
This article can be cited as G. El Khattabi, I. Benelallam and E. H. Bouyakhf, Solving Smart Grid Local Problems Based on Constraint
Optimization, International Journal of Artificial Intelligence, vol. 18, no. 2, pp. 1-23, 2020.
Copyright©2020 by CESER Publications

Solving Smart Grid Local Problems Based on Constraint
Optimization

Ghizlane El Khattabi1, Imade Benelallam1,2 and El Houssine Bouyakhf1

1LIMIARF Laboratory
Faculty of sciences

Mohammed V University
Rabat, Morocco

elkhattabi.ghizlane@gmail.com, bouyakhf@mtds.com

2SI2M laboratory
INSEA

Mohammed V University
Rabat, Morocco

imade.benelallam@ieee.org

ABSTRACT

The appearance of several new electrical equipment types causes a strong demand for
electricity. This brings cutouts causing very large losses. As well as the greenhouse gases
emitted by the current plants can cause material and human damages. Smart Grids have
emerged to meet these requirements. The various works, carried out up to now, architect
the Smart Grids in three levels. i) The local level that can present a house, a building,
a hospital or a factory ii) the microgrid level which serves as a bridge between the first
and the third level and iii) the level of Transmission and Distribution (T&D) that serves to
transmit and distribute the energy between the different locals. These works themselves
have proposed fairly complex computer science methods that remain until now theoretical.
Constraint Programming (CP) with its components is proved as a strong concept to rep-
resent mathematically several complex real problems. In this paper, we are going to use
one of these components which is the Constraint Optimization Problem (COP), which rep-
resent each problem as variables, constraints and objective functions to optimize, in order
to model and solve the local level and to optimize the energy distribution. Results exhibit
the feasibility and strength of the proposed methods.

Keywords: Smart Grid, Electricity, Constraint Satisfaction Problem (CSP), Constraint Op-
timization Problem (COP), Artificial Intelligence.

2000 Mathematics Subject Classification: 97R40, 68N17, 46N10.

2012 ACM Computing Classification: Theory of computation→ Constraint and logic
programming; Theory of computation→ Constructive mathematics; Theory of computatio
→ Mathematical optimization; Computing methodologies→ Planning and scheduling;
Computing methodologies→ Search methodologies.

2000 2005 2010 2015 2020 2025

450

500

550

600 Historical consumption
”Low” scenario
”EDC” scenario

”Reference” scenario
”High” scenario

”Low” scenario: Assumptions reducing consumption
”High” scenario: Assumptions raising consumption
”EDC” scenario: Assumptions taking into account accelerating Energy Demand

Control (EDC) through actions on consumer behavior.

Figure 1: Forecast of electricity consumption (source: Electricity Transmission Network in
France)

1 Introduction

Power grids (Eyer and Corey, 2010) are infrastructures that route and distribute energy from
suppliers (power plants) to consumers. The high electricity demand (Figure 1) will unable
current electricity networks to meet all customer needs, because of the appearance of new
electrical devices as electric cars and electric brushes. This will cause power cuts.
According to the US Department of Energy, the current cutouts cause an annual loss of $80
billion and the improvement of these networks could save between 46 and 117 billion dollars
from 2010 to 2023, hence the apparition of Smart Grids.
Intelligent networks aspect was appeared by the automatic meter reading in 1980, the sending
of statistics of daily consumption by meters in 1990 and the launching of Telegestore in 2000
(the first Smart Grid project linking 27 billion local).
The main objective of Smart Grids is to promote the use of renewable energies in order to
reduce the overload made on power stations, to reduce the greenhouse gas emissions, to
regulate the consumption, to satisfy consumers, balance supply and demand and to distribute
energy without overcrowding. The use of renewable energy sources is not an obvious task, as
these energies depend on several uncontrollable factors. For example, wind turbines depend
on the wind and photovoltaics depend on the sun. In this case, the periods of the production of
the energy does not necessarily correspond to the periods of the consumption peaks. Hence
the necessity to store the energy to use in needs.

Figure 2: Main components of Smart Grids

A Smart Grid (Farhangi, 2009), (Gungor, Sahin, Kocak, Ergut, Buccella, Cecati and Hancke,
2011) is an electrical network which uses the Information and Communication Technology
(ICT) tools to optimize the production, the consumption and the storage of energy as well as
the losses. Smart Grid contains three main components. i) Consumers which regulate their
own consumption by using smart meters (a new generation of meters), ii) producers which try
to meet the needs of consumers in real-time, and iii) Entities which transport and distribute
electricity between producers and consumers (Figure 2).
The Smart Grid problem is modeled in (Ahat, Amor, Bui, Bui, Guérard and Petermann, 2013)
by three major levels: i) local level or consumer, ii) microgrid level and iii) Transmission and Dis-
tribution (T&D) level. The local level represents the consumer. It includes all entities controlled
by a smart meter. We can mention houses, factories, hospitals, buildings, etc. The microgrid
level represents the intermediate between consumers and producers. Its function is to spread
the energy while equilibrating between the demand and the supply. The T&D level represents
the two other components of Smart Grid (producers and entities of transport and distribution).
The main function of T&D is to transmit the energy offered by producers to microgrids. In this
paper, we are interested in modeling and solving the local level since it is the level that requires
more intelligence.
Constraint programming (CP) (Apt, 2003), (Rossi, Van Beek and Walsh, 2006) is aptly appli-
cable to this problem, especially Constraint Satisfaction Problems (CSPs) and Constraint Opti-
mization Problems (COPs). A CSP (Kumar, 1992), (Debruyne and Bessiere, 1997), (Brailsford,
Potts and Smith, 1999) is a formalism which can model a real problem as a set of integer, real,
boolean, or symbolic
variables, taking their values in a set of domains. These variables are linked between them

