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ABSTRACT 

In this paper, first the travel and delay times in a road ending in a traffic light are 
determined under different traffic flows and traffic light cycles using a microscopic traffic 
simulator. The obtained results are analyzed and compared with the results of other 
models reported in the literature. In addition, the optimal traffic light cycle times under 
different loads are determined for one road and a method is shown to obtain the optimal 
green period ratios of a traffic light as well as the cycle time in an intersection. Finally, the 
generation of a fuzzy model is presented and a methodology is suggested, where the 
fuzzy system is applied as a surrogate model for the determination of the optimal green 
period ratios and traffic light cycle times. 
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1. INTRODUCTION 
 

The optimization of traffic lights cycles has been intensively investigated in the last decade. The 

calculation or measurement of delays caused by a road ending in a traffic node containing traffic lights 

is one of the key issues in this field. Different models and methods have been used to solve this task 

so far, and the results may be significantly different from each other when the node is overloaded or 

close to the overloaded state. 

In this problem it is important to distinguish between the optimization of particular traffic lights of an 

intersection and the optimization of a network of traffic lights containing traffic nodes of a larger area. 

The research being reported in this paper had two goals. The first one was to apply the Intelligent 

Driver Model (IDM) (Treiber, Hennecke, Helbing, 2000) based microscopic traffic simulator (Kovács et 

al., 2016) developed at our department, that we have called IT MICROSIM, in order to determine the 



 

traffic delay in a simple test traffic node equipped with traffic lights, and to compare the results to 

those of other models. The optimal cycle time for traffic signals can be determined later based on 

delay values. The second goal was to create a fuzzy model that describes the connection between 

the total delay at an intersection and its influential factors as well as to describe a methodology that 

uses a fuzzy model as a surrogate model for the determination of the optimal green period ratio and 

traffic light cycle time in case of given traffic flow values. 

The rest of this paper is organized as follows. Section 2 recalls some significant results obtained in 

field of fuzzy logic based traffic light related solutions. Section 3 presents the significant parameters of 

IT MICROSIM. Section 4 discusses the simulation results related to a road ending in a traffic light. 

Section 5 investigates the issues of the optimal cycle time. Section 6 extends the investigation to a 

whole intersection. Section 7 presents the fuzzy model generation and the optimization of the green 

time ratios and traffic light cycle of the intersection. The conclusions are drawn in section 8. 
 

 

2. RELATED WORKS 
 

Fuzzy controllers have been proposed in several works for the optimization of a traffic light at an 

intersection.  

As early as 1977 Pappis and Mamdani (Pappis, Mamdani, 1977) presented a fuzzy logic controller for 

a traffic light at a single intersection of two one-way streets considering average delay of vehicles as 

performance criterion.  They compared the fuzzy logic controller to the conventional effective vehicle-

actuated controller showing that the use of a fuzzy logic controller results in a better performance. 

More recently Karakuzu and Demirci (Karakuzu, Demirci, 2010) designed a fuzzy controller for a 

traffic light at a four-directional intersection with two bidirectional arteries, and developed a simulator 

hardware to test the controller. They designed a fuzzy controller with two inputs, i.e. the lengths of the 

queues of waiting vehicles in each artery, and two outputs, i.e. the lengths of the green and red lights 

of the main artery. 

Postorionoa and Versacia (Postorinoa, Versacia, 2014) proposed a fuzzy demand-responsive control 

approach based on real-time measures and traffic lights adaptation to speed up traffic flows and 

reduce delay at signalized intersections. 

Baydokht, Noori, Siamak, and Azhang zad (Baydokht, Noori, Azhang zad, 2014) presented a 

mathematical model to describe the control of the traffic lights at a four-way intersection with eight 

traffic lights. Due to the limitations of giving precise and constant values to parameters of the 

mathematical model a fuzzy model was used. The fuzzy model more closely resembled real life 

situations and therefore it proved to be practical. 

Fuzzy controllers have been used to control freeways entrances (Murat, Cakici, Yaslan, 2012) as well. 

In this case the objective was to avoid the congestion of the highways. Delay control was also 

introduced, discouraging drivers from entering the freeway at peak times, and encouraging them to 

use them during off-peak hours. 



