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ABSTRACT 

Recent developments in machine learning and artificial intelligence have evoked interest in many 
research areas considered as NP Hard. Humanoid motion is one such area.  Controlling robots with 
large number of mechanical joints poses challenges due to non-linearity of displacement, redundant 
configurations, dynamic user environments, etc. Analytical and approximate solutions to Inverse 
kinematic problems of typical industrial robots with up to 6 Degrees of Freedom (DoF) have been 
presented in literature. Humans use more than a hundred joints for locomotion, each with one to three 
degrees of freedom increasing the complexity beyond comprehension. Therefore algorithmic and 
even heuristic approaches have not been successful in humanoid structures. Recently, machine 
learning and artificial intelligence are being used for robotic applications. This paper reports a new 
type of Artificial Neural Network (ANN) called Auto-Resonance Network (ARN) derived from 
synergistic control of biological joints. The network can be tuned to any real valued input without any 
degradation in learning ability. Due to the approximating nature of ARN, neuronal density of the 
network is low and grows at a linear or low order polynomial rate with input classification. Input 
coverage of the neuron can be tuned dynamically to match properties of input data. ARN can be used 
as a part of hierarchical structures to support deep learning applications. As a case study, the network 
has been used to generate optimal path for locomotion avoiding obstacles. The network can optimize 
the length of traverse and resolution during training much like a biological system. The network is able 
to learn without supervision taking cues from the environment. 

Keywords: Artificial intelligence, artificial neural network, auto resonance network, deep 
neural network, Hebbian learning, hierarchical neural networks, machine 
learning, multi-layer neural networks, robotic motion.  

Computing Classification System: Computer systems organization~Neural networks, 
Computing methodologies~Motion path planning 

 
 

1.  INTRODUCTION 
 
Creating a machine that works like a human being has been a dream of mankind since the 
beginning of civilization. A humanoid is expected to learn from the environment and be able 
to take autonomous decisions. Therefore, adaptation of Artificial Neural Networks (ANN) for 
controlling a humanoid is a natural choice. All higher vertebrates use a musculoskeletal 
assembly containing a large number of bone joints. Each bone is attached to several 
muscle groups through serially connected tendons in protagonist and antagonist 
configurations. Muscles can only pull or relax, but not push. Each such group can be 
approximated to have one Degree of Freedom (DoF). Providing a single muscle for each 
direction of motion represents a minimal musculoskeletal configuration of a joint. 



 

Considering that there are more than 100 joints related to gross locomotion of the human 
body (3 pelvic, 24 spinal, approx. 4x20per limb), with most of them capable of limited 
motion in two primary planes, we could approximate a total of 200 DoF for robotic system. 
On the other hand, advanced humanoids use far fewer DoF, e.g., 34 in Honda’s Asimo. 
Analytical Inverse Kinematic (IK) solutions for joints with 6 to 7-DoF have been described in 
literature. Incremental Newton-Euler and other such formulation and techniques have been 
used (Otaduy and Lin, 2006). Kinematic equations are sensitive to various factors like effect 
of gravity, direction of motion, angles subtended at the joints, etc.  Therefore, it is difficult to 
develop analytical or incremental solutions for robots with high DoF.  Apart from the 
complexity of inverse kinematic solution, there are more fundamental problems in robotic 
motion, e.g., the classical Movers’ problem dealing with movement of a convex object 
through a set of connected passages is NP Hard (Cruz et al., 2016). Further, it has been 
reported that iterative solutions may not always generate all possible solutions or reach 
globally near-optimal solutions (Veslin et al., 2014). This highlights the complexity of control 
for a design that is anywhere close to a human structure.  

A heuristic modeling algorithm expressed in terms of homogenous combinations of the 
classical system dynamics and the Bayesian degree of belief has been presented in 
literature (Pozna et al., 2010). An arm powered by FESTO fluidic muscles with only two 
degrees of freedom has been described in recent literature (Trojanová and Hošovský, 
2019).   In recent years, Multi-layer ANNs have been used to solve complex problems like 
image identification and natural language processing which were not solvable by 
conventional computer algorithms. The Fukushima nuclear disaster in 2011 and the 
subsequent DARPA announcement of humanoid robotic challenge in 2012, focus of robotic 
research shifted to use of artificial neural networks. Since then, there have been 
phenomenal advances in this technology. However, most of the work remains highly 
classified.  

This work is an attempt to solve the robotic path planning problem using a multi-layer ANN. 
A new type of hierarchical network based on a Hebbian Learning Model (HLM), Auto 
Resonance Networks and Path-nets is presented in this paper. One notable work in this 
direction was reported by Bing et al. using spiking neural networks (Bing et al., 2018). 
Analytical search algorithms have also been presented for robotic path planning (Purcaru et 
al., 2013). A good review of neuro-robotic research has been recently published by Li et al. 
(Li, et al., 2019). Nature-Inspired Optimization Algorithms for fuzzy controlled servo 
Systems that may be used for robotic control has been reported recently (Precup and 
David, 2019). 

The problem of locomotion can be split into two sub problems: firstly, to estimate the joint 
angles such that the end effector reaches the desired location; and secondly, to 
incrementally move the end effecter from existing position to a new position circum-
navigating the obstacles while trying to optimize the cost of path traversed. Both have high 
complexity and therefore a soft computing approach seems to be the only way to reach a 
reasonable solution. A neural network specifically designed to handle joint control may be 
required to achieve a generalized solution to this problem. Reinforcement learning 
capabilities of deep neural networks hold the key to develop complex robotic control 
systems without the need for closed form or iterative solutions (Kober et al., 2013). These 
requirements have triggered development of  new neural architectures to address specific 
problems in building humanoid robots (Martin and Gregg, 2016) (Aparanji et al., 2016) (Wei  
et al., 2016a) (Wei and Sun, 2016b)(Wei et al., 2017).Given the complexity of biological 



