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ABSTRACT

Several methods have been developed in Dynamic Distributed Constraint Satisfaction
Problem (DDisCSP ), for solving problems that change continuously over time. These pro-
posed approaches require a batch processing resolution. A group of changes is collected
and processed, over a period, after finding a solution or detecting the unsolvability of the
initial problem. In contrast, many situations require immediate actions to act within the few
seconds or minutes following the changes (e.g., flight delay management in a distributed
air traffic control system). This paper proposes a new approach, called LiveABT , to solve
Dynamic Distributed Constraint Satisfaction Problems. This new approach is based on the
Asynchronous Backtracking (ABT ) algorithm and real-time processing techniques that run
the solver immediately against live perturbations.

We evaluate our approach and compare it to the Dynamic Asynchronous Backtracking
(DynABT ), the latest algorithm proposed in the context of DDisCSP , on various problems
kinds. The results show that LiveABT outperforms significantlyDynABT especially for the
problems much more perturbed.
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1 Introduction

Distributed Artificial Intelligence (DAI) (Ferber, 1999) is concerned with interaction and coor-
dination among artificial automated agents to solve a given problem.
In real life, most of the DAI problems (e.g, scheduling problems (Salido and Giret, 2008), sen-
sor networks (Zhang, Xing, Wang and Wittenburg, 2003), allocation problems (Benamrane,



Acodad, Benelallam, El Houssine and Mohammed, 2014), servosystems (Precup, Preitl and
Korondi, 2007), (Türkşen and Tez, 2016)) are dynamic. For example, in distributed meeting
scheduling any participant could change his private calendar while the process of searching
for a solution is turning, new meetings might need to be scheduled.
These unpredictable and challenging behaviors can be related to the:

• User: the requirements of the user can change in the context of an interactive design;

• Environment: the conditions/characteristics of the environment may evolve in the frame-
work of a dynamic design;

• Agent: the autonomous decisions of the agent can change in the context of a distributed
system;

Certainly, it is, possible to solve the new changed problem from scratch. This technique can
remember nothing about the previous reasoning process, and has some drawbacks:

• Inefficiency, which is unacceptable in real time applications context (planning, scheduling,
etc.), where the time allowed for re-planning is limited;

• Instability of the successive solutions, which may be unpleasant in the framework of
an interactive design or a planning activity, if some work has started on the basis of
the previous solution, or if it is necessary to keep the resource allocations as stable as
possible etc.

Many complete and incomplete approaches such as, (Wallace, Grimes and Freuder, 2009)
DynABT (Omomowo, Arana and Ahriz, 2008) DBA (Mailler, 2005), DSA (Zhang, Wang,
Xing and Wittenburg, 2005) have been proposed to solve Dynamic DCSP .
Generally, the solution found by the above approaches concerning the Dynamic DCSP is
based on the previous one, but these approaches can not consider the changes until solving
the current problem instance, thus, they can not support real-time perturbations.
We distinguish between two scenarios of perturbation :

• Slow scenario: in which the time between two successive perturbations is enough to
solve a problem, in this case, the use of the previous solution seems to be natural and
simple.

• Rapid scenario: in which case, no enough time exists to solve the intermediate problems,
the problem is continuously disturbed and the intermediate problems become quickly
obsolete.

There are many recent applications for which the approaches must include the dynamism
treatment in their native process, e.g. the many to many bargaining model especially for the
high-frequency trading problem, the simulation of the biological cell division, etc.

This paper proposes a new approach, called LiveABT , for repairing solutions in DDisCSP .
LiveABT has the advantage to deal with changes in real time by including the perturbation
management in its native behavior.



The present paper is organized as follows: First, we introduce the formalism of the DDisCSP .
Then we present the ABT and the DynABT algorithms. Next we outline our proposed al-
gorithm (i.e., LiveABT ) and the results of various experiments that compare LiveABT with
DynABT . Finally, we conclude and propose some perspectives.