 

Other computational intelligence based methods have been also proposed for the traffic lights 

problem like case-based reasoning systems (Castan et al., 2014), genetic algorithms (Teo, Kow, Chin, 

2010) as well as non-computational intelligence based techniques and methods (Khanjary, Navidi, 

2012). 

Traffic lights optimization in traffic networks has been investigated by several researchers as well. For 

example, Rouphail et al. (Rouphail, Park, Sacks, 2000) suggested genetic algorithm using the 

microscopic traffic simulator CORISM for the coordination of nine intersections of Chicago. García-

Nieto et al. (García-Nieto, Alba, Carolina Olivera, 2012) presented a Swarm Intelligence approach 

complemented with a microscopic traffic simulator to find optimal traffic lights timing programs for 

areas with different characteristics of Malaga and Seville. Metaheuristics were also applied to find 

efficient traffic light programs aiming the reduction of fuel consumption and harmful emissions in the 

cities of Malaga and Seville (García-Nieto, Ferrer, Alba, 2014). 
 

 

3. PARAMETERS OF THE IDM MODEL IN IT MICROSIM 
 

In the microscopic traffic simulator IT MICROSIM (Kovács et al., 2016) used in course of this research 

the speed and instantaneous acceleration of each vehicle is determined by the so-called “car-

following model”, where the instant attributes of each vehicle depend on the kinematics of the vehicle 

moving in its front.  

The two most popular models in this field are the Intelligent Driver Model (IDM) (Treiber, Hennecke, 

Helbing, 2000), (Treiber, Helbing, 2001) and the Wiedemann Model (Wiedemann, 1974). In both 

models the behavior of the vehicle is defined by a parameter set. Here the most important 

environmental inputs are the kinematics variables, i.e. the relative position and the speed of the 

vehicle traveling in front of the current vehicle. These models have also been improved in the last few 

years (Wiedemann, 1991), (Derbel et al., 2012), (Derbel et al., 2013), and comparative tests of the 

two models have also been carried out (Apeltauer et al., 2013). 

The dynamic model of the developed simulation software has been designed to be freely 

interchangeable and upgradeable. The current measurements were carried out in the main IDM 

model, in which the instantaneous acceleration of a vehicle is given by the equations (1) and (2) 
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where v is the speed of the vehicle, ∆v is the difference between the speed of the vehicle in its front 

and the speed of the current vehicle, s is the distance between the two vehicles and s* is the ideal 

following distance. 



 

The optimal values of the model parameters were determined in course of the investigation reported 

in (Kovács et al., 2016). They are: 

• the maximum acceleration (a = 1.6 m/s2), 

• the minimum acceleration, i.e. the maximum braking deceleration (b = 2 m/s2), 

• the maximum speed (v0 = 55 km/h), 

• the follow-up time (T = 0.86 s), 

• the distance between non-moving vehicles (s0 = 2 m), 

• the acceleration exponent (δ = 4). 

These parameter values determine how realistic the movement of vehicles will be in different 

simulated situations, i.e. how the simulation results are in correspondence with measurements taken 

in real traffic flow. 

An important component of the dynamic module is the controller for lane changes of vehicles. This is 

currently partly based on the model proposed by Kesting (Kesting, Treiber, Helbing, 2007). If the 

driver believes that an adjacent lane is more advantageous for faster progress the lane change will 

start using Kesting's model. However, the lane change can occur independently from the model as 

well. When the path-tracking unit indicates the vehicle to follow a chosen direction it will have to 

change the lane. 
 

 

4. SIMULATION BASED INVESTIGATION OF AVERAGE DELAY TIME VALUES ON A ROAD 
 

In our previous work (Johanyák, Alvarez, 2017) we investigated average delay times on a road that 

ends at an intersection with traffic lights (Figure 1). Experiments were carried out using IT MICROSIM 

with a wide range of parameter values. In this section we recall the main points of the investigation 

extending it with further discussion of the results and comparing them to results obtained by other 

models available in the literature. 
, 

 
 

Figure 1. Road ending in node with a traffic light (Johanyák, Alvarez, 2017). 
 