 

systems, it is natural to assume that existing neural models may not always work in newer 
application domains. Therefore, use of ANN for specific functionality may require 
development of specific neural structures. For example, Convolution Neural Networks 
(CNN) are used in image recognition (Yangqing et al., 2014) while Long Short-Term 
Memory (LSTM) networks are used for time series prediction (Schmidhuber and Hochreiter, 
1997). More recently, spiking neural networks are being explored for robotics and several 
other areas in Artificial General Intelligence (AGI). In the following sections, we describe a 
novel hierarchical neural network structure based on synergistic control of musculo-skeletal 
systems, which we call Auto Resonance Network (ARN). ARN can classify real valued 
multi-dimensional input and have an adjustable acceptance threshold (ρ) for each node in 
the network. Each layer of ARN has a specific goal and searches are always local to a 
layer, reducing the overall computational load. Hierarchical ARN represents a feed forward 
network of ARN layers and other cellular automata. Every node in ARN resonates with in a 
small controllable volume in input space, called the coverage of the node. Resonance 
allows approximation to the locus of resonance, giving the network an ability to respond to 
input different from training set. Long chains of ARN nodes can therefore generate complex 
classification and recognition patterns. This tunable approximation is critical to working of 
ARN architecture. To a certain extent, ARN is similar to Radial Basis Function (RBF) 
network but with entirely different control algorithm. The size of the network grows with 
input and therefore overcomes the binding problem and plasticity stability dilemma. These 
networks can be used as generic data classifiers by adding node labeling method or 
neuronal layers. We illustrate their application to robotic motion. However, they can be used 
as generic data classifiers and find applications in various areas of artificial intelligence. A 
modified version of the algorithm has been reported for image classification (Mayannavar 
and Wali, 2019). 

In this paper, ARN has been applied to simulate the joint structures generally found in 
biological systems. ARN can find multiple solutions when they exist using a feature called as 
folds which is also described in this paper. Each fold represents a set of joint configurations.  
Several folds can offer same solution but with different joint configurations. Some among 
such solutions can be used to overcome obstacles in the robotic path.  There is a cost 
associated with the process of switching between folds as it requires the joint angles to 
change by large angles, effectively moving the joints from one configuration to the other 
equivalent configuration. The problem of finding folds among possibilities is complex and 
needs further work. 

This paper presents combined hierarchical ARN with other cellular automata that can be 
used to solve path generation problems of robotic joints motion. The goal is to guide the end 
effector of the joints system from its current location to a target location through a series of 
steps on a near optimal path avoiding obstacles in between. The hierarchical network has 
been designed with an ARN as input classifier. Intermediate layers provide approximate 
paths to trained and untrained areas in the work space. Higher levels of the network are 
used to compare available paths and to select an optimal of path. 

The paper is divided into five sections. Section 2 describes the basic ideas and 
mathematics of ARN. Section 3 describes an application of ARN for robotic motion control. 
Results and Conclusions are in section 4 and 5 respectively. 

 



 

 

2.  AUTO RESONANCE NETWORK 
 
Basic ARN will have a single layer of multiple neurons (also called nodes) that is able to 
identify patterns in input set. Each node resonates to a set of closely related patterns in 
input set.  No two nodes will resonate identically over their entire input set but may have 
partially overlapping regions. All layers are isolated at the interface from other layers.  Each 
layer works independently. Output of one layer interfaces with the input of next layer in the 
hierarchy. Therefore, understanding one layer is sufficient. Training a layer of the network 
would be as follows: Input will be applied as a set, one set at a time. The layer would 
consist of a single layer of nodes all of which are connected to all inputs. Each node is 
tuned to recognize a set of closely related patterns of input vector. Internal memory of the 
node may have an exact or approximate or transformed version of input it matches. When a 
new input is applied one of the three things happens: (i) one of the nodes is at resonance or 
(ii) some nodes are near resonance or (iii) none of the nodes are in resonance. In the first 
case resonating node is the winner. In second case, the node with the highest output is 
selected as winner if the output is above a selection threshold. Otherwise, there is no 
recognition. When there is no recognition, a new node may be created such that it is tuned 
to match the present input. Success of this network depends on finding a suitable function 
that offers good tunability and a variable cover for every node.  

When a new node is appended to ARN, it is pre-tuned to resonate with current input. We 
will illustrate the concept with a single input network. Resonance of a node can be 
described using a simple equation 

 )1( xxyp −=  (1) 

where, x   is the input represented by a real number normalized to the range of {0…1}.  
Equation (1) will yield a maximum value of 4/1  when the input 2/1=x , i.e., the node will 
resonate if the input is 2/1 . Therefore, we can use  

 )1(4 xxy −=  (2) 

to normalize the result to 1. In order to set the resonance at any value of )1...0(∈rx , we 
can scale the input such that 

 2/1=rwx   or  )2/(1 rxw =  (3) 

and calculate the output of the node as 

 )1(4 wxwxy −=  (4) 

It is also possible to use other transformations on input, as discussed later in section 2.1. 
The resonant weight w  is computed when the node is inserted in the network and remains 
largely unaltered as an in-memory reflection of the input rx  present at the time of creating 
the node.  This feature will allow the network to remember episodic events.  It is important 
to remember that the resonating nature of the node will allow other inputs in the close 
vicinity of resonance also to generate an output that is above a selected threshold. The 
chart in Figure 1 shows the behavior of nodes tuned at various points of resonance 
identified by rx . In Figure 2 (a), scaling of single input by the resonant weight and 



 

computation of resonator output is shown. A node with N input nodes is shown in Figure 2 
(b). The input to a node consists of a vector  

 ),1...0(},,...,{ 21 ∈= iN xxxxX   Ni ...1=  (5) 

For each of the inputs, output of each resonator module given by (4) are summed and 
normalized as at the output of the node. A layer of ARN will have several such nodes as 
shown in Figure 2 (c). Assuming that there are K nodes, each one is tuned to a different 
input vector kk ttX =| where kt  is the time at which k-th node was created. We can extend 
(4) to describe output of a k-th node as 

 ),)(1(4
ikiii kiNk xwxwy ∑ −=    KkNi ...1,...1 ==  $(6) 

 

Figure 1. Resonance curves for various xr 

where, kiw is the scaling factor for i-th input of k-th node. The resonant weight kiw  

represents the in-the-node reflection of input kix stored as memory in the node. Note that 

ix  is the i-th element of the input vector while kix  represents the input ix for k -th node. 

This k -th node will produce maximum value of 1 when Niwx kii ..1),2/(1 == . In Figure 2 

(a), the resonator function is indicated as )1( dd − , where  wxd = . 

