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ABSTRACT 

This paper presents the design of Takagi-Sugeno fuzzy controllers in state feedback form 

using swarm intelligence optimization algorithms. Three such algorithms are used: Particle 

Swarm Optimization, Simulated Annealing and Gravitational Search Algorithms. Sufficient 

stability conditions are expressed in terms of linear matrix inequalities considered as 

constraints in the optimization problem solved by swarm intelligence algorithms. 

Simulation results concerning an inverted pendulum system are given for illustration of the 

proposed design. 
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1. INTRODUCTION 

Stability is one of the most important problems in the analysis and design of nonlinear control systems. 

The stability issues related to fuzzy control systems have been considered extensively in the recent 

years. Such examples are presented in (Idrissi et al., 2013), (Lin and Chen, 2015), (Mellouli and 



 

Boumhidi, 2016), (Precup et al., 2003), (Precup et al., 2009), (Škrjanc et al., 2002), (Tomescu et al., 

2007). 

The optimal tuning of the parameters of fuzzy controllers is a convenient approach to the model-

based design of fuzzy controllers to meet systematic performance specifications. A good overview on 

swarm intelligence algorithms applied to controllers including Takagi-Sugeno and Mamdani fuzzy 

ones is given in (Precup et al., 2015a). Some of the latest swarm intelligence algorithms to tune the 

parameters of fuzzy controllers include genetic algorithms (Das et al., 2013), (Pérez et al., 2013), 

Simulated Annealing (SA) (Jain et al, 2011), Particle Swarm Optimization (PSO) (Oh et al., 2011), 

Gravitational Search Algorithms (GSAs) (Precup et al.. 2011), Ant Colony Optimization (Chang et al., 

2012), (Lu and Liu, 2013), (Castillo et al., 2015), chemical optimization (Melin et al., 2013), Charged 

System Search (Precup et al., 2014), harmony search (Wang et al., 2013) or Grey Wolf Optimizers 

(Noshadi et al., 2016), (Precup et al., 2017a), (Precup et al., 2017b). 

This paper proposes the combination of swarm intelligence algorithms and stability by the optimal 

tuning of the parameters of Takagi-Sugeno fuzzy controllers using stability conditions expressed as 

linear matrix inequalities (LMIs) to play the role of constraints in the optimization problems. Three 

swarm intelligence algorithms are considered: PSO, SA and GSA. 

The rest of the paper is structured as follows: Section 2 is dedicated to the Takagi-Sugeno fuzzy 

control system models and stability analysis. The optimal tuning of fuzzy controllers is presented in 

Section 3. Section 4 offers a numerical example of an inverted pendulum on a cart to show the 

effectiveness of the results. The conclusions are highlighted in Section 5. 

 

2. TAKAGI-SUGENO FUZZY CONTROL SYSTEM MODELS AND STABILITY ANALYSIS 

The thi  rule of the fuzzy model for the nonlinear process with parametric uncertainties is 
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where ijM  is a fuzzy set (linguistic term), nRtx ∈)(  is the system state vector, mRtu ∈)(  is the 

control signal vector, pRty ∈)(  is the (controlled) process output, iii CBA ,,  are known constant 

matrices that describe the nominal process, and )(),...,(),( 21 tztztz p  are the premise or scheduling 

variables, which belong to the input or scheduling vector T
p tztztztz )]( ... )( )([)( 21= , ri ...1=  

and r  is the number of rules. 

The matrices ii BA ΔΔ ,  in (10) are parametric uncertainties of the process, and have the following 

bounded structure: 
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where iii EEH 21 ,,  are known real constant matrices, )(tFi  is an unknown matrix function with 

Lebesgue-measurable element, and I  is the identity matrix. 

The Takagi-Sugeno fuzzy model related to (1) is expressed using the following state equation: 
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Using the notations: 
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the Takagi-Sugeno fuzzy model of the process with parametric uncertainties is: 
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The Takagi-Sugeno fuzzy controller in state feedback form has the classical expression specific to 

parallel distributed compensation: 
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where mn
mnii Rkk ×

=η=ωωη ∈= ...1,...1][  are the constant state feedback gain matrices, and they will be 

computed using swarm optimization algorithms. 