The simulation runs were carried out considering a 500 m long road ending in a node with a traffic 

light and randomly arriving vehicles. The traffic light cycle was composed from two periods with the 



 

same durations, the first one being the green period, and the second one being the red period. The 

green period was formed from three sections (1) green light time, (2) yellow light (3 seconds), and (3) 

red light (2 seconds). The red period contained only red light, simulating the time when the cross road 

gets the green period. Although in this section only the results related to the 50% green period ratio of 

the total cycle time are presented, experiments were carried out for 25%, 33%, 67% and 75% green 

period ratios as well. 

Although the simulator software makes possible the measurement of travel time, in practice delay 

time is used more commonly for examination issues related to the traffic lights. It is calculated from 

the travel time by subtracting the free-flow travel time, i.e. the travel time without traffic light. For 

example, if vehicles travel at 55 km/h, the theoretical free-flow time is 32.73 s. Besides, similarly to the 

real-world situation, in the micro-simulator the free-flow travel time also depends on the traffic flow 

value, as it is shown in Table 1. 
 

Table 1: Free-flow travel times (Johanyák, Alvarez, 2017). 
 

Flow [vehicle/h] Free-flow travel times [s] 
200 34.58 
400 35.59 
600 36.19 
800 36.86 
850 37.03 
900 37.17 
950 37.30 

1000 37.41 
1050 37.50 
1100 37.53 
1200 37.58 

 

Travel times were obtained in the micro-simulator under condition of stationary traffic inflow. Delay 

times are shown in Table 2 and in Figure 2. Similar tables also were obtained for the cases when the 

duration of the green period was 25%, 33%, 67% and 75% of the total duration of the traffic light cycle. 

Investigating the results one can recognize that the delay time values obtained using the micro-

simulator meet the Beckmann model (Beckmann, McGuire, Winsten, 1956) until the traffic light cycle 

capacity. They can be described by functions that are convex, continuous, non-negative and non-

decreasing and which depend on the current traffic. For traffic flow values greater than the traffic light 

cycle capacity, the delay increases until it reaches its maximum value when the road is filled with 

waiting vehicles.  

The capacity of a traffic light cycle is near the value of the abscissa of the inflection point of the graph 

corresponding to the cycle. 

One can see in Figure 2 that the higher the traffic light cycle time is, the larger the capacity of the 

traffic light cycle becomes. 
 



 

Table 2: Average delay times for the 50% green time period ratio [s] (Johanyák, Alvarez, 2017). 
 

 Traffic light cycle time [s] 
Flow [v/h] 50 76 100 150 200 

200  10.63 14.90 17.23 24.42 31.28 
400 12.81 17.03 19.60 27.12 35.65 
600 16.22 19.62 22.34 31.53 39.41 
800 44.45 26.45 27.62 35.58 45.52 
850 185.68 31.67 30.27 38.11 46.94 
900 218.98 45.83 35.21 42.09 49.38 
950 217.97 162.33 56.06 47.76 52.22 

1000 221.38 191.40 155.29 62.90 61.67 
1050 220.07 191.98 176.02 144.25 95.30 
1100 221.18 192.36 177.33 162.73 153.34 
1200 222.56 189.96 174.87 162.02 152.21 

 

 

 
 

Figure 2. Average delay times (Johanyák, Alvarez, 2017). 
 

A previous work in this field written by Dion, Rakha and Kang (Dion, Rakha, Kang, 2004) analyzed 

and compared several models used to determine the delay time. In this paper, our results have been 

compared with the following three methods.  

a. Webster’s stochastic model (Webster, 1958) 

The model calculates the delay time with a three-factor formula. The first member is the delay caused 

by uniform arrivals while the second one considers additional delay values due to the random arrival 

of vehicles. The third factor is a correction factor. 

b. Queueing model with supersaturation (Dion, Rakha, Kang, 2004) 



 

The delay is calculated considering uniform arrivals. The model allows that the number of vehicles 

arriving in a cycle to be more than the number of vehicles that can go through the traffic light during 

the cycle. 

c. Microscopic traffic simulation system INTEGRATION (Karakuzu, Demirci, 2010) 

The INTEGRATION microscopic traffic simulator includes a dynamic traffic simulator and a traffic 

assignment model. The simulator was used in (Dion, Rakha, Kang, 2004) to obtain delay estimates, 

which were obtained by calculating the difference between the simulated travel times and the ideal 

travel times at free speed. 