To summarize, each resonator corresponds to one input of one node. Each node has N 
inputs and same number of resonators. The output of a node is maximal when all the 
resonators produce maximum output. Therefore, the resonant weight of a node is 
expressed in vector form as )2/(1 rXW = .  

Figure 2. Auto Resonance Network structure 

When the node is added to the network, initial resonant weights are computed. The weights 
will undergo further tuning as learning occurs later during training. However, such tuning 



 

adjustments are small and the node remains in resonance in the close vicinity of initial 
locus. Therefore, the node is automatically tuned to the input it is presented with. The 
learning procedure ensures that a specific combination of inputs is maximally matched by 
only one node in the layer. Therefore the network is called as Auto Resonance Network 
(ARN).  It is interesting to note that resonance also implies that the node responds to inputs 
that approximately match the locus of node resonance. Therefore, such approximation 
actually contributes to the learning by network. 

 

2.1 Envelope functions 

It can be seen from Figure 1 that output of a resonating node decreases as a continuous 
function of input on either side of input values. If the output of a node is above a threshold 
value the node is considered to be a winner. The range of input values at which the node 
can be a winner may be adjusted by reducing or increasing the threshold.  If the threshold 
is reduced, the range increases and if the threshold is raised, the input range reduces. The 
set of all inputs when the output of a node is above a threshold is called coverage of the 
node.  

The coverage of k-th node can be expressed as 

 )},()(|{ kiyyandyXC ikkk ≠∀>>= ρ   (7) 

where ρ is the threshold value and k .is a set of all input values. 

We may further note from Figure 1 that coverage of area for each node is not same for a 
given threshold. For example the peak for 1.0=rX  is significantly sharper than the one at 

2.0=rX . We could set separate thresholds to individual nodes such that all nodes have 
similar coverage. However, a better way to correct this situation is to use a non-linear 
scaling of input. We call these functions as envelop functions.  

Envelop functions can provide several advantages. For example, they can transform 
unbound input ℜ∈x  into bound region like {0…1}. If the envelop function modifies the 
input )(xgxs = then, the resonant weights also should be scaled with identical function.  

 ))(2/(1 kiki xgw =  (8) 

 ))(1)((4
ikii ikik xgwxgw

N
y ∑ −=  (9) 

Envelop functions stretch or compress a specific part of the input range in order to 
exemplify an area of interest. Effect of some of these functions is shown in Figure 3. 

Figure 3. Effect of envelop functions on classification 

 



 

A simple scaled log function shown in Figure 3 (a) implements 

)ln()( xxg σ=  (10) 

where σ  is scaling factor. By adjusting σ  we can effectively compensate for the non-linear 
coverage of (4). Figure 3 (a) shows the effect of (10) on coverage with 1=σ . A modified 
sigmoid function shown in Figure 3 (b) exhibits a controllable linear coverage. It uses an 
envelope function 

 )1/(1)( )1( −−+= xexg σ  (11) 

A value of σ  = 4 is used for illustration. It is clear that envelop functions can reduce the 
non-uniform coverage across the input range. 

 

Figure 4. Effect of envelop functions on classification 

Figure 4 shows the clustering of nodes using two envelop functions with input vector size of 
2. Each node in this ARN network is identified by a color.  Group of bubbles of same color 
represents a single output cluster.  The image shows the effect of using envelop function on 
the node coverage. Fig 4(a) shows larger cluster for higher values of input while the sizes 
are more uniform in Fig. 4(b). Cluster sizes depend on the envelop function and the 
threshold. 
  

2.2 Extending the input range 
Accepting input in the normalized range of {0…1} need not be a limitation, but it would be 
convenient if there are other functions that provide a larger input range, yet maintain the 
resonance property. Interestingly, there are many other monotonic functions to implement 
such resonance and build an ARN. A generic approach would be to define an additive 
inverse of the function over a range and multiply the two to get a resonance function. One 
such simple function is the difference function given by )( iki xM −  such that 

 )()(1 kiii ikik MxxMy −−+= ∑  (12) 

where M is the value of the tuned input (M for mean resonance value). Figure 5 shows the 
distribution of (12) for various M values. This function has a maximum value of 1 when 

iki xM = . Note that the node stores the input without applying any transformation. From 

Figure5 we observe that resonance can be set at arbitrary points on ℜ∈x  and not limited 
to {0…1} range. The complexity of (12) is of )(NO  and hence fast to compute. Coverage 
of the nodes is uniform and given by range points described by the following equation. 

 ρ−±= 1Mxp  (13) 



 

where ρ is the coverage threshold. The above equation gives two range points between 
which the node will have maximal output. Effect of threshold on classification of data for this 
network is shown in Figure 6. A new node is added when maximum output value of all 
nodes in the recognition layer is below the threshold. The image clearly shows that 
increasing the threshold increases the number of output nodes. 

 
Figure 5. Resonance graphs for nodes using function in (12) 

 

 
Figure 6. Effect of threshold on number of clusters  

(a) Threshold = 0.7, (b) Threshold = 0.9 

Another good candidate is the Scaled and Shifted Sigmoid Function (3SF) given below: 
This function 

 )1/(1 )( Mx
s ey −−+= σ  (14) 

will map a real number in the range of ∞∞− :  to a monotonically increasing value in the 
range 0:1. Interestingly, the function has a value of 0.5 at Mx = . Therefore, we could 
replace iki xw   in (4) with this function. It may be noted that )1( sy−  can be easily 
computed as 

 )1/(1 )( Mx
s ey −
− += σ  (15) 

Therefore, for N=1, we can rewrite (2) as 
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y σσ  (16) 

The sigmoid nature of this curve fits well with a physical neuron activation which shows 
saturation as the input increases, rather than growing monotonically.  Equation (16) allows 
a node to be set to resonate at any ℜ∈x . Note that M  can be used to select the point of 
resonance while σ  can be used to control the tuning and hence coverage of the node as 
shown in Figures 7 (a) and (b), respectively. Equation (16) provides a generalized function 



 

for implementing ARN nodes, albeit with increased complexity. The tradeoff between 
complexity versus flexibility can tilt towards (4) or (16) depending on end use. 