Figure 3: CSP example

by mathematical or conditional constraints. Figure 3 presents an example of a CSP problem.
The refinement of a CSP solution is done via its modelization, not the algorithm, since once
variables, domains, and constraints are identified, the resolution is done using one of the
existing CSP algorithms, namely BackTracking (BT) (Kumar, 1992), Forward Checking (FC)
(Bacchus and Grove, 1995), (Walsh, 2000), BackJumping (BJ) (Dechter and Frost, 2002) and
Arc Consistency AC-1, AC-2, AC-3, AC-4, AC-2001 (Bessiere, 1991),(Mackworth, 1977),(Mohr
and Henderson, 1986),(Bessiere, 1994),(Freuder, 1995) and Maintaining Arc Consistency (MAC)
algorithm (Larrosa and Schiex, 2004).
There are many solvers implementing the last cited algorithms and allowing to solve CSP
problems by just declaring their parameters (variables, domains, and constraints). among the
existing solvers, we can point to SAT4J, Abscon, iZplus, Mistral, and Choco.
CSP has proven its capability to modelize several other real problems (Nadel, 1990) like
Computer-Aided Design problems, scheduling and timetabling problems, optimization prob-
lems, and hardware configuration problems.
By definition, the Smart Grid Problem is an optimization problem. To this end, we are going
to use the optimized version of Constraint Programming, which is the COP. A COP (Verfaillie,
Lemaı̂tre and Schiex, 1996) is a CSP, plus one or more objective functions (other constraints)
to optimize.
In ou last work (El Khattabi, Lahboub, El Houssine and Benelallam, 2018), we have modeled
the Smart Grid local level using CSP,
by identifying the variables of the problem, the domain of each variable as well as the con-
straints in Choco solver. In this paper, we are going to improve the last work so as to solve the
problem based on COP formalism, since the main problematic of Smart Grids consists of the
optimization.
To this end, the paper is organized as follows: section 2 contains related work, section 3 defines
and explains COP concept and presents, in details, our main contribution, section 4 shows the
obtained experimental results, and section 5 presents the conclusion.

Figure 4: Knapsack problem example

2 Related Work

The proposition of computer science algorithms can somehow solve this problem. But the
realization of a single algorithm to meet all the requirements of all levels is a very complex
task or even impossible. Even in the case where researchers arrive to develop this kind of
algorithm, it will make exponential complexity to meet all the needs of each consumer, at each
local level and each microgrid. While the key identity of Smart Grids is the real-time response.
For this reason, researchers interested in the development of Smart Grid algorithms develop
an algorithm for each level (local, microgrid and T&D).
In (Marah and El Hibaoui, 2018), the authors proposed an algorithm for the local level and
another for the T&D one. They modeled the local level as a ”Knapsack problem (Ross and
Tsang, 1989), (Chu and Beasley, 1998)” and proposed to solve it with a new version of the
”Branch and Bound” algorithm(Kolesar, 1967), (Dyer, Kayal and Walker, 1984). While the
algorithm used in the T&D level tries to transmit the energy in a distributed manner.
Figure 4 presents an example of Knapsack Problem. It contains a set of objects. Each object is
identified with a value and a weight. The total weight exceeds the bag capacity. The Knapsack
principle is to maximize the number of valued objects while not overtaking the bag capacity. If
we project this problem on the Smart Grid, the bag models the local (house, building, ...) and
the objects represent the local devices, the object value will be presented by a priority of the
device and the object weight is the device consumption.
In the last cited work the possible priority values are ”0” and ”1”. ”0” to express that the device
should be ON, and ”1” to say that the device functioning is not so important.
In (Marah and El Hibaoui, 2018), the algorithm used to resolve the local level is a merge
of the ”Branch Bound” algorithm and their own algorithm, namely the ”Priority Management
Algorithm”. The latter gives the priority to devices with ”0” priority to use the energy and
subtracts the sum of their energy consumptions from the total energy. The rest of the energy is
given to the Branch and Bound algorithm as an input, to distribute it among the other devices,
by maximizing the profit.
In (Ahat et al., 2013), authors treat Smart Grid as an Optimization Problem whose objective is
to manage the consumer side, by regularizing the consumption curve and to synchronize data
for effective results, by running each station and each piece of equipment in the same time.

To this end, they modeled the local problem as a Knapsack problem too. For the microgrid
level, authors proposed to use ”Game networks” (La Mura, 2000) which is a formalism in game
theory (Osborne and Rubinstein, 1994), (Myerson, 2013) used to permit the players to play
multiple games at the same time. For the T&D level, they proposed to use Max Flow (Shiloach
and Vishkin, 1982) (Boykov and Kolmogorov, 2004) and Equilibrium algorithms (Florian and
Hearn, 1995) to avoid routing and congestion problems. These algorithms are known in electric
networks.
The modeling works done so far are all theoretical. In our last work (El Khattabi et al., 2018),
we modeled, implemented and solved some locals’ examples, which gave satisfactory results.
We modeled the local level using CSP formalism while dividing the day into multiple slots (n
slots means that the computation is done for every 24

n hours.), wherein the variables (Every
variable represents a set of variables. One for each slot) are:

1. The local consumption of the period i:

Xci ∈ [Cmin, Cmax]

such that Cmin (respectively Cmax) is the minimum (respectively maximum) consumption
of the local to treat;

2. The predicted amount of energy for each slot i:

Ei ∈ {Ei}

3. The amount of energy we will recover from the power plant at the slot i:

XEpi ∈ [0, EPmax]

such that EPmax is the maximum energy produced by electrical power plants;

4. The amount of energy we will recover from renewable energies’ sources at the slot i:

XEri ∈ [0, Rei]

