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ABSTRACT 

This paper presents model-free sliding mode controllers and Takagi-Sugeno fuzzy 

controllers for the flux and conductivity control of Reverse Osmosis Desalination Plants 

(RODPs). The RODPs are Multi Input-Multi Output processes and two separate controllers 

are designed in Single Input-Single Output control systems. The design of the model-free 

sliding mode controllers is done by Lyapunov’s stability theory. The Takagi-Sugeno fuzzy 

controllers are designed by considering linear matrix inequalities as constraints in an 

optimization problem solved by a Grey Wolf Optimizer algorithm. Simulation results are 

included. 
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1. INTRODUCTION 

Reverse Osmosis Desalination Plants (RODPs) are important in the context of solving the water crisis 

problem in order to give fresh water of good quality and quantity. From a systemic point of view 

RODPs are nonlinear Multi Input-Multi Output (MIMO) processes (Gambier et al., 2007), and both the 

flux and the conductivity control must be done. Some of the important examples of modeling and 

control systems and algorithms for RODPs are: multi-objective optimization applied to tune the 

Proportional-Integral (PI) controllers in two Single Input-Single Output (SISO) control systems for 

separate flux and conductivity control (Gambier et al., 2009), the combination of an operational model 

for spiral-wound reverse osmosis desalting and a supervisory controller to provide real-time updates 

of membrane permeability (Gao et al., 2014), the optimal tuning of Proportional-Integral-Derivative 

(PID) controllers using Particle Swarm Optimization (PSO) (Rathore et al., 2013), teacher-learner-

based-optimization (Rathore et al., 2018a), Grey Wolf Optimizer (GWO) (Rathore et al., 2018b), two-

dimensional genetic algorithm (Lee et al., 2016) and robust control (Phuc et al., 2017). 

Model-free sliding mode control has been proposed in (Precup et al., 2014) to combine the 

advantages of two control strategies, model-free data-driven control and sliding mode control. Some 

recent results on model-free sliding mode control are: sliding mode control is combined with a model-

free intelligent PI (iPI) controller in (Precup et al., 2014) and applied to real-time servo system control; 

a mixed sliding mode control-model-free iPD controller is proposed in (Wang et al., 2015) and applied 

to a quadrotor system; sliding mode control combined with model-free adaptive control applied to a 

robotic exoskeleton is suggested in (Wang et al., 2016); two iPI-based model-free sliding mode 

control approaches are proposed in (Precup et al., 2017c) and applied to twin rotor aerodynamic 

systems, with the first one developed from (Precup et al., 2014) and the second one also applied in 

(Wang et al., 2017) but in an iPID formulation to an exosekeleton system; the first approach in 

(Precup et al., 2017c) is applied in (Khooban, 2018) to load frequency control in microgrids. 

As shown in (Vrkalovic et al., 2017), stability is one of the most important problems in the analysis and 

design of nonlinear control systems. The stability issues related to fuzzy control systems have been 

studied seriously in the recent years, with examples presented in (Chang et al., 2017), (Du et al., 

2017), (Haidegger et al., 2012), (Li et al., 2018), (Pozna et al., 2012), (Preitl et al., 2006), 

(Rathinasamy et al., 2018), (Škrjanc et al., 2002) and (Tomescu et al., 2007). 

The optimal tuning of fuzzy controllers can guarantee systematic performance specifications in the 

conditions of model-based tuning. An overview on swarm intelligence algorithms applied to fuzzy 

controllers is given in (Precup et al., 2015). A part of the application of these algorithms includes Ant 

Colony Optimization (Castillo et al., 2015), chemical optimization (Melin et al., 2013), genetic 

algorithms (Das et al., 2013), (Perez et al., 2013), Simulated Annealing (Vrkalovic et al., 2017), PSO 

(Vrkalovic et al., 2017), Gravitational Search Algorithm (GSA) (Vrkalovic et al., 2017), harmony search 

(Wang et al., 2013) and GWO (Precup et al., 2017a), (Precup et al., 2017b). But the proper adaptation 

of other algorithms can also be considered (Kazakov and Lempert, 2015), (Purcaru et al., 2013). 