Figure 7. Tunability of ARN using (16) 

 
2.3 Tuning the nodes and coverage 

Coverage of a node acts like an approximator by providing near maximal output when the 
input is close to the resonating value. Coverage of the node can vary dynamically based on 
input. Node may slowly shift to a different tuning point depending on the statistical 
properties of incoming data but normally stays close to the original tuned location.  

Controlling the quality of resonance as shown in Figure 7 (b) can be used to sharpen the 
performance of ARN nodes. For example, if a node receives exactly the same input 
repeatedly, we can increase its sharpness by increasing σ . On the other hand, if the input 
value varies around the resonance value but within a threshold, we can reduce the value 
of  to increase its coverage. A simple relation that can be used to tune the resonance is 
given by, 

 )1/()1( νηκσσ −+=+ fnn  (17) 

whereη  is learning rate, κ  is a proportionality constant related to statistical frequency f , 
i.e., number of times the node matched the input and ν  is related to signal variance. 
Therefore, this equation provides basis for reinforcement learning on ARN nodes.  

Stable nodes can undergo further tuning to increase or decrease the area covered by the 
nodes. This can be achieved by varying the selection threshold or the  value associated 
with the node. This requires that the nodes compute statistical moments as they are 
accessed. A mapping of  value to the coverage is given in Figure 9 (b). For a node 
described by (16), and knowing that 1max =y  and assuming 0=rx we can write the value 
of x for threshold of ρ=y  as, 

 ⎟⎟
⎠

⎞
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= − )1){1(
14

xx eeN σσρ   (18) 

which gives an expression for coverage of an ARN node as a function of threshold and 
tuning factor. Equation (18) can be rewritten as 

 )12(cosh1 1 −= −

ρσρ N
x   (19) 



 

which gives the coverage of an ARN node for various values of threshold and scale factor 
around the peak value. This relation is plotted in Figure 8. 

Figure 8. Spatial Coverage of a node as a function of σ 

It is clear from Figure 8 that as threshold increases, the spatial coverage reduces and 
hence the node activation becomes more sensitive to input. This controllability of the 
coverage of ARN node can be used to alter the selectivity of the node. For example, in 
Figure 9 (a), two nodes are located near each other but have separate coverage. However, 
one of the nodes may expand its coverage such that a part of second node is covered. 
Second node will generate maximal output if the input matches exactly but may not get 
selected though its output is above threshold (Figure 9 (b)). In other words, the node has 
gone below cognitive level. It exists but resides in a ‘hidden,’ or ‘subconscious’ layer. Note 
that such nodes can move out of dormancy when the precise input is applied.  

 
Figure 9. Effects of Spatial coverage of ARN nodes. 

(a) Isolated Coverage, (b) Suppressed Coverage and (c) Labeled classes 

Figure 9 (c) shows clustering of nodes in the neighborhood as well as in separable 
neighborhoods. This is facilitated by providing labeling capability to ARN nodes. This 
labeling capability can be used to associate multiple clusters of data into a single disjoint 
set.  This association can be marked with a single label. For example, when two joint 
configurations move the end effector the same location, we can label them identically. We 
will discuss this further as ‘folds’ in Section 2.5. 

 

2.4 Types of ARN nodes 

Typically, ARN nodes are created when an input does not trigger resonance in any of the 
existing nodes.  Such nodes may be reliably labeled if the expected class of output is 
known, as in case of supervised learning. These nodes have a well defined point of 



 

resonance, an adjustable coverage and a well defined output label. We will call these as 
Type-1 nodes. 

Additional nodes can be created by cloning and perturbing existing Type-1 nodes, without a 
need for external input. Such nodes may also be created by interpolating properties derived 
from Type-1 nodes. Because of non-linearity of real systems, such perturbations and 
interpolations may only be done in the vicinity of existing nodes. The output and associated 
input data can be estimated as a perturbation of Type-1 nodes or interpolated using a 
suitable approximation. These values need to be adjusted during further training or run time 
for the point of resonance, output values and labels. We will call them as Type-2 nodes. In 
general, perturbation of Type-1 nodes can be performed by considering one input or output 
variable at a time. The type of data Type-1 node associates has a bearing on development 
of perturbation methods. Type-2 nodes are essentially mutated copies of Type-1 nodes.  
Their input and expected output values are approximated using some approximation 
functions.  When an isolated Type-1 node has to append Type-2 nodes to the ARN layer, a 
new node is created with randomly perturbed input in the vicinity of the Type-1 node. The 
expected output is computed by using the displacement of the input from current node and 
an approximation function. One such set of approximation functions is shown in Figure 10. 
Actual diffusion function to be used depends on the end application and may vary from 
region to region in input/output space. Figure 10 shows four flexed lines indicating how the 
output varies in the vicinity of the Type-1 node under consideration. These can be seen 
much like the shape functions used in finite element modeling of structures. These curves 
give an indication of how much the output value should change in close vicinity of the cell. 
Here the function used is given by, 

 )1( rek λγ ±−±=  (20) 

where  r  is a measure of distance between input of two nodes, λ  is a scaling factor such 
that rλ  < 0.5 and γ  is the output scale factor. Expected output of the mutated node is 

computed as )1( γ+= yyn .  This is only an initial value which will be updated during 
training of the network.  Therefore it is not critical to know the exact value.  Note that (20) 
generates four curves flexing in different directions. The parameter k  controls the 
magnitude of γ  and λ  controls the flexing.  

Figure 10.Typical output diffusion function 

It is possible to use other shape functions as suitable for the application.  When two or more 
nodes are available, the new nodes may be assigned linearly interpolated values. 

Type-2 nodes are necessary to address random or unknown situations beyond the noise 
margins of ARN nodes, which the network may encounter later. These nodes are appended 
to the same layer as Type-1 nodes. Tuning of Type-2 nodes requires special attention but is 
a rewarding procedure. Perturbation methods work well when the output of the network is a 



 

continuous function.  However, if the output is a discrete set of values, input perturbation 
may work like a clustering problem but output perturbation methods may not be meaningful. 