Rei is the predicted amount of energy, offered by renewable energies;

5. The energy amount to store in the battery at the slot i:

XEbi ∈ [0, B]

such that B is the storage capacity of the battery;

6. The functioning state of each device j at the slot i:

XON i,j ∈ {0, 1}

Devices that have only {1} in the domain must always be ON, while devices with domain
{0, 1} may be running as they may not be;

7. The consumption of each device j:

Cj/j ∈ {1, 2, · · · , n}

And the constraints are:

C1 The local consumption should be less than or equal to the expected consumption at any
slot i

Xci ≤ Ei/∀i ∈ {1, 2, · · · , s} (2.1)

C2 The total consumption is equal to the sum of consumptions of running devices

Xci =

n∑
j=1

Cj ×XON i,j (2.2)

C3 The used energy (from power plant XEpi , renewable energies’ sources XEri and battery
XEbi) should be greater than or equal to the total consumption Xci

XEpi +XEri +XEbi ≥ Xci/∀i ∈ {1, 2, ..., s} (2.3)

C4 The energy offered by the power plant should be equal to ’0’ when the energy produced
by renewable energies’ sources is sufficient

XEri ≥ Xci ⇒ XEpi = 0 (2.4)

C5 If the energy produced by sources of renewable energies is insufficient (even after adding
the energy stored in the battery) it will be stored in the battery.

XEri < Xci ∨XEri +XEbi < Xci ⇒ XEbi+1
= XEbi +XEri (2.5)

C6 Otherwise (ie. the sum of the energy produced by sources of renewable energies and
that stored in the battery is sufficient), The battery will contain the rest.

XEri +XEbi ≥ Xci ⇒ XEbi+1
= XEbi +XEri −Xci (2.6)

This modeling has been declared using the Choco solver which uses a smart combination of
CSP algorithms, according to the variables’ types and the constraints to solve this problem as
fast and satisfactory as possible.
To have a look of how algorithms solve CSP problems, let take the most used CSP algorithm
which is AC-3 (Algorithm 1). This algorithm makes the difference between unary and binary
constraint. The unary constraint is a constraint on a single variable (x1 ≤ 2). Whereas binary
one is a constraint on two variables (x1 = x2). This algorithm brows the set of variables X and

Algorithm 1 AC-3 algorithm’ pseudo-code

1: function AC-3
2: Given a constraint network CN = (X,D,Cu, Cb) . X: set of variables

. D: set of domains,
. Cu: set of unary constraints
. Cb: set of binary constraints

3: for each x ∈ X do
4: for each v ∈ Dx do
5: if x = v doesn’t satisfy one constraint among Cu then
6: Dx = Dx − v
7: if Dx = ∅ then return failure
8: end if
9: end if

10: end for
11: end for
12: Q← {(xi, xj)|(xi, xj) ∈ X} . List initialized by 2 variables constrained by Cb

13: while Q 6= ∅ do
14: Q← Q− {xi, xj}
15: if Revise(xi, xj) then
16: if Dxi = ∅ then return failure
17: else
18: Q← Q ∪ {(xk, xi)|(xk, xi) ∈ X, k 6= j}
19: end if
20: end if
21: end while
22: end function

23: function REVISE((xi, xj))
24: REV ISE ← false
25: for each value vi ∈ Dxi do
26: if @ vj ∈ Dxj , such compatible(vi, vj) then
27: Dxi = Dxi − a
28: REV ISE ← true
29: end if
30: end for

return REV ISE
31: end function

checks for each variable x if there are values in its domain that do not satisfy the set of unary
constraints Cu. if so, it deletes them from the x domain. For binary constraints, AC-3 initializes
a list with a couple of variables (xi, xj) linked by a binary constraint in Cb and browses the
domains of the two variables. For each value vj from xj domain, it deletes all values, from xi

domain, that are inconsistent with the instantiation (xj = vj).
The algorithm ends in two cases. The first case when it filters all couples of variables without
emptying any domain, in this instance, the problem is solvable and we can use, for example,
the backtracking basic algorithm to find an instantiation as soon as possible. In the second
case, when it finds an empty domain. In that case, the problem is insolvable.
This algorithm as well as the other CSP algorithms terminate since the number of variables,
domains’ values and constraints are finite.
In case the problem consists of finding a solution that optimizes a set of functions. The algo-
rithm looks for all the solutions that satisfy the constraints and keep the ones that optimize the
functions. The choice of the optimized solution/solutions is done either with the algorithm itself
or with one of the metaheuristic methods mentioned in Related Work section.
Smart Grid is, by definition, an optimization problem. This is why we are going to model the
local level using the COP formalism. But before, we are going to import improvements to our
latest CSP modeling.

3 Solving Smart Grid Local Problems based on COP Formalism

The optimization problem attracts a big emphasis on different domains and applications such
as the fuzzy cognitive maps (Vaščák, 2012), the optimization of faults after their detection
and insulation (Precup, Angelov, Costa and Sayed-Mouchaweh, 2015), Ideal gas (Shams,
Rashedi, Dashti and Hakimi, 2017), traffic lights (Gil, Johanyák and Kovács, 2018), fuzzy con-
trolled servo systems (Precup and David, 2019), and Constraint Programming (Hentenryck
and Michel, 2009; Hooker, 2002; Crown, Buyukkaramikli, Thokala, Morton, Sir, Marshall, Tosh,
Padula, Ijzerman, Wong et al., 2017).
The Smart Grid Problem is an optimization problem, especially its local level. Many parameters
have to be optimized such as the maximization of the number of functional devices in a given
local and the favor of devices with higher priority, as well as the minimization of the lag between
consumption and forecasting.
Since we have already proposed a CSP modelization of this problem, we are going to extend
the modelization to the optimized version of Constraint Programming which is COP.
A COP(Verfaillie et al., 1996) is a CSP plus one or many objective functions to optimize, namely
to minimize or to maximize. In a formal way, a COP is defined by the quadruple (X, D, C, O)
such as:

• X = {X1, X2, ..., Xn}: the set of variables

• D = {D1, D2, ..., Dn}: the set of domains. Each variable Xi takes its values in the domain
Di.

