ineffective. So,
specifying exact number of points makes a robot more effective in the testbed. The algorithm
was tested under various locations of the start and goal coordinate points and results obtained
are shown in Table 11.

4.8.1 Simulation results for Genetic Algorithm

The performance of GA algorithm is being evaluated considering the path length of the gener-
ated shortest path and the execution time of the algorithm. The results obtained for different



Table 8: Simulation Results for A*

Path Processing

Testbed image for Simulation showing path ,
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Simulation of A* generated using A*
(m) (sec)
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Table 9: Quantitative analysis of Artificial Potential Field Algorithm

Start position of robot  Target position of robot

. . . . - Processing Time Path Length
Iterations  (Coordinate positions (Coordinate positions 9 9

Sec m

of source) of goal (Sec) (m)
1 Source =[50, 50] Goal = [250, 250] 3.515630e+01 5.428395e+02
2 Source = [10, 10] Goal = [200, 200] 2.382031e+00 3.685265e+02

Table 10: Simulation Results for APF
Testbed image for Path Length Processing Time

Simulation of APF (m) (sec)
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Table 11: Quantitative analysis of GA Algorithm

Start position of robot  Target position of robot

. . " . " Processing Time Path Length
Iterations  (Coordinate positions (Coordinate positions 9 9

of source) of goal (Sec) (m)
1 Source =[10, 10] Goal = [490, 490] 4.318317e+01 946
2 Source =[5, 5] Goal = [400, 400] 4.165122e+01 917
3 Source = [10, 5] Goal = [300, 250] 4.208790e+01 798
4 Source =[5, 5] Goal = [400, 450] 4.118612e+01 839




Table 12: Simulation Results for GA

. . . _ Path Processing
Testbed image for Simulation showing path Lenath  Ti
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Simulation of GA generated using GA
(m) (sec)
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The mean and best fitness in GA 839 4 1 1

section.

5 Discussion on the Experimental Results

positions of start and goal co-ordinates values are shown in Table 11. Table 12 shows the sim-
ulation results for GA in which number of points is plotted in the map based on the maximum
number of turns a robot takes to reach the goal.

We implemented various path planning algorithms and obtained the results. Each algorithm
has its unique characteristics. A comparative analyses of all algorithms is explained in this

e RRT gives better performance in open-space and it connects to the target point in fewer

iterations.

e Single RRT always performs better than Bi-directional RRT because it spends less time in
constructing a tree and computing the path. With respect to execution time both perform

similarly.

e The resulting path of PRM is too complicated because it generates lots of possible re-
dundant moves based on the number of vertices.



e PRM will not be able to follow the non-holonomic constraints as RRT algorithm. But the
execution time is less even for problems with high dimensionality.

e A* algorithm returns a solution in higher computation time when the distance is more
between source and goal.

e RRT might be more efficient than PRM for holonomic path planning. This is because
RRT does not require any connections made between pairs of state but PRM requires
thousands of connections.

e RRT can be directly applied to nonholonomic and kinodynamic constraints.
e A* algorithm finds optimal path faster than GA but it has higher computation time.
e APF algorithms find a solution faster than A* but it has higher path length.

¢ Single-RRT is the best path planner and achieves the best performance considering the
performance metrics.

5.1 Benefits and Limitations of Robotic Path Planning Algorithms

Based on the analyses done Table 13 summarizes the findings by providing the details of
environmental applicability, approach, parameters that are necessary to find a shortest path
and the features of various path planning algorithms.

5.2 Graphical Analyses

This section discusses the comparative analyses of various path planning algorithms with re-
spect to path distance and execution time by considering different start and goal positions.
Five categories of start and goal coordinate locations are considered. The (x,y) coordinate
positions of nodes 1) A and B are (10, 10) and (400, 400) respectively 2) C and D are (10, 10)
and (350, 490) respectively 3) E and F are (40, 50) and (395, 495) respectively 4) G and H are
(10, 10) and (295, 495) respectively and 5) | to J are (10, 10) and (425, 415) respectively.

5.2.1 Analyses of path distance

The experimental results show that PRM and A* are provides optimal path when compared
to the other four path planning algorithms namely Genetic Algorithm, Potential Field, single
RRT and Bi-RRT. Considering the path between A and B nodes, the performance of A* with
respect to path length is better compared to PRM when a matrix with low dimension is used.
Considering the path between | and J nodes, the performance of A* is lower in terms of path
length in comparison with PRM when a matrix with high dimension is used. Considering the
remaining nodes (C-D, E-F and G-H), both perform similar with respect to path length.



Table 13: Comparative analyses of various path planning algorithms

Path planning Environment

Experimental
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Figure 3: Path distance analyses of various path planning algorithms considering different start
and goal positions

5.2.2 Analyses of execution time

The execution time of each robot path planning algorithm is being evaluated considering the
time taken to reach the specified goal considering different locations and is shown in Figure 3.
It is found that single-RRT and APF performs better. A* algorithm takes more time in finding a
solution when compared with other four algorithms for large size inputs.
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Figure 4: Execution time analyses of various path planning algorithms considering different
start and goal positions



6 Conclusions and Future Work

In this paper, robot path planning algorithms are tested using various positions of start and goal
coordinate locations of a modeled environment and the performance analyses of intelligent
path planning algorithms is presented. Three intelligent path planning algorithms are evaluated
in terms of the execution time and path length. From our experiments, it is found that PRM and
A* performs better with respect to path length. Single RRT and APF performs better in terms of
execution time. Considering both the performance metrics, Single RRT is found to be optimal
in a deterministic environment.

In future, we will integrate our previous works on knowledge representation & reasoning with
RRT algorithm to generate collision-free path in a non-deterministic environment. We would
also try to integrate deep learning approaches to predict the imminent trajectories based on
the action of an agent in previous time instances. Single RRT is not reliable in real-time (non-
deterministic) robot path planning applications. Therefore, RRT algorithm can be combined
with Long Short Term Memory (LSTM) model to perform autonomous robot navigation. The
ability of LSTM model to learn and reproduce long sequences will help in predicting the next
direction of movement in future instances.
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