The comparison of the delay times calculated by the different models is shown in Figure 3, where a 

traffic light cycle of 76 seconds was used in correspondence with the traffic light cycle applied in (Dion, 

Rakha, Kang, 2004). The vertical dashed line gives the value of the traffic flow corresponding to the 

traffic light cycle capacity. 

The comparison of the delay times calculated by the different models is shown in Figure 3, where a 

traffic light cycle of 76 seconds was used in correspondence with the traffic light cycle applied in (Dion, 

Rakha, Kang, 2004). The vertical dashed line gives the value of the traffic flow corresponding to the 

traffic light cycle capacity. 
 

 
 

Figure 3. Comparison of models for delay times estimations. 
 

Figure 3 shows that in Webster’s model the delay time goes to infinity when traffic flow is approaching 

the capacity of the traffic light cycle (vertical dashed line). Meanwhile, the queueing model with 

supersaturation and the INTEGRATION system can handle the case when traffic flow exceeds the 

capacity of the traffic light calculating the delay time in this case as well. The behavior of the delay 

times in IT MICROSIM was described above, reaching a maximum value of 190 s in a 500 m long 

road. This value is the time required to travel the filled road with the specific traffic light cycle capacity. 



 

In the left vicinity of the capacity the results obtained by IT MICROSIM are closer to the results 

calculated by the stochastic model than to the values determined by the other two models. If the 

length of the road is not limited and the traffic flow exceeds the traffic light cycle capacity the number 

of waiting vehicles will grow indefinitely, and thus the delay will increase as well. 
 

 

5. OPTIMAL CYCLE TIME OF THE TRAFFIC LIGHT FOR ONE ROAD 
 

Still focusing on the traffic on only one road (e.g. the main road) one could be interested in 

determining the optimal value of the traffic light cycle in order to ensure the minimal average delay 

times for the vehicles on this road. In the case of the previously presented simulations the optimal 

delay times for the different traffic flow values are marked in bold in Table 2. One can see that the 50 

seconds traffic light cycle time is the best for low traffic flow values, but as the traffic flow value 

increases, longer and longer traffic light cycle times become the best options.  

This phenomenon is also illustrated in Figure 4, where the graphs for five traffic flow values (600, 800, 

850, 950 and 1000 vehicle/h) are shown. For each of them the best traffic light cycle is different: 60, 

76, 100, 150 and 200 s, respectively. In case of the other green period ratios (25%, 33%, 67%, 75%) 

the modification of the average delay time in function of the cycle time and traffic flow is similar with 

different actual values.  

IT MICROSIM ensures a proper architecture to determine the optimal cycle time values for all green 

period ratios and traffic flow values by using an arbitrary search technique or design of experiments 

(DOE) methodology in case of a static traffic flow. However, its application in a real-time system is not 

feasible owing to the high time demand of the simulations. 
 

 
 

Figure 4. Average delay time in function of the traffic light cycle time. 
 

 



 

6. OPTIMAL GREEN PERIOD RATIO AND TRAFFIC LIGHT CYCLE OF AN INTERSECTION 
 

In order to determine the optimal green period ratio and traffic light cycle of an intersection we 

consider an intersection with two two-way roads. Both roads have two lanes with opposite travel 

directions. The intersection has a traffic light system with a cycle similar to the one described in 

Section 4, and the two parts of the cycle may have different durations, i.e. different green period ratios. 

In the first part of the cycle one of the roads gets the green period in both directions, in the second 

part the other road comes. The traffic flow of a road is the maximum of the traffic flows in both 

directions. Figure 5 illustrates the intersection. 
 

 
 

Figure 5. The test intersection. 
 

Knowing traffic flows in both roads a separate table can be built for each possible traffic light cycle 

time containing the average delay times for each road and for each considered green time ratio based 

on the simulations carried out previously. For example, Table 3 was created for the 50 seconds traffic 

light cycle time supposing that the traffic flow is 200 vehicle/h in the W – E (West – East) road and 

400 vehicle/h in the S – N (South – North) road. The table also contains the absolute values of the 

differences between the delay times of the two roads. 