• C = {C1, C2, ..., Cm}: the set of constraints

• O = {O1, O2, ..., Op} /Oi : D1 ×D2 × ...×Dn → R,∀i ∈ {1, 2, ..., n}: the set of objective
functions. Each objective function oi is a function to maximize or to minimize.

All CSP algorithms can solve COP problems , by looking for all CSP solutions and keep one
that optimize the objective functions. In addition, there are other metaheuristic methods like
Genetic Algorithms (GAs) (Homaifar, Qi and Lai, 1994), Simulated annealing (Fleischer, 1995),
Tabu search (Glover and Laguna, 1998) and SNOPT (Gill, Murray and Saunders, 2005). The
difference between CSP algorithms and metaheuristic methods is that the optimum found, us-
ing the metaheuristics, is not always global because they do not browse all solutions, contrary
to CSP algorithms.
As mentioned in section 2, we have already proposed a CSP modeling of the Smart Grid local
level (El Khattabi et al., 2018), by defining the variables X = {XCi , Ei, XEpi

, XEri
, XEbi

, XON i,j , Cj , },
the domains as well as the constraints C = {C1, C2, C3, C4, C5, C6}.
In this paper, we are going to i) improve the latter work and ii) extend it to a COP problem.
For the improvements, we have made the following changes:

• The variables XON i,j , ∀i, j that represent the devices’ priorities. They could take either
”0” or ”1” as in all of the above works. They presented, as a matter of fact, the operating
state of the devices.

In this paper, we keep this variable. Whereas now, it represents the state of the device (it
always has {0, 1} as domain);

• We have added other data that represents the real priority of each device ({0,1,2,3,...}).
To express the need to operate one device over another. This is not a variable, but rather
a datum since it is frozen by the user at the start;

• The variables Ei, s∀i which represented the forecasts of the total consumption, the en-
ergy offered by the power plant and also that offered by renewable energies’ sources are
no longer variables but datums since the statistics are done beforehand;

• We added B the battery capacity as data;

• We considered the battery capacity within the constraints C5 and C6;

• we added a constraint to take into consideration the priority of devices. A lower priority
device can function just after functioning a higher priority one, or in other cases. We will
discuss all data, variables, constraints and objective functions in details, in subsections
3.1 and 3.2.

As mentioned in section 3, COP is a CSP + one or more objective functions to optimize. So,
it consists of the quadruplet (Variables, Domains, Constraints, Objective functions). In order to
complete COP modelization, we added four objective functions to:

• promote the operation of devices with a higher priority;

• maximize the number of functional devices;

• minimize the lag between consumption and forecasting;

In addition to the four components of COP (Variables, domains, constraints, and objective
functions), we have added a fifth component for the data offered by users that is necessary for
our proposed modeling.

3.1 Data

Any Smart Grid local problem is compiled by a set of data:

• The number of devices
n

• The number of slots, of which we want to plan consumption

s

• The predicted amount of energy for each slot i

Ei/i ∈ {1, 2, · · · , s}

• The predicted amount of energy, offered by renewable energies’ sources for each slot i

Rei/i ∈ {1, 2, · · · , s}

• The consumption of each device j

Cj/j ∈ {1, 2, · · · , n}

• The priority of each device j

Pj/j ∈ {1, 2, · · · , n}

• The maximum energy the power plant can produce

EPmax

• The battery capacity
B

3.2 Model

Variables & Domains

The set of variables is the same as that of the previous contribution minus Ei, the predicted
amount of energy for the slot i, and Cj , the consumption of the device j. These two last
variables are treated as data in this contribution.

X = {Xci , XEpi
, XEri

, XEbi
, XON}

,
The differences also arise in the domains of the variables XCi and XON .

• The local consumption of the period i can take values from 0 to the predicted energy
amount

Xci ∈ [0, Ei]

• The functioning state of each device j at the slot i can take either 0 as value or 1:

XON i,j ∈ {0, 1}

Constraints

The set of constraints is
C = {C1, C2, C3, C4, C5, C6, C7}

such as C1, C1, C2, C4, C4 are still the same as the last works. While C5 and C6 are changed
to consider the battery capacity. Whereas C7 is a new constraint added in this contribution to
treat the priorities of the devices:

C5 Before storing the energy produced by sources of renewable, the battery capacity should
be checked. If it is exceeded, we keep the maximum energy which is the battery capacity
itself.

XEri < Xci∨XEri+XEbi < Xci ⇒

XEbi+1
= XEbi +XEri , if XEbi +XEri ≤ B

XEbi+1
= B, else

(3.1)

C6 The same treatment is done against the new quantity to store in the battery.

XEri +XEbi ≥ Xci ⇒

XEbi+1
= XEbi +XEri −Xci , if XEbi +XEri −Xci ≤ B

XEbi+1
= B, else

(3.2)

C7 If the sum of the consumptions of devices having the highest priority (”1”), does not ex-
ceed the forecasts, then all these devices will be functional. For the other priorities, the
same test will be done but by comparing the consumptions of devices with the remain-
ing energy, after subtracting the energy used to operate the previous devices from the
predicted energy.