This paper proposes two approaches to the control of RODPs. Both approaches use two SISO control 

systems for separate flux and conductivity control with appropriate controllers designed and tuned 



 

after the application of decoupling. One of the approach is model-free sliding mode control as an 

application of the approach proposed in (Precup et al., 2014) with the design steps given in (Precup et 

al., 2017c), and the other approach is model-based fuzzy control. The model-based control is applied, 

as in (Vrkalovic et al., 2017), as a combination of swarm intelligence algorithms and stability by the 

optimal tuning of the parameters of Takagi-Sugeno fuzzy controllers using stability conditions 

expressed as linear matrix inequalities (LMIs) that are used as constraints in optimization problems. 

But this time a PI fuzzy controller expressed in state-space form is used, and the swarm intelligence 

algorithm is GWO. 

The rest of the paper is structured as follows: Section 2 is dedicated to the modeling of RODPs and 

decoupling in the context of MIMO reduction to SISO. The steps of the model-free sliding mode 

approach are given in Section 3. The Takagi-Sugeno fuzzy control system models and stability 

analysis are treated in Section 4. The optimal tuning of fuzzy controllers is presented in Section 5. 

Section 6 offers simulation results, and conclusions are highlighted in Section 7. 

 

2. MODELS OF REVERSE OSMOSIS DESALINATION PLANTS 

The transfer function matrix of RODP is expressed as follows using the data taken from (Alatiqi et al., 

1989), (Chaaben et al., 2011), (Riverol, C., Pilipovik, V., 2005), (Robertson et al., 1996): 
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where the individual transfer functions between the two control inputs (pH sAu =1  and feed pressure 

ru θ=2 ) and two controlled outputs (permeate water flux sFy =1  and salinity or conductivity 

sCy =2 ) in zero initial conditions are: 
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where the values of model parameters obtained at salinity or disturbance μS/cm 3000=fC  are 

(Chaaben et al., 2011): 
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The MIMO control system structure is presented in Figure 1. This structure points out the flux 

controller 1C , the conductivity controller 2C , the two SISO control loops with the water flux reference 

input 1r  and control error 1e , and the conductivity reference input 2r  and control error 2e . 



 

 
Figure 1. MIMO control system structure for RODP. 

 
Since the two control loops interact, the decoupling is done for a relatively simple controller design. 

This is done in terms of adding the feedforward decoupler blocks with the transfer functions )(12 sGff  

and )(21 sGff  in Figure 1. The actuators and measurement blocks dynamics are included in the model 

and parameters (1) to (3) and the two control signals keep the same notation for the sake of simplicity. 

The transfer function matrix of the process plus decoupler is: 
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Imposing zero elements on the antidiagonal of the matrix )(sPG  to ensure ideal decoupling, the 

decoupler is computed as: 
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Therefore, the decoupled process is represented by the transfer function matrix: 
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where )(11 sP  is the decoupled process transfer function for flux control and )(22 sP  is the decoupled 

process transfer function for conductivity or salinity control. 



 

The detailed expressions of )(11 sP  and )(22 sP  are not presented here. However Preitl and Precup’s 

Extended Symmetrical Optimum method can be applied to such processes due to its robustness 

feature (Precup et al., 2009), (Precup et al., 2013), (Vrkalovic, 2015). 

 

3. MODEL-FREE SLIDING MODE CONTROL DESIGN 

The model-free sliding mode control system structure for one of the two control loops is presented in 

Figure 2, therefore the subscripts 1 and 2 are eliminated as follows, and its design approach consists 

of the following steps (Precup et al., 2017c): 

- Step 1. Set the design parameter 0>α  such that )(ty&  and )( tuα  should have the same 

order of magnitude, where the first order local process model used for controlling )(11 sP  or 

)(22 sP  is: 

 
 )( )()( tutFty α+=&  (7) 
 
- Step 2. Choose the parameters of the first order derivative plus low-pass filter with the transfer 

function: 
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such that to ensure a tradeoff to noise reduction and delay induced by the filter. 
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Figure 2. Model-free sliding mode control system structure (Precup et al., 2017c) applied to 

both control loops presented in Figure 1. 
 