The quality of the service provided by the traffic light system can be measured by the total delay time 

(Ttd), which is 
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where TFXX is the current traffic flow on the road XX, and Td
XX is the average delay time on the same 

road. Ttd indicates the sum of all delay times related to the examined intersection for a period of one 

hour. 



 

The smallest Ttd value in Table 3 is 6 697 seconds, which was measured when the green time ratio 

was 33% (W – E) - 67% (S – N).  Similar tables to Table 3 were created for the same traffic flows with 

100, 150 and 200 seconds long traffic light cycles, but in none of them a total delay inferior to the one 

obtained for a cycle of 50 seconds was obtained. The 50 seconds traffic light cycle with a 33% (W – E) 

- 67% (S – N) green time ratio is the optimal traffic light setting to reduce the total delay time among 

the performed simulations. 
 

Table 3: Delays for different green time ratios (Traffic flows: 200 vehicle/h in W – E,  

400 vehicle/h in S – N; Traffic light cycle time: 50 s). 
 

Green time 
ratios [s] Delay time [s] 

W-E S-N W-E S-N Diff. 

Total delay
 [s] 

75% 25% 4.15 734.34 730.19 294 566.00
67% 33% 6.71 39.53 32.82 17 151.00
50% 50% 10.63 12.81 2.18 7 250.00
33% 67% 19.00 7.25 11.75 6 697.00
25% 75% 30.20 4.37 25.83 7 788.00

 

Although the above presented solution ensures the minimal total delay in some cases a “more fair” 

ratio could be demanded by requesting similar or the closest possible delay times for both roads. This 

requirement can be fulfilled by the 50% - 50% green time ratio in case of Table 3. Here by choosing 

the second best Ttd value one can ensure a significant reduction of the difference between the 

average delay times of the two roads. 

For larger values of traffic flows we got different optimal cycle time values from tables similar to the 

Table 3 obtained from the simulations. For example, for 600 vehicles/h on a road and 800 vehicles/h 

on the other, the optimal cycle time is 100 seconds long with 50% - 50% green time ratio. 

This method can provide an interesting alternative to other established methods (e.g. (Péter, 2012)). 

The above presented simulation results can be used in the green time ratio optimization of different 

intersection types as well. 
 

 

7. FUZZY MODEL BASED DETERMINATION OF THE OPTIMAL GREEN PERIOD RATIO AND 
TRAFFIC LIGHT CYCLE 

 

The previously described approach gives a simple solution for the determination of the optimal green 

time ratio and traffic light cycle time in case of the presented intersection type. However, it also has 

two shortcomings, namely it can choose only from a predetermined set of options and its application 

is cumbersome. 

To overcome the above mentioned problems a computational intelligence based approach is 

considered in this section. Computational intelligence based methods have become widely applied 

solutions in case of several problem types like fuzzy modeling (Precup et al., 2015), fuzzy control 

(Blažič et al., 2010), (Precup et al., 2013a), (Precup et al., 2013b), cognitive maps (Vaščák, 2012), 



 

natural language processing (Kovács, Szabó, 2017), failure analysis (Pokorádi, 2015), mechanical 

properties prediction (Karkalos et al., 2017), text classification (Sharif et al., 2017), etc. Based on the 

wide applicability of the approach a fuzzy model was created that describes the relation between the 

total delay time and its four influential factors. 
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where GPRWE is the green time ratio for the West-East direction, and TLC is the traffic light cycle time. 

The green time ratio of the South-North direction being a dependent variable it was omitted from the 

inputs of the system. To keep low the complexity of the system a sparse rule base was created and 

the fuzzy rule interpolation based inference technique presented in Section 7.1 was applied. The 

parameters of the rule base were optimized by the Particle Swarm Optimization algorithm, which is 

described in Section 7.2. The details of the fuzzy model are presented in Section 7.3. Section 7.4 

describes how the TLC and GPR values can be found for the smallest possible Ttd using the fuzzy 

system.  
 