Device d1 d2 d3 d4 d5
Priority 1 2 1 3 2 O3

XON 1 1 1 0 0 4
XON 1 1 0 1 0 6
XON 1 1 0 0 1 5
XON 1 0 1 1 0 5
XON 1 0 1 0 1 4
XON 1 0 0 1 1 6

Table 1: O3 values in different scenarios




∑

j Cj ≤ Ei/

Cj is the consumption of devices with priority 1

or

∀p ∈ {2, · · · , pmax},∀i ∈ {1, 2, · · · , s}∑
j Cj ≤ Ei −

∑
l Cl/

Cj is the consumption of devices with priority p

Cl is the consumption of devices with priority p− 1

→

∀k ∈ {1, · · · , n}/Pk = p,

XONk
= 1

(3.3)

Objective Functions

O1 Maximize the number of devices running, at each slot j

Min(

s∑
j=1

m−
n∑

i=1

XONi,j) (3.4)

O2 Minimize losses by minimizing the lag between total consumption and forecast, at each
slot i

Min(
s∑

i=1

Ei −Xci) (3.5)

O3 The constraint C7 is used to distribute the energy in priority order. In the case where the
remaining energy suffices all the devices of the same priority, it is distributed between
them. But in the case where the remaining energy is no longer sufficient, there is no
constraint to control its distribution. The purpose of this objective function is therefore to
distribute this energy by maximizing the number of functional devices with highest priority.

Min(
s∑

j=1

n∑
i=1

Pi ×XONi,j) (3.6)

The more the priority p is high, the higher the term Pi ×
∑n

i=1XONi,j is (p is highest →
devices with p are the lowest priority ones). So, to give the hand to the higher priority
devices before the lower priority ones, we will try to minimize this term. In the example

Slots 1 2 3 4 5 6 7 8 9 10

E 4561 4424 3961 3958 4139 4445 4879 5216 5459 5543
Re 2000 4500 4000 3400 3500 3600 4000 4100 4200 4400

Table 2: Predictions

shown in table 1, we suppose to have 5 devices with different priorities 1, 2 or 3. The
example shows six energy distribution scenarios and calculates the objective function
O3, for each scenario. It shows that the two scenarios where O3 is minimal are the best.

O4 In some examples, where the number of higher priority devices is very high compared
to the number of lower priority devices, the objective function O3 is insufficient. To this
end, we have to increase the coefficient associated with the priority (10priority) and link it
with the number of functional devices with priority priority compared to the number of all
functioning ones.

Min(

s∑
j=1

∑n
i=1 Pi × 10i ×XONi,j∑n

k=1XONk,j

) (3.7)

In order to prove the efficiency of our modelization, we have to demonstrate that either theo-
retically or experimentally. Since the problem is real, we have to experiment our proposition in
different realistic instantiations, in a real local, with a given number of slots, a given number of
devices and some realistic predicted energy values.

4 Experimental Results

To evaluate the performance of our new contribution and study its complexity, we implemented
it using Choco 4 solver (Narendra, Rochart and Lorca, 2008), (Prud’homme, Fages and Lorca,
2014) and applied it on local problems characterized by < n, s,E,Re,C, P,B >.

• n is the number of devices, which takes values from {2, 4, 6, 8, 10, 12};

• s is the number of slots. It varies from 1 to 10 by 1 as step;

• E is the set of predicted consumed energy values of each slot (Table 2);

• Re is the set of values of predicted energy offered by renewable energies’ sources of
each slot (Table 2);

• C is the set of consumptions of devices;

• P is the set of priorities of devices. Table 3 shows the names of the devices that can be
integrated into the local, the capacity of each device and its priority.

• B is the capacity of the battery. it is equal to 4000

Devices TV Fr L VC HD EO ER WM D REF PC H

C 190 3900 200 600 100 2050 160 1200 50 175 160 1400
P 1 1 2 2 3 1 3 2 1 2 2 1

TV: Television;
Fr: Freezer;
L: Lamp;
VC: Vacuum Cleaner (VC);

HD: Hair Dryer;
EO: Electric Oven;
ER: Electric Razor;
WM: Washing Machine ;

D: Dishwasher;
REF: Refrigerator;
PC: Portable Computer;
H: Heating.

Table 3: Consumptions and priorities of used devices

As we have defined in subsection 3.2, Smart Grid local problems are optimization problems
with 4 objective functions to minimize.
So, in addition to the quality of the returned solutions, the performance of the contribution will
also be measured by the objective functions’ values, so as to confirm, they are really minimal
or not. But first, let study the complexity of each objective function separately.
Figure 5 shows the variation of the four objective functions O1, O2, O3 and O4 depending on
the number of slots s and the number of devices n established in the local. The problems given
to Choco can give several optimized solutions. In that case, the taken value is the average
(Oi
The number of solutions , i = 1, 2, 3 or 4). In the case of n > 1, we take also the average of each

objective function values (Oi
n).

The figure shows that the first objective function O1 does not depend on the number of slots. It
is still constant when the number of devices is fixed. Which is normal, because the objective of
O1 is to maximize the number of the running devices (minimizing the recall between the existing
devices and the functioning ones). The variation of O1 according to the number of devices can
be considered linear except when n is equal to 6 because the six first devices include three
devices having the higher priority, but cannot be served all in the same time, because the sum
of their consumptions surpasses the provided value. So only two devices will have the priority
to function, and the remaining values will be distributed among the lowest priority devices while
the remaining energy amount is low.
The variation of O2 is linear too according to the number of devices and the number of slots.
When the devices are more numerous, O2 becomes minimal. Which is normal, because O2

aims to minimize the lag between the local consumption and the broadcast. When we have a
bit number of devices, even we make all devices ON, we still far from the broadcast. The last
point is a highlight of O2.
For O3, it is linear too, according to the two parameters. It becomes more important when
the number of slots and the number of devices increase. This is very normal according to its
expression. It is an increasing function, summing the priorities of devices which are active.
So the more we have active devices, the more their priorities are considered. The values of
objective functions will indeed be divided by the number of slots to recover their averages.
So the fact that the O3 expression depends on the number of slots does not explain why it is
growing when the number of slots is larger. The real reason is to have more energy stored in
the battery and so the possibility of operating more devices. The same for O4 which can be an