The fuzzy controller model is: 
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The combination of (5) and (6) leads to the state-space model of the Takagi-Sugeno fuzzy control 

system with parametric uncertainties: 
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The main results on the stable design of the Takagi-Sugeno fuzzy control system with parametric 

uncertainties (of the process) are given by the following theorem: 

Theorem 1. The Takagi-Sugeno fuzzy system modelled in (8) is globally asymptotically stable if there 

exists a symmetric and positive definite matrix P  and some scalars β  that fulfil the following two sets 

of LMIs: 
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Proof. The sufficient conditions (9) and (10) that guarantee the global asymptotic stability of the 

Takagi-Sugeno fuzzy control system with parametric uncertainties are derived as follows using 

Lyapunov-Krasovskii’s method. 

Let us consider the Lyapunov function V  that is defined and fulfils: 
 

 0)()())(( >= tPxtxtxV T  (11) 
 

because 0>= TPP . The derivative of (11) is: 
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Applying Lyapunov-Krasovskii’s method to (12) using (8) we have: 
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with the notations: 
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Equation (13) is written as: 
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with the notations: 
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and (16) leads to: 
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a
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Finally, (15) can be transferred into the LMIs (9) and (10) by applying the lemma given in (Peterson 

and Hollot, 1986) and the Schur complement. The LMIs (9) and (10) are solved numerically. 

 

3. OPTIMAL TUNING OF TAKAGI-SUGENO FUZZY CONTROLLERS 

The design of the Takagi-Sugeno fuzzy controller means to obtain the values of the parameters in the 

constant state feedback matrices mn
i Rk ×∈ , ri ...1= . The gains of these matrices are grouped in 

the parameter vector ρ : 
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The constrained optimization problem that ensures the stable design of the Takagi-Sugeno fuzzy 

controllers is defined as follows: 
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where *ρ  is the optimal value of the vector ρ , e  is the control error, )(ρJ  is the objective function 

of ISE type and ],0[ ft  is the time horizon. As pointed out in Section 1, the optimization problem (19) 

is solved in this paper by three swarm optimization algorithms briefly described in the next 

paragraphs. 

As shown in (Precup et al., 2015b), the operating mechanism of PSO algorithms uses swarm 

particles, which are characterized by two vectors, namely the particle position vector iX  and the 

particle velocity vector iV : 
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where pNii ...1, =  is the index of the current particle in the swarm, and pN  is the number of 

particles in the swarm. Using the notations Besti ,P  for the best particle position vector of a specific 

particle with the index pNii ...1, = , and Bestg ,P  for the best swarm position vector: 
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the next particle velocity )1( +μd
iv  and the next particle position )1( +μd

ix  are obtained by the state-

space equations: 
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where μ  is the current iteration index, and the values of the parameters of the PSO algorithm 

indicated in (22) are taken from (Precup et al., 2015c). 

The PSO algorithm is mapped onto the optimization problem using the following relations: 

- between the agents’ position vector iX  in the PSO algorithm and the parameter vector ρ  in 

the optimization problem: 
 

 pi Ni ...1, == ρX  (23) 
 

- between the fitness function g in the PSO algorithm and the objective function J in the 

optimization problem: 
 

 pi NiJg ...1),()( == ρX  (24) 
 

The PSO algorithm stops when the maximum number of iterations maxμ  is reached. The vector 

solution to the optimization problem (19) is: 
 

 Bestg ,
* Pρ =  (25) 

 

where Bestg ,P  is the best swarm position vector obtained so far. 

The steps of the SA algorithm are (Precup et al., 2015b): 

- Step 1. Set 0=μ , 0=rs  and the minimum temperature minθ . Choose the initial temperature 

0θ . 

- Step 2. Generate a random initial solution ϕ  and compute its fitness value )(ϕg . 

- Step 3. Generate a probable solution ψ  by disturbing ϕ  and evaluate the fitness value )(ψg . 



 

- Step 4. Compute )()( ψψ ggg −ϕ=Δ ϕ . If 0≤Δ ϕψg , then accept ψ  as the new solution. 

Otherwise, set the value of the random parameter nr , 10 ≤≤ nr , and compute the probability 

of ψ  to be the next solution: 
⎩
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new solution. 

- Step 5. If the new solution is accepted, then update the new solution, increment rs  and set 

0=rr . Otherwise, increment rr . If rr  has reached its maximum value maxrr , the algorithm is 

stopped; otherwise, continue with step 6. 

- Step 6. Increment rs . If rs  has reached its maximum value rs , go to step 7; otherwise 

increment μ . If μ  has reached its maximum value maxμ , go to step 7; otherwise, go to step 2. 