- Step 3. Estimate a small value for the design parameter maxeste , where )(teest  is the estimation 

error of )(tF : 
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max|)(| estest ete ≤ , and PK  and IK  are the proportional and integral gains of the PI controller in the 

structure of iPI controller, but they do not affect the design. 

- Step 4. Set the design parameter 0>T  to prescribe the desired behavior of the control system 

on the sliding manifold, where the switching variable is )(tσ : 
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and the expression of the nonlinear block specific to the boundary layer approach in Figure 1 is: 
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where 0>η  and 0>ε  are the convergence factor and the boundary layer thickness, respectively. 

- Step 5. Set the parameters 0>η  and 0>ε  using inequalities (Precup et al., 2017c): 
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where ∞este  is the steady-state estimation error. 

 

4. FUZZY CONTROL SYSTEM MODELS AND STABILITY ANALYSIS 

The presentation will be given again for one of the two control loops in Figure 1, where 1C  and 2C  

are Takagi-Sugeno PI-fuzzy controllers, and the subscripts 1 and 2 will be omitted as follows. Since 

the process model presented in (6) is a simplified one and the decoupling cannot be perfect in 

practice, the process model that depend on the parameters in (3) are nominal ones, and they can be 

subjected to variations and parametric uncertainties. Some models and the stability analysis results 

are taken from (Vrkalovic et al., 2017), but with bold notations for matrices and vectors. The thi  rule 

of the fuzzy model for process with parametric uncertainties is: 
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where ijM  is a fuzzy set (linguistic term), nRt ∈)(x  is the system state vector, mRt ∈)(u  is the 

control signal vector, 1=m  as follows for a SISO control loop, so the notation )()( tut =u  will also be 



 

used, pRt ∈)(y  is the process output and for the same reason 1=p  and )()( tyt =y , iii CBA ,,  

are known constant matrices that describe the nominal process, and )(),...,(),( 21 tztztz p  are the 

premise (scheduling) variables, which belong to the input or scheduling vector 
T

p tztztzt )]( ... )( )([)( 21=z , Rni ...1=  and Rn  is the number of rules. 

The matrices ii BA ΔΔ ,  in (13) are parametric uncertainties of the process, and have the following 

bounded structure: 
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where iii 21 ,, EEH  are known real constant matrices, )(tiF  is an unknown matrix function with 

Lebesgue-measurable element, and I  is the identity matrix. 

The inputs of the Takagi-Sugeno PI-fuzzy controller (both input and premise variables) are the control 

error )(te  and the integral of control error )(teI  obtained as the state variable of the integral part of 

the linear PI controller, which is actually fuzzified: 
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The computation of the derivative of both terms in (15) using the expression of the control error and 

(15) leads to the dynamics of the integral part of the linear PI controller: 
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Considering three linguistic terms for )(te  and three linguistic terms for )(teI , the expression of thi  

rule in the rule base of the Takagi-Sugeno PI-fuzzy controller is ( 9=Rn  for Parallel Distributed 

compensation (PDC)): 
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where )(tui  are the local control signals, i
Ck  are the gains and i

iT  are the integral time constants. 

Using the PROD operator to model the AND function in the rule antecedent, each fuzzy rule 

generates a firing degree 10, ≤μ≤μ ii  (of thi  rule) according to: 
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where ih  is the normalized firing degree. The condition (18) written for the process corresponds 

to the following condition for the controller: 
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The weighted average defuzzification method produces the output of the Takagi-Sugeno PI-fuzzy 

controller represented by the control signal )(tu : 
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Using the definition of )(te  and the substition of the second equation taken from the state-space 

model in the rule consequent (in (13)) in (20), the expression of the control signal )(tu  is: 
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The Takagi-Sugeno fuzzy model of the process with parametric uncertainties is: 
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where 0))(( ≥thi z , Rni ...1= , and ∑
=

>
Rn

i
i th

1
0))((z . Finally, the substitution of )()( tut =u  from (21) 

in (22) leads to the state-space model of the fuzzy control system with parametric uncertainties. 