 

2.5 Folds of solutions 

Often it is possible that several distinct combinations of inputs yield the same output.  For 
example, several joint angles may move the end effector of a robotic arm to the same 
position.  Each such set of solutions is called a fold. Folds occur as contiguous set of nodes 
in input space and are separable as clusters or by specific properties of input.  Each fold 
can be associated with a cost, giving a priority over usage.  Moving between folds may also 
involve a certain cost as the system may need time or effort to shift between folds.  
Therefore, choice of a specific fold depends on input and previous outputs or states of the 
system. 

Consider a planar mechanism with two segments, a fixed joint and a flexible joint, as shown 
in Figure 11 (a). The solid lines indicate one set of joint angles and positions of the linkages 
The small-dashed lines indicate an alternate position of joints and linkages to reach the 
same end location. It is clear from the figure that two sets of angles will set the end point of 
the mechanism to the same location. This is an important feature of many real life 
situations: redundant solutions exist to many problems and they need to be explored based 
on the situation. For example, if part of the output space where the joint can flex is 
obstructed, we have to use the possible alternative to move the end point of the 
mechanism. There will be a set of such continuous locations that can be reached using 
such similar sets of angles (Aparanji et al., 2017a), (Aparanji et al., 2017b). Therefore, the 
concept of folds gives an ability to lower the cost of finding a solution by reducing the 
search space.  Additionally, the search can yield low power changes to joint angles to reach 
the intended final location. 

 

Note that identifying folds is a complex process and needs to be studied in detail for a given 
application. In Figure 11 (b) the bubbles indicate coverage of a ARN node. Each plane of 
such nodes has angles that are continuously varying. 

 

Figure 11. (a) Two segments Planar Joint and end point displacement in 
x, y space.(b) Folds of solutions 

Third layer is caused by the indecisiveness of the fold identification process to assign the 
joint angles to specific fold. It is easy to observe following points: 

i. Neighborhoods in input space produce outputs that are neighbors in output space. 
ii. It is possible that several combinations of inputs exist that yield the same output.  

 



 

Folds occur in continuous set of nodes and are hence separable by specific properties of 
input. Each fold can be associated with a cost. Much as moving from one location to the 
other involves cost, moving between folds also involves a certain higher cost. Therefore, 
choice of a specific fold depends on input and how it was handled during earlier 
occurrences.  

Folds of solutions are a natural phenomenon in many multivariate systems.  Ability to 
identify such folds helps in reaching an optimal solution faster and at lower cost of 
transition. 

2.6 Learning in ARN nodes 

Structure of an ARN node is different than that of perceptron or other neural networks of 
that type. Learning in ARN occurs when a set of input and output vectors are applied to a 
layer of nodes. These may be part of a training set as in case of supervised learning, or 
picked up from the environment (unsupervised or reinforcement learning). The resonator 
can tune the node to a specific input set and produce a constrained output, limited to a 
predefined level (usually 1). Maximum output is reached at the point of resonance and 
hence there is no scope for a race condition that causes an unbounded output.  The node 
and hence the network are inherently stable in terms of output. Oscillatory behavior does 
not occur in ARN because it is a feed forward network, and the rules of selection / creation 
will assign a specific node as winner corresponding to an input set. Ambiguity resolution is 
precisely defined by selection / creation rules. 

The weights of the nodes are initialized at the time of creation, based on the applied input 
and hence represent a memorized impression of the input.  The weights may vary but only 
to a small extent, in the close vicinity of the original location.  It is not likely that the point of 
resonance is shifted far away from the original resonant point.  Incremental shifting of the 
resonant point is useful in interpolation of the response as well as extrapolation of input 
range.  If we consider a single node (with multiple inputs) at the beginning, appending 
additional nodes is equivalent to expanding the operating range. 

It may be noted that the ARN node is in resonance with respect to the input.  The output is 
bound to an upper limit (usually 1). Weights are updated entirely at the node, based on 
local information, without consideration of the overall operating range.  Statistical mean and 
variance of input are good enough. Therefore, there is no need to search for an optimal set 
of weights along negative gradient of the learning function.  Learning is achieved by tuning 
the node to adjust the coverage of the node rather than shifting the node weights in 
response to error in output.  In case of cluster identification, label of a node may be shifted 
to neighboring cluster or a new node be added with new label.  In that case, node 
suppression indicated in Figure 9 (b) takes effect. We do not need to reach an optimal 
value of coverage as it is a time varying property of the node. As more input is applied, the 
coverage can be adjusted based on the average spread of data, typically indicated by the 
standard deviation or similar statistical property. Selection of the threshold and scaling 
factor to match the observed coverage is given in next sub-section.  

Coverage of the node is an indicator of the noise tolerance of the ARN node and its ability 
to distinguish between noise and novelty of presented data. Output of ARN node is 
essentially an unconstrained kn }1...0{→ℜ  map function, where n is the number of inputs 
to the layer and k is the number of nodes (or cluster labels) in a layer of the network. 
Labeling of the nodes allows identification of convex or concave sets of data. 

 

2.7 Radial Basis Function (RBF) networks and ARN 

Equation (14) and its characteristics shown in Figure 7 are similar to a Radial Basis 
Function (RBF) (Wei He et al., 2016a). Gaussian form of the RBF which is generally used 
form of RBF is expressed as  
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The equation has a minima when input iMx ii ∀= , . The parameter r  indicates a radius of 
input values within which the output is significant, similar to threshold in ARN. Size of the 
input vector x  is k .  Normalized form of (19) is also used frequently in literature. If we 
define )/)(exp()( 22 rMxxs −−= , then the normal form of (21) is given by 
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The function )(xs  describes a measure of Euclidian distance of input x  from center value 
M . It is possible to use other measures like Manhattan distance. Both ARN and RBH use 
a similar strategy to train the network, i.e., present the input and expected output and let the 
network remember the applied data set. The centers of RBH nodes viz., M , are obtained 
by algorithms like k-means clustering. In case of ARN, the center of resonance is 
established at the time of creation, with a single input. The outputs of RBH nodes as in (21) 
are presented to a perceptron layer to compute the network output. ARN nodes simply 
remember the data associated with each node, eliminating the stability issue. Radial basis 
functions are useful as generic approximates and find applications in statistics and machine 
learning.  