- Step 7. Alleviate the temperature according to the temperature decrement rule: 
 

 1  const,  ,1 ≈α=αθα=θ μ+μ cscscs  (26) 
 

- Step 8. If minθ>θμ  then go to step 3, otherwise the algorithm is stopped. 

The SA algorithm is mapped onto the optimization problem using the following relations: 

- between the parameter vectors: 
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- between the fitness function g in the Simulated Annealing algorithm and the objective function 

J in the optimization problem: 
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The operating mechanism of GSA makes use of N agents and a q-dimensional search space, and the 

position of thi  agent is defined by the vector: 
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The force acting on thi  agent from thj  agent is defined as follows at the current iteration index μ : 
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where )(μPim  is the active gravitational mass related to thi  agent, )(μAjm  is the passive 

gravitational mass related to thj  agent, 0>ε  is a small constant, and )(μijr  is the Euclidian 

distance between thi  and thj  agents. The position and velocity of an agent are updated in terms of 

the following state-space equations: 
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where 10 , ≤ρ≤ρ ii  is a uniform random variable, )(μd
ia  is the acceleration of thi  agent in thd  

dimension, and the values of the GSA parameters are taken from (Precup et al., 2011). The GSA is 

mapped onto the optimization problem (19) using once more (23) and (24). 

 

4. NUMERICAL EXAMPLE 

The problem of balancing of an inverted pendulum on a cart is considered in this section in order to 

validate the controller design. The state equations of this process are (Ma et al., 1998): 
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where 1x  is the angle (rad) of the pendulum from the vertical, 2x  is the angular velocity (rad/s), 3x  is 

the displacement (m) of the cart, 4x  is the velocity (m/s) of the cart, 2/8.9 smg =  is the gravity 

constant, m  is the mass (kg) of the pendulum, M  is the mass (kg) of the cart, 0f  is the friction 

factor (N/m/s) of the cart, 1f  is the friction factor (N/rad/s) of the pendulum, l  is the length (m) from 

the center of mass of the pendulum to the shaft axis, J  is the moment of inertia (kg m2) of the 

pendulum round its center of mass and u  is the force (N) applied to the cart, playing the role of 

control signal. 

The values of the parameters in (32) are: 
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The process (32) can be approximated by a simple Takagi-Sugeno fuzzy model with only two rules: 
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with the matrices: 
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The expressions of the elements of the matrices in (35) are: 
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The uncertainty matrices in (2) are (Zhang et al., 2006): 
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The expressions of the membership functions of the linguistic terms related to (34) are: 
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The dynamic regime considered in the evaluation of the objective function in (19) and the simulation 

of the Takagi-Sugeno fuzzy control system is characterized by the initial conditions: 
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and s 20=ft . The application of the three swarm intelligence algorithms in the conditions described 

in (Precup et al., 2015b) leads to the following optimal values of the state feedback matrices: 
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The values of the parameters of PSO, SA and GSA are given in (Precup et al., 2015b). The LMIs (9) 

and (10) have been solved at each iteration and each solution has been next used as a feasible 

solution to the optimization problem (19). 

The simulation results are presented in Figure 1 and Figure 2 as the Takagi-Sugeno fuzzy control 

system responses. These responses correspond to the control system with optimized fuzzy controller 

parameters presented in (40). 

 



 

  

  

Figure 1. State variables 1x  (rad), 2x  (rad/s), 3x  (m) and 4x  (m/s) versus time (t(s)). 
 

 

Figure 2. Control signal u  (N) versus time (t(s)). 
 

5. CONCLUSIONS 

The paper has presented the stable design of Takagi-Sugeno fuzzy control for process models using 

Takagi-Sugeno fuzzy systems with uncertainties. The optimal tuning of the state feedback gain 

matrices has been ensured by three swarm intelligence algoritms – PSO, SA and GSA – that solve 

optimization problems. The LMIs specific to parallel distributed compensation where used not in the 

control design but as constraints in the optimization problems. Some simulation results have been 

given. 

Future research will deal with the extension of these results to other linear and nonliner controllers as 

those presented in (Angelov, 2004), (Baranyi, 2004), (Precup et al., 2007), (Sánchez Boza et al., 



 

2011), (Vrkalovic, 2015). Other swarm intelligence algorithms will be used including charged system 

search and grey wolf optimizers. 
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