2
4

6
8

102
4

6
8

10
12

0

2,000

s n

O
1

2
4

6
8

102
4

6
8

10
12

0

1,000

2,000

s n

O
2

2
4

6
8

102
4

6
8

10
12

0

5

s n

O
3

2
4

6
8

102
4

6
8

10
12

0

5

s n

O
4

Figure 5: Objective functions

additional function of O3. Except that it depends inversely on the number of active devices. So,
contrary to O3, which is increasing, O4 is decreasing against the number of devices.
After evaluating each objective function separately, figures 6, 7 and 8 show how much their
optimizations make the difference. According to figure 5, the behavior of a local depends on
the devices it contains. So, we chose 3 values of n to scan all types of problems. A small value
n = 1 (Figure 6), a medium value n = 5 (Figure 7) and another large n = 10 (Figure 8).
We can check that a function is minimal after optimization, only when we compare it with its
values when the optimization is not carried out. Such a COP problem returns multiple non-
optimal solutions. So, to compare the value of the objective function of the optimized solutions
with the others which are not, we have to select some general cases (i.e. 4 or 5 cases).
For this purpose, we select the cases when we optimize the other objective functions others
than the one to assess. Assuming that there will be no values greater than those returned by
these cases, where the resolution process makes more effort, to optimize the other objective
functions.
To this end, we are going to evaluate each objective function in 5 cases. The first case concerns
the optimization of the objective function itself, the second, the third and the fourth case relate
to the optimization of the three other functions and the fifth case refers to the optimization of
the four objective functions concurrently, based on the principle that the four cases present four
possible behaviors of the function without optimization (minimization).
For the first objective function O1, it has the same behavior in the three cases (n=1, n=5 and
n=10). Optimizing this function affects the solution. It is better than all values of other solutions’

2 4 6 8 10 12

0

1,000

2,000

3,000

m

O
1

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12

0

500

1,000

1,500

2,000

m

O
2

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12

0

2

4

6

8

m

O
3

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

2 4 6 8 10 12

0

5

10

15

20

m

O
4

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

Figure 6: The influence of objective functions’ optimization when n = 1

2 4 6 8 10 12

0

1,000

2,000

3,000

m

O
1

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12

200

400

600

800

1,000

1,200

1,400

1,600

m

O
2

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12

0

2

4

6

8

10

m

O
3

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

2 4 6 8 10 12
0

2

4

6

8

10

12

14

m

O
4

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

Figure 7: The influence of objective functions’ optimization when n = 5

2 4 6 8 10 12

0

1,000

2,000

3,000

m

O
1

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12
600

800

1,000

1,200

1,400

1,600

1,800

2,000

m

O
2

O1

O2

O3

O4

O4&O2&O3&O4

2 4 6 8 10 12

0

2

4

6

8

10

m

O
3

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

2 4 6 8 10 12
0

2

4

6

8

10

12

m

O
4

O1

O2

O3

O4

O3&O4

O4&O2&O3&O4

Figure 8: The influence of objective functions’ optimization when n = 10

O1, especially when the number of devices is large (the difference is very important).
Unlike O1, O2 has not the same behavior when the number of slots is changed. For n = 1,
the optimization of O2 makes a very important difference. It is very better than other cases. It
can be considered stable according to the number of devices, contrary to other instances. For
n = 5 and n = 10 it behaves in the same manner. It is also the best but the optimization impact
can be seen when the number of devices is more important.
For O3 and O4, They behave, for the three values of n, in the same way. The optimization
becomes more and more important whenever the number of devices increases.
For the three values of n, we tried to see the impact of optimizing all objective functions con-
currently on O1, O2, O3 and O4. The figures show that the obtained results are so satisfying.
They are all near to the objective function optimization itself.
To give the obtained results a life, we taken one of the processed problems randomly and
shown the values taken by the defined variables.
Tables 4 and 5 show the variables’ values without (Table 4) and with (Table 5) optimizing all
function objectives concurrently. The two tables show that all defined constraints are satisfied.
The local consumption never exceeds forecast and it is equal to the sum of consumptions of
running devices, the use of energy produced by renewable energy sources is the most favored
and the unused energy is stored in the battery.

P
ro

du
ct

io
n

D
ev

ic
es

O
bj

ec
tiv

e
fu

nc
tio

ns

i
X

c i
E

i
X

E
p
i

X
E
r i

X
E
b i

TV
Fr

L
V

C
H

D
E

O
E

R
W

M
D

R
E

F
P

C
H

O
1

O
2

O
3

O
4

1
20

00
45

61
0

20
00

0
x

x
10

25
61

3
10

5
2

39
00

44
24

0
45

00
60

0
x

11
52

4
1

10
3

60
0

39
61

0
40

00
40

00
x

11
33

61
2

20
0

4
34

50
39

58
0

34
00

50
x

x
x

9
50

8
5

13
6.

7
5

0
41

39
0

35
00

35
00

12
41

39
0

-
6

36
00

44
45

0
36

00
35

50
x

x
x

x
8

84
5

6
10

5
7

40
90

48
79

0
40

00
90

x
x

10
48

9
2

10
8

60
0

52
16

0
41

00
35

90
x

11
46

16
2

20
0

9
42

25
54

59
0

42
00

25
x

x
x

x
x

7
12

34
10

16
2

10
52

00
55

43
0

44
00

80
0

x
x

x
9

34
3

6
10

70
9.