 

2.8 Spiking neural networks and ARN 

Spiking neural networks implement information transfer using a pulse train, similar to a 
biological neuron. Inputs at the dendrites decay over a period of time.  The neuron 
integrates all the decaying inputs and fires when the summation exceeds a threshold.  
There are some distinct advantages of spiking neural networks:  
(i) A temporal relation is established between the pulses that can code for information 

enhancing the search space, and  
(ii) Several combinations of inputs can generate similar pulse trains, establishing a relation 

between several combinations, similar to folds in ARN.  Pathnets described in 
association with ARN also have similar capabilities, as described later in this paper.   

(iii) Application of certain pulse sequences can quench current pulse trains, suppressing 
expression of recognition.  This feature will be useful in switching between possible 
solutions quickly. Pathnets in ARN are continuous functions rather than pulses, allowing 
a smoother transition. 

 

3.  NEURAL NETWORK FOR JOINTS MOTION CONTROL 
A deep learning network has multiple layers of cognitive and computational nodes.  
Neuronal layers are used for cognitive function as they are better suited for that task.  On 
the other hand conventional digital computers are better used for mathematical and logical 
parts.  Combinations of the two types of structures have been shown produce usable and 
intelligent systems.  We demonstrate that ARN with other cellular structures can be 
effectively used for robotic joints motion control. 

Joints motion control is generally solved using iterative inverse kinematics methods wherein 
joint angles and the force are calculated.  Closed form analytical solutions are possible for 
joints with small number of DoF.  Iterative solutions using Newton-Euler representation are 
commonly used for 6-7 DoF (Houston and Kelly, 1982).  Neural and fuzzy systems have 
been used for joint systems with higher DoF.  It appears that generalized solutions for joints 
systems with large DoF may be possible with deep neural networks.   



 

3.1 The joint system 

A joint system consists of movable mass-spring-damper components and a drive system.  
Movement of the joint system is effected by several hinged components each with a fixed 
number of DoF.  We have used two types of joints. A planar joint with two segments is 
shown in Figure 11 (a). It has 1-DoF per segment. We have used it as a first example to 
illustrate the concepts. 

 
Figure 12. (a) Single segment of Joint configuration in x, y, z space 

(b) a multi- segment joint using details shown in (a) 
 

The spherical joint shown in Figure 12 (a) has 2-DoF per segment. A number of these joints 
and segments can be added to a complex joint system as in Figure 12 (b). These two types 
of joints are used for all simulation work during this work.   

Figure 13 shows different views (top, front and side) of distribution of nodes using two 
segments of spherical joint shown in Figure 12. The number of nodes created depends on 
the joint configuration and the spatial distribution of Type-2 nodes. Interestingly, number of 
nodes reduces as the spacing between Type-2 nodes decreases. This is because nodes 
suppress attempts to insert new nodes. On the other hand, when the spacing is large, the 
coverage is not enough and new nodes do get inserted in the network. 

 
 

Figure 13. Formation of nodes in a spherical two segment joint 
 

 



 

 
Figure 14. Overview of the Joints control system using ARN 

 

3.2 Neural network for motion control 

A multi-layer neural network for motion control with ARN as input classifier has been 
implemented. The goal is to guide the end effecter of the joint system from its current 
location to a target location through a series of nodes located on a near optimal path, 
avoiding obstacles in between. Higher levels provide paths for motion and control structure 
for optimization of path. Some details of the implementation are discussed here. 

The implemented system consists of a layer of ARN nodes that receive location of the end 
effector as input. The nodes are labeled with joint angles to be used to reach the required 
end location. It is possible to use a hierarchy of ARN layers that refine the accuracy 
successively as the effector moves towards the expected target. During run time, the end 
effector can move to a untrained location using the approximation provided by ARN.  

Figure 14 shows an overview of multi-layered joints control system using a neural network. 
The multi-segmented joints system has a well defined 3-D work area defined by the 
mechanical design. The system uses unsupervised learning.  During training, the joints are 
randomly excited and the end-point is located, much like a child trying to move its hand.  
During training, the network learns to relate end point location with a set of node which are 
labeled by joint angles. A node therefore identifiable by joint locations and uses effector 
location as input i.e., ( ) ( ){ },...,,,, 21 θθzyx . The first part of the set used as a input for 
resonance while the second part is used as a node label. This data will be used to reach 
the target position. During initial simulation, the end point position is calculated from the 
joint angles, using forward kinematic equations.  Every such end positions is used as label 
for resonating node.  In a real system, this calculation is not necessary because when the 
joints will actually move corresponding to the applied random excitation. During run time, 
the location of the end point is known and hence input to the ARN. The label from the 
resonating node will indicate the joint angles to be used to reach the required location. 

A database oriented implementation may be possible using an approach presented by Zall 
et al. (2019). Multi-relational data can be on relational databases where they consist of 
multiple relations that are linked together by entity-relationship links. The class label can be 
predicted by correlating the information of related data. Labels can then be propagated to 
create the paths.  

In Figure 14, two distinct types of errors are shown.  During training, actuation error is used 
to insert and label ARN nodes. These are all Type-1 nodes. On the other hand, during run 
time, effector may move to a somewhat different location than expected location, which is 
then corrected by shifting the location of active node (tuning Type-2 nodes). Such 
repositioning will make the network to produce a new set of actuation signals. The 
advantage of this feature is that the network need not retune during field operations, 



 

ensuring that stored nodes and edges are not disturbed from their tuned locations.  The 
ratio of Type-1 to Type-2 nodes can vary but of the order of 1:100. 

 

3.3 Hierarchical ARN 

ARN can perform real-world input classification. It requires additional support structure to 
implement application specific functionality. A hierarchical network of nodes can provide 
such support.  One such possible structure for motion control is given in Figure 15. 

 
Figure 15. Hierarchical ARN for joints motion control 

ARN nodes are in L2. A short connection layer (L3) is added to the network to superimpose 
a topological order among the nodes.  Nodes in L3 can indicate a simple 1-hop neighbor or 
hyper-edge indicating a closely connected set of nodes. These connections can be 
interpreted as paths between node locations. The nodes in the Decision layer (L4) are 
capable of storing a series of node sets. In this case, they store a series of edges to be 
traversed between the start and end location indicated by nodes in L3. Each node in the 
path layer (L4) has a cost, which is stored as associative data with path nodes. When there 
are multiple paths with same source and destination node, nodes are added to a higher 
layer (L5) that evaluates and selects optimal paths. Both algorithmic and neural 
implementations of the hierarchical network are possible (Masumeh et al., 2017). 
 