7.1 Fuzzy Inference Based on Rule Interpolation 
 

Although the classical fuzzy inference techniques like Zadeh’s (Zadeh, 1965), Mamdani’s (Mamdani, 

Assilian, 1975), or Takagi-Sugeno’s (Takagi, Sugeno, 1985) are widely applied in practice they cannot 

properly handle cases when the available rule base does not ensure a full coverage of the input space, 

i.e. there is at least one point of the input space which is not overlapped (covered) by any rule 

antecedents. Rule bases having this characteristic are called sparse ones. Figure 6 illustrates a 

sparse rule base in case of a two-dimensional input space where all the membership functions are 

trapezoidal ones and thus the rule antecedents can be represented as truncated pyramids. Here for 

example in case of the input values (0.1, 0.1) there is no rule whose antecedent part would overlap 

the input point at least partially, i.e. there is no rule which could be applied. 
 

 
 

Figure 6. Antecedent space of a sparse rule base. 
 

Sparse rule bases can arise either owing to the lack of information or due to an intentional approach. 

The first situation can occur both in case of human created and in case of automatically generated 



 

rule bases. The second situation could appear when the full coverage of the input space could be 

reached only with a huge number of rules, which would slow down the system considerably, and 

therefore the creator of the rule base opted for a sparse solution. 

The discovery of the existence and sometimes necessity of the sparse cases led to the development 

of interpolation based fuzzy inference methods. The key idea here is that the output of the fuzzy 

inference (conclusion) is determined as a result of interpolative calculations that take into 

consideration the similarity between the current input (observation) and the antecedent parts of the 

known rules. Although the related research began in the early 1990s fuzzy rule interpolation (FRI) is 

still an intensively investigated field. 

FRI methods form two main groups, i.e. the one-step and the two-step methods. The one-step 

methods determine the conclusion directly from the observation, and thus the creation of an auxiliary 

rule is not necessary. Typical members of this group are e.g. the linear interpolation (Kóczy, Hirota, 

1993), and the vague environment based reasoning FIVE (Kovács, 2006). 

In contrast, two-step FRI methods apply the concept of Generalized Methodology of fuzzy rule 

interpolation (GM) (Baranyi et al., 2004). In the first step they interpolate a new rule in the position of 

the observation and next they calculate the conclusion using a special single rule reasoning technique. 

Typical members of this group are the technique family suggested in (Baranyi et al., 2004), LESFRI 

published by (Johanyák, Kovács, 2006), and the transformation based technique (Chen, Ko, 2008). 

The FRI method chosen for the current research was the Fuzzy Rule Interpolation based on Method 

of Least Squares and vector calculations (VLESFRI) (Johanyák, 2011) is a vector calculation and α-

cut based FRI method, which follows the two-step approach. Its algorithm is presented below. 

1. Create a list of all breakpoint levels considering all antecedent and consequent partitions as 

well as the observation sets. 

2. Calculate the α-cut for each level in case of each fuzzy set. 

3. In each antecedent partition 

a. Calculate the Euclidean distances between the observation and the fuzzy sets of the 

partition based on their reference points. 

b. Interpolate a new fuzzy set in the position of the observation α-cut wise based on the 

weighted average of the α-cuts of the fuzzy sets. 

4. For each rule 

a. Calculate the Euclidean distance between the rule antecedent and the observation 

considering the reference points. 

5. Calculate the position of the rule consequent (interpolated rule) set using extended Shepard 

interpolation (Shepard, 1968). 

6. Interpolate a new fuzzy set in that position based on the weighted average of the α-cut 

endpoints of the fuzzy sets in the consequent partition. 

7. Modify the shape of this set with the average of the deviations between the observation sets 

and the antecedent sets of the new rule. 

8. Defuzzify the resulting set. 



 

Please refer to (Johanyák, 2011) for a detailed description of VLESFRI. 
 

7.2. Particle Swarm Optimization 
 

Particle Swarm Optimization is a population based heuristic optimization method. Its original version 

was proposed by Kennedy and Eberhart (Kennedy Eberhart, 1995). In PSO the population is called 

swarm while the individuals of the population representing candidate solutions are the particles. 

A particle is represented by two vectors. One contains the actual values of the parameters whose 

optimization is the aim of the method. This vector is also mentioned in the literature as position vector. 

The other one is the so called velocity vector of the particle, which is used for the determination of the 

next position vector of the particle. 