Introducing the augmented state vector )(tx : 
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the Takagi-Sugeno PI-fuzzy controller can be expressed as the following state feedback form specific 

to PDC: 
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where mn
mnii Rk ×+

=η+=ωωη ∈= )1(
...1,1...1][k  are constant state feedback gain matrices, which are 

expressed from (21) and (23): 
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The gain matrices ik  will be computed using GWO. 

The modified expression of (13) with the augmented system matrices is: 
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where )(trrB  is a disturbance term in the context of stability analysis. 

The combination of (25) and (27) leads to the state-space model of the Takagi-Sugeno fuzzy control 

system with parametric uncertainties: 
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The main results on the stable design of the Takagi-Sugeno fuzzy control system with parametric 

uncertainties are expressed as the following theorem: 

Theorem 1. The Takagi-Sugeno fuzzy system modeled in (28) is globally asymptotically stable if 

there exists a symmetric and positive definite matrix P  and some scalar β  that fulfill the following two 

sets of LMIs: 
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Proof. This theorem is the generalization of Theorem 1 proposed in (Vrkalovic et al., 2017) to the 

augmented state-space system model. The sufficient conditions (29) and (30) that guarantee the 



 

global asymptotic stability of the Takagi-Sugeno fuzzy control system with parametric uncertainties 

are derived as follows using Lyapunov-Krasovskii’s method. 

Let us consider the Lyapunov function V  that is defined and fulfils: 
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since 0>= TPP . The derivative of the function in (31) is: 
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Applying Lyapunov-Krasovskii’s method to (32) using (28) leads to: 
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and appropriate dimensions. Equation (33) is next written as: 
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with the notations: 
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and (16) leads to: 
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Finally, (15) can be transferred into the LMIs (29) and (30) by applying the lemma given in (Peterson 

and Hollot, 1986) and the Schur complement. The LMIs (29) and (30) are solved numerically and will 

be used as constraints in the optimization problem solved by GWO in the next section. 

 

5. OPTIMAL TUNING OF TAKAGI-SUGENO PI-FUZZY CONTROLLERS USING GWO 

The design of the Takagi-Sugeno PI-fuzzy controller included the parameter tuning, i.e. obtain the 

values of the parameters in the constant state feedback matrices mn
mnii Rk ×+

=η+=ωωη ∈= )1(
...1,1...1][k . 

The gains of these matrices are grouped in the parameter vector ρ . The membership functions are 

fixed and only the gains are optimized. 

The constrained optimization problem that ensures the stable design of the Takagi-Sugeno PI-fuzzy 

controllers is defined as follows: 
 



 

 (30)s.t.(29), )()(),(minarg
0

2

           

* ∫==
ft

dtteJJ ρρρ
ρ

 (38) 

 

where *ρ  is the optimal value of the vector ρ , e  is the control error, )(ρJ  is the objective function 

and ],0[ ft  is the time horizon. As pointed out in Section 1, the optimization problem (38) is solved in 

this paper by GWO, which is next briefly described. 

As shown in (Precup et al., 2017a), (Precup et al., 2017b), the operating mechanism of GWO starts 

with the random initialization of the agents that comprise the wolf pack. A total number of N agents 

(grey wolves) is used, and each agent is assigned to a position vector )(kiX : 
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where )(kx f
i  is the position of thi  agent in the thf  dimension, qf ...1= , k is the index of the 

current iteration, max...1 kk = , and maxk  is the maximum number of iterations. 

The operating mechanism (the search process of it) continues with the exploration stage, where the 

positions of the top three agents, namely the alpha (α ), beta (β ), and delta (δ ) agents, dictate the 

search pattern by diverging from other agents and converging to the prey (the solution to (38)). 

The exploitation stage models the attack on the prey, where the top three agents force the remaining 

agents (the omega (ω ) ones) to update their positions according to theirs. The following notations are 

used for the top three agent position vectors (Precup et al., 2017b): 
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The top three vector solutions )(kαX , )(kβX  and )(kδX , are obtained in a three-step selection 

process: 
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The a and c coefficients are then defined: 
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where f
lr1  and f

lr2  are uniformly distributed random numbers, 10 1 ≤≤ f
lr , 10 2 ≤≤ f

lr , qf ...1= , 

and the coefficients )(ka f  are linearly decreased from 2 to 0 during the search process: 
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The approximate distances between the current solution and the alpha, beta, and delta solutions (with 

the notations )(kd if
α , )(kd if

β  and )(kd if
δ  according to (Precup et al., 2017b)) are: 
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The components of the updated alpha, beta, and delta solutions are next obtained as: 
 