3.4 Perturbation methods 

Adding Type-2 nodes requires some attention. Due to non-linearity of displacement, 
unreachable areas, and directionality of the joints system, distribution of nodes and the 
associated data cannot be known exactly with a limited set of training data (Spall, 1992). 
Therefore, we need some guaranteed methods to add Type-2 nodes to L2.  There are two 
approaches to create these new nodes. The first one is to perturb the resonance input of the 
cloned node and approximate the joint angles. The second one is to perturb the joint angles 
and use forward kinematic equations to simulate location of end point. Alternately, we can 
interpolate the values instead of using forward equations. In real life situation, interpolation 
would be more natural than actual motion, which is equivalent to using forward kinematic 
equations during simulation. In both the methods, linear and exponential types of scatter 
functions can be used for perturbation of the network. Granularity and coverage depend on 
the scatter function used. The effect of scatter function on generation of nodes is illustrated 
in following figures. 



 

 
Figure 16. (a) Formation of cells for a single segment planar joint with linear gradient 

function. (b) Different ‘Folds’ of solutions 

Figure 16 (a) shows the formation of cell for a planar joint with two segments, using a linear 
scatter function, which generates a fixed grid.  Different folds for this joint system are shown 
in Figure 16 (b). Physical system has fewer folds but the network has identified many more 
due to uncertainties in associating a node with a specific fold. The results are rotated by an 
angle in Figure 16 (b) to make the folds visible. An exponential scatter function like 

θλθθ d
new e−+=  has been used for a two segment planar joint in Figure 17, for 

comparison. 
 

 
Figure 17. (a) Formation of cells for a planar joint with exponential gradient function. (b) 

Different ‘Folds’ of solutions for the joint system 

3.5 The connection Layer 

Edges are created between different Type-1 and Type-2 cells. An edge represents the 
connection between two cells present in a fold. Possible instances of creating the edges are 

1. Soon after a new cell is created in Layer L2. 
2. If the Euclidean distance between any two Type-2 cells of the same group is less than 

the threshold.  Here group represents a collection of Type-1 and its Type-2 cells. 
3. If the Euclidean distance between any two Type-2 cells of different groups is less than 

the threshold. 

Figure 18 shows the creation of edges between groups of nodes. A group represents a 
collection of a Type-1 node and its neighboring Type-2 nodes. Large dots (red color) in the 
center line of Figure 18 show Type-1 nodes.  Small dots (blue color) represent Type-2 
nodes. Edges (green line) have been created between the nodes present in a same group 
as well as different groups. 



 

 

Figure 18. Formation of edges for a three segment spherical joint with 5 Type-1 Nodes and 
associated Type-2 nodes 

3.6 Path Layers 

Transition of winning node in a sequence of events represents a path along the nodes. This 
can occur during training or during run time. Specific paths can be stored during training. 
However, during run time, when the desired location of the end point is input to the neural 
network, one of the possible neighboring nodes is triggered based on a cost function. That 
node now emits the joint control parameters. This process is repeated till the end point is 
reached. If an edge is not available, the motion tries to search alternate ways. Some times 
adding a new edge in L3 will hasten the transition making in more energy efficient. As the 
process of finding the path is dynamically chosen, it is possible to circumvent any 
obstructions as and when they arise. 

 

Figure 19. Random path of a two segment spherical joint 

Paths constructed using L2 nodes and L3 edges are shown in Figure 19. For clarity, edges 
other than those on the path are not shown in Figure. 19. Source location is represented by 
Red dot whereas, destination/end point location in space is indicated by green dot and blue 
dots indicate the neighbor nodes. Series of red lines indicate the path traversed from 
source to destination.  



 

Paths can be shortened by selecting chords between closely located nodes. Paths 
constructed using L2 nodes and L3 edges and selection of chords (blue line represents the 
chord) are shown in Figure 20. Paths can be optimized by considering a cost of path. The 
cost is defined by two parameters: Total length of the path and angles subtended between 
the sections of path. Acute angles are more expensive in terms of power and hence cost. 
They are also slow to traverse. A simple cost function as a sum of cost of traversed edges 
is 
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where C is the cost of the path, L is the length of the path in terms of sections of path, s is a 
scaling factor, c  is cost of angle a  in radians. 

 

Figure20. Random path of a two segment spherical joint and partial optimization  

The nodes in the path-layer store the path cost. This information is used by nodes in the 
higher layers to select an appropriate path among several possible paths. Figure 21 shows 
selection of a cost optimized path among several paths between given start and end nodes. 
Different colored lines indicate the multiple paths. The path with the thick line indicates the 
best path among several paths. 

 

Figure21. Selection of optimized path among several other paths 

Paths are searched dynamically. In that sense, hierarchical ARN is under perpetual training 
(reinforcement learning). Therefore, obstructions can be inserted during run time. 
Hierarchical ARN can locate paths around the obstacles as shown in Figure 22. Orange dot 
indicates the source and green dot indicates the destination. Dots in the red and blue color 



 

indicate the obstructed nodes and the free nodes respectively. Cubes represent the 
obstructed area. We can observe that the best path has the least path length and least cost 
as compared with the other paths.  

 
Figure. 22. An optimized path for a three segment spherical joint with obstructions 

 
3.7 Pathnet 

Most of the discussion in the previous section looks more like an algorithmic superposition 
on a basic ARN network. However, a completely neural interpretation of the various layers 
is possible. For example, creation of edges (connections) between nodes follows a Hebbian 
learning rule. Nodes that are used in a path increase their weights, providing a low cost 
option to select among several other possibilities. The formation of chord can be seen as 
firing of neural pathways based on synaptic weights, introducing a temporal aspect to the 
path selection problem. This allows a neural network to simultaneously explore multiple 
paths with a breadth or depth priority based on cost of path(Aparanji et al., 2018). 
 
Pathnet offers a generic approach to solve several problems in artificial intelligence. But the 
possibilities of its application in natural language processing, time series prediction exist 
and need to be explored further.  