PSO is an iterative process. Its key idea is that the particles move in the search space in order to find 

the optimal solution. It means that they have a new position in each iteration cycle, which is mainly 

determined by their previous position, the best position of the same particle (its previous position 

vector that ensured the best fitness value so far), and the position of the so far overall best particle. 

The iteration continues until the stopping criterion is met. The algorithm is described by the following 

steps. 

1. Generate an initial swarm with N particles (position and velocity vectors). 

2. Evaluate the performance (fitness) of each particle using (6). 

3. Store for each particle its best position so far. 

4. Store the position vector of the best particle. 

5. Update the velocity vector of each particle. 

6. Update the position vector of each particle by adding the velocity vector to the position vector. 

7. GO TO step 2 if stopping criterion is not met. 

The initial velocity vectors of the particles (dij, Nj ,1= ) are defined as random values from the  

[-0.5,0.5] interval. The new values of the velocity vectors in step 5 are calculated by 
 

 ( ) ( ),,122,111,13 jijijjiij POBrcPPBrcdcd −−− −⋅⋅+−⋅⋅+⋅=  (5) 

 

where i is the iteration number; c1, c2 and c3 are constant parameters of the method; r1, r2 ∈[0,1] are 

random values; PBj is the best position vector of the particle j so far; OB is the position vector of the 

overall best particle; Pi-1,j is the position vector of the jth particle in the previous iteration; and di-1,j is the 

velocity vector of the jth particle in the previous iteration. 

The basic stopping criterion is the number of allowed iterations (ni). 
 

7.3. Fuzzy Model Generation 
 

As presented before, several experiments were carried out to get enough descriptive information 

about the variation of the total delay time (Ttd) in function of its four influential factors. Based on the 



 

simulation runs 1500 data tuples were identified, which set was divided into three groups using 

random selection. First, 150 data points were selected for validation purposes, followed by the 

selection of 150 data points for test purposes, and finally, the remaining 1200 data rows were kept for 

training of the fuzzy system. 

The fuzzy model was generated in an iterative process starting with an initial rule base containing only 

two rules corresponding to the minimum and maximum experienced outputs. In each iteration cycle 

the actual fuzzy system was evaluated against both the training and the validation data sets, but only 

data rows belonging to the training set were used for the creation of the next version of the fuzzy 

system and for the creation of a new rule in the position where the difference between the actual 

output and the desired output was maximal. We used root mean squared error expressed in 

percentage of the output range (RMSEP) as performance indicator. 

 

 

( )

100

1

2

⋅

−

=

∑
=

o

d

n

i
ii

R
n

yy

PI

d )

, (6) 

 

where nd is the number of the used data points, Ro is the range (width) of the output, yi is the ith 

desired output value and iy)  is the ith calculated output value. The applied algorithm is presented 

below. 

1. Create a rule describing the lowest output value of the system. 

2. Create a rule describing the highest output value of the system. 

3. Create a new rule in that position where the difference between the actual output of the 

system and the desired output is maximal. 

4. In each partition 

a. IF the new fuzzy set created with the new rule is identical or very close and similar to 

a previously created fuzzy set THEN  

i. merge the two sets. 

5. Optimize the position of the fuzzy sets of the new rule. 

6. GO TO step 3 if performance criteria are not met. 

We decided to use at the beginning triangle shaped membership functions with support width defined 

as 15 % of the range of the actual partition. Later, some of the sets became trapezoidal shaped as a 

result of the merging process in step 4.a.i. The closeness and similarity measurement was done α-cut 

wise, which in case of piece-wise linear membership functions can be reduced to the examination of 

the breakpoint levels. It was expressed as the average difference measured at the endpoints of the 

α – cut endpoints 
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where Ai and Aj are the two fuzzy sets that are examined, α is the actual level, nα is the number of α 

levels. The key idea of merging is that if d  is below a threshold expressed in proportion of the range 

of the actual partition the two sets are merged. Merging means that the given two sets are placed by a 

new set that wraps the two original fuzzy sets. The new set is also defined α-cut wise 
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where An is the new fuzzy set. 