 },,{,...1,...1),()()()1( δβα∈==−=+ lNiqfkdkakxkx if
l

f
l

lflf  (45) 
 
and they lead to the update law for agents’ positions: 
 

 Niqfkxkxkxkx ffff
i ...1,...1,3/)]1()1()1([)1( ==+++++=+ δβα  (46) 

 
also expressed in vector form as: 
 

 Nikkkki ...1 ,3/)]1()1()1([)1( =+++++=+ δβα XXXX  (47) 
 
The GWO algorithm is mapped onto the optimization problems using: 
 

 ))((minarg,...1,)( max...1

* kJNik iNii XρρX
=

===  (48) 

 

5. SIMULATION RESULTS 

The model-free sliding mode controller and the Takagi-Sugeno fuzzy controller are tested as follows 

using the RODP process model presented in Section 2 and the controller designs presented in 

sections 3 and 4. Simulation results are given and not all details on the parameters are offered 

because of certain constraints. 

The two control loops are tested by considering four controllers in each of them: a model-free sliding 

mode controller (MFSMC), a Takagi-Sugeno PI-fuzzy controller (TSPIFC) proposed in this paper, a PI 

fuzzy controller optimized by GWO (PICGWO), and a PI fuzzy controller optimized by GSA (PICGSA) 

using a GSA implementation applied from (Purcaru et al., 2013) and (Vrkalovic et al., 2017). The last 

two controllers are used for comparison. In order to offer a fair comparison, although one controller is 

tuned in a model-free manner and three controllers are tuned in a model-based manner, the optimal 

tuning of all controllers is carried out in a model-based manner by solving the optimization problems of 

type (38) for both control loops. 

The closed-loop responses observed for the controllers applied to the flux control loop are presented 

in Figure 3. The closed-loop responses obtained for the control systems with controllers applied to the 

conductivity control loop are presented in Figure 4. The simulation results show that the best 

controller for the flux loop is the model-free sliding mode controller, and the best one for the 

conductivity loop is the fuzzy controller. 



 

 
Figure 3. Controlled output step response for flux control loop. 

 

 
Figure 4. Controlled output step response for conductivity control loop. 

 

6. CONCLUSIONS 

The paper has presented the design of a model-free sliding mode controller and a Takagi-Sugeno PI-

fuzzy controller for RODP. Some simulation results have been given. The stability analysis and the 

optimization have been used in the tuning of the fuzzy controller. But, for a fair comparison, the 

model-based optimal tuning has been applied to tune the free parameters of all controllers, model-

based and model-free ones. However, the model-free versus model-based tuning remains an open 

issue although the performance of the control systems presented in this paper is similar. 

The presentation of these controllers is sufficiently general to be used to other processes. Future 

research will deal with different processes and different controllers as well including PID ones and 

other controller structures. 



 

 

REFERENCES 

Alatiqi, I.M., Ghabris, A.H., Ebrahim, S., 1989, System identification and control of reverse osmosis 

desalination. Desalination 75, 119–140. 

Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F., 2015, A new approach for dynamic fuzzy logic 

parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. 

Applied Soft Computing 28, 150-159. 

Chaaben, A.B., Andoulsi, R., Sellami, A., Mhiri, R., 2011, MIMO modeling approach for a small 

photovoltaic reverse osmosis desalination system. Journal of Applied Fluid Mechanics 4, 35–41. 

Chang, X.-H., Park, J.H., Shi, P., 2017, Fuzzy resilient energy-to-peak filtering for continuous-time 

nonlinear systems. IEEE Transactions on Fuzzy Systems 25, 6, 1576–1588. 

Das, S., Pan, I., Das, S., 2013, Fractional order fuzzy control of nuclear reactor power with thermal-

hydraulic effects in the presence of random network induced delay and sensor noise having long 

range dependence. Energy Conversion and Management 68, 200–218. 