8
19

62
3.

7
22

2

Ta
bl

e
4:

O
ne

fo
un

d
so

lu
tio

n
us

in
g

ou
rp

re
vi

ou
s

w
or

k
(E

lK
ha

tta
bi

et
al

.,
20

18
)

P
ro

du
ct

io
n

D
ev

ic
es

O
bj

ec
tiv

e
fu

nc
tio

ns

i
X

c i
E

i
X

E
p
i

X
E
r i

X
E
b i

TV
Fr

L
V

C
H

D
E

O
E

R
W

M
D

R
E

F
P

C
H

O
1

O
2

O
3

O
4

1
42

75
45

61
22

75
20

00
0

x
x

x
9

28
6

5
13

6.
7

2
41

40
44

24
0

45
00

36
0

x
x

x
9

28
4

3
10

3
18

40
39

61
0

40
00

25
20

x
x

x
x

8
21

21
5

73
.3

4
37

85
39

58
0

34
00

21
35

x
x

x
x

8
17

3
6

10
5

5
41

10
41

39
0

35
00

15
25

x
x

x
9

29
5

10
06

6
39

50
44

45
0

36
00

11
75

x
x

x
x

8
49

5
8

80
2.

5
7

45
95

48
79

59
5

40
00

0
x

x
x

x
x

7
28

4
9

72
2

8
48

50
52

16
0

41
00

75
0

x
x

x
x

x
7

33
6

9
68

4
9

23
35

54
59

0
42

00
26

15
x

x
x

x
8

31
24

8
85

5
10

54
25

55
43

10
25

44
00

0
x

x
x

x
x

x
x

x
4

11
8

13
45

5
7.

7
72

8
7.

1
48

4.
9

Ta
bl

e
5:

O
ne

fo
un

d
so

lu
tio

n
us

in
g

ou
rc

ur
re

nt
w

or
k

In table 4, the solution does not take devices’ priorities into consideration. However, table 5
shows that devices with higher priority run before the lowest ones (when the produced energy
is sufficient).
We must recall that O1 aims to maximize the number of running devices compared to the
existing ones. So, the values shown in the table represent, more precisely, the number of
nonfunctional devices. It is noticed that is almost always minimal when O1 is optimized and,
admittedly, the number of devices in the second case is great than the first one (table 4).
For O2, which aims to minimize the recall between the consumed energy and the forecasted
one, it is also almost minimal when it is optimized.
Unlike O1 and O2, the values O3 and O4 are not minimal, even with optimization. This is due
to the number of functional devices. When O1 is minimal, the number of running devices is
large. So O3, which compute the priorities of running devices, will be large too. In table 4 , O3

is better, because the number of devices is low. This can be proved by the solution of the ninth
slot (s = 9). In this instance, O1 is not minimal but O3 is.
For O4 which will be considered as an O3 complement. Effectively, we notice that half of the
values are low in table 5 compared to table 4, and that is outstanding by the good distribution
of energy among devices, which takes into consideration the priority of devices.

5 Conclusion

In this paper, we have treated the Smart Grid local problem, as a Constraint Optimization
Problem. It is a decisive problem which is the main component of Smart Grid. The quantity of
parameters to be considered makes the problem purpose very complex. The existing resolu-
tion methods are NP-hard and remain only theoretical. In our contribution, we have modeled
and implemented the proposed model to validate it. The found results prove the feasibility,
the intelligence and the strength of our approach. As perspectives, we plan to solve the whole
Smart Grid problem, using Distributed Constraint Satisfaction Problem (DisCSP) (Yokoo, 2001)
and Distributed Constraint Optimization Problem (DCOP), since the problem can be summed
as a set of local problems.

References

Ahat, M., Amor, S. B., Bui, M., Bui, A., Guérard, G. and Petermann, C. 2013. Smart grid and
optimization, American Journal of Operations Research 3(1A): 196–206.

Apt, K. 2003. Principles of constraint programming, Cambridge university press.

Bacchus, F. and Grove, A. 1995. On the forward checking algorithm, International Conference
on Principles and Practice of Constraint Programming, Cassis, France, Springer, pp. 292–
309.

Bessiere, C. 1991. Arc-consistency in dynamic constraint satisfaction problems., AAAI, Ana-
heim, California, Vol. 91, pp. 221–226.

Bessiere, C. 1994. Arc-consistency and arc-consistency again, Artificial intelligence
65(1): 179–190.

Boykov, Y. and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision, IEEE Transactions on Pattern Analysis & Machine
Intelligence (9): 1124–1137.

Brailsford, S. C., Potts, C. N. and Smith, B. M. 1999. Constraint satisfaction problems: Algo-
rithms and applications, European journal of operational research 119(3): 557–581.

Chu, P. C. and Beasley, J. E. 1998. A genetic algorithm for the multidimensional knapsack
problem, Journal of heuristics 4(1): 63–86.

Crown, W., Buyukkaramikli, N., Thokala, P., Morton, A., Sir, M. Y., Marshall, D. A., Tosh, J.,
Padula, W. V., Ijzerman, M. J., Wong, P. K. et al. 2017. Constrained optimization methods
in health services research—an introduction: report 1 of the ispor optimization methods
emerging good practices task force, Value in health 20(3): 310–319.

Debruyne, R. and Bessiere, C. 1997. Some practicable filtering techniques for the constraint
satisfaction problem, In Proceedings of IJCAI’97, Nagoya, Aichi, Japan, Citeseer, pp. 412–
417.

Dechter, R. and Frost, D. 2002. Backjump-based backtracking for constraint satisfaction prob-
lems, Artificial Intelligence 136(2): 147–188.