 
Figure 23. Formation of chords in connection layer 

 
3.8 Combined training algorithm 

The combined algorithm to build the network, corresponding to Figure 15 would involve the 
following steps: 
(i) Initially, the network has no nodes.  So the first input will create a node as per equation 

(4) or similar equation, e.g. equation (16). Each node will store its weights 
corresponding to the input at the time of creation. A default coverage is assigned to the 
nodes. Node is labelled as computed by forward kinematic equations (for simulation) or 
as actual end effector position (using real system). As more input is applied, more 



 

nodes get added along with the labels to slowly covering the complete work area. All 
These are Type-1 nodes. 

(ii) When new nodes are inserted in L2, nodes in the vicinity of other Type-1 nodes are 
added to L3.  This process continues as long as new nodes are added to L2. A node in 
L3 represents a spatial connection between two nodes. These nodes may be used to 
interpolate distances during insertion of Type-2 nodes. 

(iii) Similar to step (ii), nodes are added at a higher level indicating a relation among nodes 
of a lower hierarchy. For example, a node in L4 can indicate a path traversed using a 
set of L3 nodes. L3 nodes in turn indicate an spatial neighbourhood among L2 nodes. 

(iv) As the node density increases, the nodes will start getting repeated inputs, which help 
the nodes to tune the coverage. Tuning curves discussed earlier may be used to 
improve accuracy of recognition. 

(v) Simultaneously, the nodes start spawning Type-2 nodes in their neighbourhood. 
Typically a radial distribution function or a middle point between nodes may be selected. 
These nodes will fix their tuning initially based on the parent nodes and later tune their 
parameters corresponding to the inputs over period of time. Spawning allows more 
connections to be created which will increase the number of possible paths. 

(vi) Multiple paths will always exist. As specific paths are explored, nodes get added to 
higher layers of nodes, which now can implement path optimization based on the 
segment length. Nodes recognizing shorter paths will have lower cost. 

(vii) Higher layers will combine successively larger number of segments and provide better 
selection among paths. Identification of chords requires edge nodes to be spawning 
more nodes in response to repeated input. Hebbian learning allows recognizing such 
paths by repeated use. 

4. RESULTS 

As the process of finding the path is dynamically chosen, it is possible to circumvent any 
obstructions as and when they arise. Hierarchical ARN can locate paths around the 
obstacles as shown in Figure. 24. Obstructions can be introduced simply by blocking the 
cells inside the obstruction area. Edges that are inside or cross the obstruction are also 
blocked.  In the following figures, the source is represented by orange dot and the 
destination is represented by green dot. Dots in the red and blue color indicate the 
obstructed nodes and the free nodes respectively. Cubes represent the obstructed area.  
We can observe that the best path (thick line) has the least path length and least cost as 
compared with the other paths. 
 
Figure 24 shows a typical simulation result of the hierarchical network shown in Figure 15 
for a 3 segment joint system with 6-DoF, using spherical joints shown in Figure 12. Nodes 
are shown as blue dots. Red volumes indicate where paths are blocked. Some of the 
selected paths between orange and green nodes at extreme left and right are shown as 
lines. A background grid has been included to give an idea of work space. Actual arm has 
not been shown to avoid clutter. The network is able to avoid obstacles and find traversable 
paths and select best path among the possible paths. Responses for a 5 segment joint 
system also show very similar results. 

 



 

Figure 24. Moving end effecter along optimal paths while avoiding obstacles 

 

(a) A 3-D view of a path 

 

(b) A slightly rotated view of the same path 

Figure25. Best solution among multiple optimized solutions of a three segment spherical 
joint with obstructions 

The effect of obstructions is shown in Figure 25 (a). The results are rotated by an angle in 
Figure 25 (b) to show that the joint is not traversing though the obstructed area. Different 
paths are indicated by different colored lines and the best path is indicated by a thick line. 
 
Alternate paths identified during separate runs may be seen by comparing the paths shown 
in Figures 24, 25 (a) and 26 (a), all of which have same starting and end points.  Results 
are rotated by some angle in Figures 25 (b), 26 (b) and 26 (c) to show that the path is 
avoiding the obstructions.  During training, nodes are presented in random order and hence 
the creation of nodes is not always identical (see Figure 26). That results in creation of 
different paths and costs. However, these solutions have similar costs. Results of several 
runs may be combined in to a single set. Folds may be used to store alternate possible 
paths.  

 
 



 

 
(a) 

 
(b) 

 
(c) 

Figure26. Best solution among multiple optimized solutions of a three segment spherical 
joint with obstructions 

 
It is observed that the temporal behaviour of neurons give rise to many such effects that 
can be related to a path related algorithm. Therefore, we consider the path model of brain 
as a critical model to be studied further. A hierarchical network for image recognition built 
using ARN has been reported in (Pavithra et al., 2019). 

R-Code for all the models discussed and presented here may be downloaded from our 
research web site cqserver.in/download. Publications and Code Examples are separately 
listed. Under publications, links to our papers published in journals and conference papers 
are available. Other publications are in PDF format. Code examples are compressed in zip 
or tar format. The code examples can be downloaded and next the files decompressed. 
Most of the code examples have a file indicating how to use the code. 



 

5. CONCLUSION 

A new structure for neural network called Auto Resonance Network is presented. A single 
layer ARN can be used to classify convex data sets. Deep learning hierarchical structure 
using Hebbian learning has been used with ARN to simulate a robotic system that can learn 
to move in a workspace with obstacles. Advantages of the proposed network are its 
simplicity and scalability. Every node in ARN corresponds to a small volume in input space 
with a controlled coverage space around a resonating center. To a certain extent, the 
network is similar to RBF network but with different control algorithm. ARN can associate 
input and output using a Hebbian like learning mechanism. The size of the network grows 
with input. An illustrative example of a robotic arm is presented. There is no limitation on the 
number of segments present in the joint or the size of output space other than the 
performance issues. The network provides a tradeoff between accuracy and number of 
nodes required. The system learns from the environment continuously, growing with 
experience over period of time.A neuronal interpretation of the connection layer and path 
layers in the hierarchical ARN, generally called Pathnet, has been presented. ARN and 
Pathnet can be used as a general purpose classifier and AI tool. This provides new ways to 
explore many complex problems in AI. Searching method used here can also be easily 
adapted for semantic webs and natural language processing. It is possible to develop many 
application for modern gadgets using ARN. 
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