Du, Z.-B., Lin, T.-C., Song, P., Lin, Y.-C., 2017, Fuzzy mixed H2/H∞ sampled-data control design for 

nonlinear dynamic systems. Control Engineering and Applied Informatics 19, 3, 13–21. 

Gambier, A., Krasnik, A., Badreddin, E., 2007, Dynamic modeling of a simple reverse osmosis 

desalination plant for advanced control purposes. Proceedings of 2007 American Control Conference, 

New York, NY, USA, 4854–4859. 

Gambier, A., Wellenreuther, A., Badreddin, E., 2009, Control system design of reverse osmosis plants 

by using advanced optimization techniques. Desalination and Water Treatment 10, 1–3, 200–209. 

Gao, L., Rahardianto, A., Gu, H., Christofides, P.D., Cohen, Y., 2014, Energy-optimal control of RO 

desalination. Industrial & Engineering Chemistry Research 53, 18, 7409–7420. 

Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z., Preitl, S., 2012, Simulation and control 

for telerobots in space medicine. Acta Astronautica 181, 1, 390–402. 

Kazakov, A.L., Lempert, A.A., 2015, On mathematical models for optimization problem of logistics 

infrastructure. International Journal of Artificial Intelligence 13, 1, 200–210. 

Khooban, M.-H., 2018, Secondary load frequency control of time-delay stand-alone microgrids with 

electric vehicles. IEEE Transactions on Industrial Electronics 65, 9, 7416–7422. 

Lee, S.-K., Myung, S.-H., Hong, J.-H., Har, D.-S., 2016, Reverse osmosis desalination process 

optimized for maximum permeate production with renewable energy. Desalination 398, 133–143. 

Li, H.-Y., Wang, J.-H., Wu, L.-G., Lam, H.-K., Gao, Y.-B., 2018, Optimal guaranteed cost sliding-mode 

control of interval type-2 fuzzy time-delay systems. IEEE Transactions on Fuzzy Systems 26, 1, 246–

257. 



 

Melin, P., Astudillo, L., Castillo, O., Valdez, F., Garcia, M., 2013, Optimal design of type-2 and type-1 

fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new 

chemical optimization paradigm. Expert Systems with Applications 40, 3185–3195. 

Perez, J., Milanés, V., Godoy, J., Villagrá, J., Onieva, E., 2013, Cooperative controllers for highways 

based on human experience. Expert Systems with Applications 40, 1024–1033. 

Peterson, I.R., Hollot, C.V., 1986, A Riccati equation approach to the stabilization of uncertain linear 

systems. Automatica 22, 397–411. 

Phuc, B.D.H., You, S.-S., Choi, H.-S., Jeong, S.-K., 2016, Advanced control synthesis for reverse 

osmosis water desalination processes. Water Environment Research 89, 11, 1932–1941. 

Pozna, C., Minculete, N., Precup, R.-E., Koczy, L.T., Ballagi, A., 2012, Signatures: Definitions, 

operators and applications to fuzzy modeling. Fuzzy Sets and Systems 201, 86–104. 

Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M., 2015, An overview on fault 

diagnosis and nature-inspired optimal control of industrial process applications. Computers in Industry 

74, 75–94. 

Precup, R.-E., David, R.-C., Petriu, E.M., 2017a, Grey wolf optimizer algorithm-based tuning of fuzzy 

control systems with reduced parametric sensitivity. IEEE Transactions on Industrial Electronics 64, 1, 

527–534. 

Precup, R.-E., David, R.-C., Szedlak-Stinean, A.-I., Petriu E.M., Dragan, F., 2017b, An easily 

understandable grey wolf optimizer and its application to fuzzy controller tuning. Algorithms 10, 2, 

paper 68, 1–15. 

Precup, R.-E., Preitl, S., Petriu, E.M., Tar, J.K., Tomescu, M.L., Pozna, C., 2009, Generic two-degree-

of-freedom linear and fuzzy controllers for integral processes. Journal of the Franklin Institute 346, 10, 

980–1003. 

Precup, R.-E., Radac, M.-B., Petriu, E.M., Dragos, C.-A., Preitl, S., 2014, Model-free tuning solution 

for sliding mode control of servo systems. Proceedings of 8th Annual IEEE International Systems 

Conference, Ottawa, ON, Canada, pp. 30–35. 