Dyer, M., Kayal, N. and Walker, J. 1984. A branch and bound algorithm for solving the multiple-
choice knapsack problem, Journal of computational and applied mathematics 11(2): 231–
249.

El Khattabi, G., Lahboub, S., El Houssine, B. and Benelallam, I. 2018. Contribution to mod-
eling smart grid problem with the constraint satisfaction problem formalism, Proceedings
of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence
(MedPRAI), Rabat, Morocco, ACM, pp. 58–62.

Eyer, J. and Corey, G. 2010. Energy storage for the electricity grid: Benefits and market
potential assessment guide, Sandia National Laboratories 20(10): 5.

Farhangi, H. 2009. The path of the smart grid, IEEE power and energy magazine 8(1): 18–28.

Fleischer, M. 1995. Simulated annealing: past, present, and future, Winter Simulation Confer-
ence Proceedings, Hyatt Regency Crystal City, Arlington, VA, IEEE, pp. 155–161.

Florian, M. and Hearn, D. 1995. Network equilibrium models and algorithms, Handbooks in
Operations Research and Management Science 8: 485–550.

Freuder, E. C. 1995. Using inference to reduce arc consistency computation, Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI’95). 23, 28,
33, Morgan Kaufmann Publishers Inc., pp. 592–598.

Gil, R. P. A., Johanyák, Z. C. and Kovács, T. 2018. Surrogate model based optimization of
traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule
interpolation, International Journal of Artificial Intelligence 16(1): 20–40.

Gill, P. E., Murray, W. and Saunders, M. A. 2005. Snopt: An sqp algorithm for large-scale
constrained optimization, SIAM review 47(1): 99–131.

Glover, F. and Laguna, M. 1998. Tabu search, Handbook of combinatorial optimization,
Springer, pp. 2093–2229.

Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C. and Hancke, G. P. 2011.
Smart grid technologies: Communication technologies and standards, IEEE transactions
on Industrial informatics 7(4): 529–539.

Hentenryck, P. V. and Michel, L. 2009. Constraint-based local search, The MIT press.

Homaifar, A., Qi, C. X. and Lai, S. H. 1994. Constrained optimization via genetic algorithms,
Simulation 62(4): 242–253.

Hooker, J. N. 2002. Logic, optimization, and constraint programming, INFORMS Journal on
Computing 14(4): 295–321.

Kolesar, P. J. 1967. A branch and bound algorithm for the knapsack problem, Management
science 13(9): 723–735.

Kumar, V. 1992. Algorithms for constraint-satisfaction problems: A survey, AI magazine
13(1): 32–32.

La Mura, P. 2000. Game networks, Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, San Francisco, CA, Morgan Kaufmann Publishers Inc., pp. 335–342.

Larrosa, J. and Schiex, T. 2004. Solving weighted csp by maintaining arc consistency, Artificial
Intelligence 159(1-2): 1–26.

Mackworth, A. K. 1977. Consistency in networks of relations, Artificial Intelligence 8(1): 99–
118.

Marah, R. and El Hibaoui, A. 2018. Algorithms for smart grid management, Sustainable cities
and society 38: 627–635.

Mohr, R. and Henderson, T. C. 1986. Arc and path consistency revisited, Artificial intelligence
28(2): 225–233.

Myerson, R. B. 2013. Game theory, Harvard university press.

Nadel, B. A. 1990. Some applications of the constraint satisfaction problem, Wayne State
University, Department of Computer Science.

Narendra, J., Rochart, G. and Lorca, X. 2008. Choco: an open source java constraint pro-
gramming library, CPAIOR, Paris, France, Vol. 8, pp. 1–10.

Osborne, M. J. and Rubinstein, A. 1994. A course in game theory, MIT press.

Precup, R.-E., Angelov, P., Costa, B. S. J. and Sayed-Mouchaweh, M. 2015. An overview
on fault diagnosis and nature-inspired optimal control of industrial process applications,
Computers in Industry 74: 75–94.

Precup, R.-E. and David, R.-C. 2019. Nature-Inspired Optimization Algorithms for Fuzzy Con-
trolled Servo Systems, Butterworth-Heinemann.

Prud’homme, C., Fages, J.-G. and Lorca, X. 2014. Choco documentation, TASC, INRIA
Rennes, LINA CNRS UMR 6241: 64–70.

Ross, K. W. and Tsang, D. H. 1989. The stochastic knapsack problem, IEEE Transactions on
communications 37(7): 740–747.

Rossi, F., Van Beek, P. and Walsh, T. 2006. Handbook of constraint programming, Elsevier.

Shams, M., Rashedi, E., Dashti, S. and Hakimi, A. 2017. Ideal gas optimization algorithm,
International Journal of Artificial Intelligence 15(2): 116–130.

Shiloach, Y. and Vishkin, U. 1982. An o (n2log n) parallel max-flow algorithm, Journal of
Algorithms 3(2): 128–146.

Vaščák, J. 2012. Adaptation of fuzzy cognitive maps by migration algorithms, Kybernetes
41(3–4): 429–443.

Verfaillie, G., Lemaı̂tre, M. and Schiex, T. 1996. Russian doll search for solving constraint
optimization problems, AAAI/IAAI, Portland, Oregon, Vol. 1, pp. 181–187.

Walsh, T. 2000. Sat v csp, International Conference on Principles and Practice of Constraint
Programming, Springer, pp. 441–456.

Yokoo, M. 2001. Distributed constraint satisfaction problem, Distributed Constraint Satisfaction,
Springer, pp. 47–54.

	IJAMAS_example.pdf
	Introduction
	Related Work
	Solving Smart Grid Local Problems based on COP Formalism
	Data
	Model

	Experimental Results
	Conclusion