In case of step 5 PSO was used as optimization technique applying the following parameters. The 

number of the particles in the swarm was N=30, self-confidence coefficient was c1=0.2, social 

coefficient c2=0.2, c3=0.6, number of allowed generations was ng=5, and the type of the newly created 

values was real number. 

As presented in (4) the fuzzy system has four input variables. Their partitions are presented in Figures 

8-10. The first two input partitions representing the linguistic variables GPRWE and TLC are sparse 

with 5-5 fuzzy sets in each one. The remaining two input partitions (TFWE and TFSN) are also sparse 

and have 8-8 fuzzy sets. 
 

 
 

Figure 7. GPRWE. 
 



 

 
 

Figure 8. TLC. 

 

 

 
 

Figure 9. TFWE. 
 

 

 
 

Figure 10. TFSN. 
 



 

 
 

Figure 11. Ttd. 
 

The number of output fuzzy sets resulted in a bigger number (19) even after several merging 

operations. Owing to the sparse character of the input partitions the generated rule base was also 

sparse. However, even the coverage of these few fuzzy sets would require 5*5*8*8=1600 rules. 

Applying the above presented approach, the rule base generation task could be solved with a reduced 

number of 1284 rules. 

The stopping criterion of the algorithm was defined by two components related to the performance of 

the system calculated against the training and the validation data set, respectively. In case of the 

training data set we defined an arbitrary threshold of PItr=4 % expressing that we want a PI value 

smaller than 4%. In case of the validation data set the threshold was PIva=5 % expressing that in case 

of this dataset we do not want greater PI values than 5 %. 

The performance of the final system became PItr=3.58 %, PIva=4.33 %. The system performed well in 

case of the test data set as well providing PIte=3.79 % 

 
7.4 Surrogate based TLC and GPR optimization 

 

Surrogate based optimization (Han, Zhang, 2012) is a special optimization approach developed for 

the case when the calculation of the objective function using the real phenomena or process is too 

expensive from computational point of view (e.g. long simulation runs), it requires expensive 

experiments or special environmental factors that cannot be always easily ensured. In such cases the 

original system/process/model is replaced by a surrogate model that can provide less expensive 

and/or faster information for the objective function. 

In our case the fuzzy model presented in the previous section serves as surrogate model in course of 

the optimization of the traffic light cycle time and the green period ratio in order to obtain the smallest 

possible total delay in the intersection. 

 



 

Having the model that describes the total delay time in function of the traffic flow values, the green 

time ratio and the traffic light cycle time as well as knowing the actual traffic flow values (TFWE and 

TFSN) the problem is reduced to the optimization 
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where the minima of function f can be found by the help of an arbitrary optimization technique. In our 

case the application of the particle swarm optimization technique would be a straightforward option. 
 

 

8. CONCLUSIONS 
 

The optimal traffic light cycle time depending on traffic flow on a road with a traffic light at the end of 

the road was determined using the IDM based simulator our department has developed. The obtained 

results were compared with the results of other previously reported models. For small traffic flow 

values the results of the different models including IDM simulation are close to each other. In the 

region close to the road capacity determined by the traffic light capacity, but under the capacity, the 

results of the IDM model are closer to the results of the stochastic model, than to the other two 

compared models results. 

It was shown that the delay times obtained in the micro-simulator for different traffic flows and different 

traffic light cycle’s types in a road with a traffic light at the end of the road may be used to determine 

the optimal green light ratios intersections as well. 

A fuzzy model was also created that can predict the total delay time in an intersection. Using this 

model, one can replace the simulations - which are time consuming steps – in course of the total 

delay calculations making possible the creation of a real-time solution that determines the optimal 

green time ratio and traffic light cycle in function of the actually observed traffic load values on the two 

intersecting roads. The actual values of the two mentioned parameters can be found by applying an 

arbitrary optimization method. 

The proposed system is a proof-of-concept solution. Further research will consider other FRI and 

optimization methods (e.g. Vincze, 2017) as well aiming the reduction of the time necessary for the 

calculation as well as the improvement of the accuracy of the model. Furthermore the results obtained 

for the green time ratios in intersections should be compared with the results reported in the 

corresponding literature, and the application of the IDM based microscopic traffic simulator developed 

in our department to reduce the delay times at red lights of a traffic network has to be examined. 
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