Precup, R.-E., Radac, M.-B., Roman, R.-C., Petriu, E.M., 2017c, Model-free sliding mode control of 

nonlinear systems: algorithms and experiments. Information Sciences 381, 176–192. 

Precup, R.-E., Radac, M.-B., Tomescu, M.L., Petriu, E.M., Preitl, S., 2013, Stable and convergent 

iterative feedback tuning of fuzzy controllers for discrete-time SISO systems. Expert Systems with 

Applications 40, 1, 188–199. 

Preitl, S., Precup, R.-E., Fodor, J., Bede, B., 2006, Iterative feedback tuning in fuzzy control systems. 

Theory and applications. Acta Polytechnica Hungarica 3, 3, 81–96. 

Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O., David, R.-C., Dragan, F., 2013, Optimal robot 

path planning using gravitational search algorithm. International Journal of Artificial Intelligence 10, 

S13, 1–20. 



 

Rathinasamy, S., Rathika, M., Kaviarasan, B., Shen, H., 2018, Stabilization criteria for singular fuzzy 

systems with random delay and mixed actuator failures. Asian Journal of Control 20, 2, 829–838. 

Rathore, N.S., Kundariya, N., Narain, A., 2013, PID controller tuning in reverse osmosis system based 

on particle swarm optimization. International Journal of Scientific and Research Publications 3, 6, 1–5. 

Rathore, N.S., Singh, P., 2018a, Design of optimal PID controller for the reverse osmosis using 

teacher-learner-based-optimization. Membrane Water Treatment 9, 2, 129–136. 

Rathore, N.S., Singh, P., Bhavnesh, K., 2018b, Controller design for Doha water treatment plant using 

grey wolf optimization. Journal of Intelligent & Fuzzy Systems DOI: 10.3233/JIFS-169815, 1–8. 

Riverol, C., Pilipovik, V., 2005, Mathematical modeling of perfect decoupled control system and its 

application: A reverse osmosis desalination industrial-scale unit. Journal of Analytical Methods in 

Chemistry 2005, 2, 50–54. 

Robertson, M.W., Watters, J.C., Desphande, P.B., Assef, J.Z., Alatiqi, I.M., 1996, Model based control 

for reverse osmosis desalination processes. Desalination 104, 59–68. 

Škrjanc, I., Blažič, S., Matko D., 2002, Direct fuzzy model-reference adaptive control. International 

Journal of Intelligent Systems 17, 10, 943–963. 

Tomescu, M.L., Preitl, S., Precup, R.-E., Tar, J.K., 2007, Stability analysis method for fuzzy control 

systems dedicated controlling nonlinear processes. Acta Polytechnica Hungarica 4, 3, 127–141. 

Vrkalovic, S., 2015, An application of symmetrical optimum method to servo systems with variable 

inertia. Gradus 2, 1, 191–199. 

Vrkalovic, S., Teban, T.-A., Borlea, I.-D., 2017, Stable Takagi-Sugeno fuzzy control designed by 

optimization. International Journal of Artificial Intelligence 15, 2, 17–29. 

Wang, H.-P., Tian, Y., Han, S.-S., Wang, X.-K., 2017, ZMP theory-based gait planning and model-free 

trajectory tracking control of lower limb carrying exoskeleton system. Studies in Informatics and 

Control 26, 2, 161–170. 

Wang, H.-P., Ye, X.-F., Tian, Y., Christov, N, 2015, Attitude control of a quadrotor using model free 

based sliding model controller. Proceedings of 2015 20th International Conference on Control Systems 

and Science, Bucharest, Romania, 149–154. 

Wang, L., Yang, R., Pardalos, P.M., Qian, L., Fei, M., 2013, An adaptive fuzzy controller based on 

harmony search and its application to power plant control. International Journal of Electrical Power 

and Energy Systems 53, 272–278. 

Wang, X., Li, X., Wang, J., Fang, X., Zhu, X., 2016, Data-driven model-free adaptive sliding mode 

control for the multi degree-of-freedom robotic exoskeleton. Information Sciences 327, 246–257. 