2 Background

2.1 Distributed and Dynamic CSPs

A Constraint Satisfaction Problem (CSP ) can be defined as a tuple (X, D, C), where:

• X is a set containing n variables x1 , x2 , ..., xn ;

• D is a set of domains D(x1), D(x2),..., D(xn) for these variables, with each D(xi) con-
taining the possible values which xi may take;

• C is a set of m constraints c1 , c2 , ..., cm between variables in subsets of X. Each
ci ∈ C expresses a relation defining which variable assignment combinations are al-
lowed/prohibited for the variables in the scope of the constraint.

Dynamic CSPs (DCSPs) were introduced (Dechter and Dechter, 1988) to cover problems that
change continuously over time and were defined as series of CSPs that one differ from the
other in some of their constraints (added and/or removed). In fact, all changes can be repre-
sented as a series of constraints suppression and addition.

Formally, if P is considered as a dynamic constraint satisfaction problem, P is a sequence of
static CSPs P0, ..., Pα, Pα+1, ..., where each Pi differs from the previous one by the addition or
removal of some constraints.
A distributed CSP (DisCSP ) (Yokoo, 2012) is a constraint satisfaction problem in which vari-
ables and constraints are distributed among multiple agents. A DisCSP can be described as
a four-tuple (X, D, C, A, α), where:

• X, D and C is a CSP .

• A is a set of agents.

• α : X −→ A is a function that maps each variable x ∈ X to its agent α(x).

In distributed CSPs (DisCSPs), we assume that:
Agents do not have a global view of the problem due to privacy, security and an agent can send
messages to other agents if it knows their addresses. Also, the delay in delivering a message
is finite, though random. Messages are received in the same order in which they were sent.
Solving a DisCSP consists in finding an assignment of values to all variables, such that all
constraints are satisfied
Dynamic and Distributed Constraint Satisfaction Problems (DDisCSPs) can be defined as a
six-tuple (X, D, C, A, α, δ) where:



• X, D, C, A and α is a DisCSPs;

• δ is the change function which introduces changes at different time intervals, i.e., it rep-
resents changes in the problem over time.

DDisCSPs can be used to model problems which are distributed in nature and change over
time.
To simplify the algorithm’s description in the following, we assume that the agents of the
DisCSP manage only one variable and all the constraints are binary.
There are more forms of the dynamism in the DDisCSP network, the majority of these can
be converted to adding/removing constraints. For example: removing a value from a domain
can be translated as adding a unary constraint to the concerned variable, revision an existing
constraint can be converted to remove and to add a new constraint with the new parameters.
That is why we interested in this work to add and removal a constraint as a form of dynamic
event in the DDisCSP network.

2.2 Asynchronous Backtracking

Asynchronous Backtracking (ABT )(Yokoo, Durfee, Ishida and Kuwabara, 1998) (Yokoo, 2012)
is the reference algorithm to solveDisCSP problem. It is executed systematically, autonomously
and asynchronously by each agent, which makes its decisions, informs other agents about
them, and no agent must wait for the others’ decisions. The algorithm computes a con-
sistent global solution (or detects that no solution exists) in finite time. Its correctness and
completeness have been proven (Yokoo, 2012). ABT requires a determined priority order
of agents, and constraints are directed between the involved agents: the value − sending

agent, which is the higher priority one, and the constraint − evaluating agent (lower priority).
When a value− sending agent assigns its variables, it sends their assignment to lower priority
(constraint− evaluating) neighbors who try to make the assignment consistent.
If a constraint− evaluating agent is unable to make a consistent assignment, it backtracks by
sending a nogood message to a higher priority agent, to change its current value assignment.
Agents keep a nogood list of backtrack messages and use it to guide the search. A solution is
found if there is quiescence in the network, while unsolvability is determined when an empty
nogood is discovered.
ABT sends many obsolete messages and uses a large space to store nogoods, and various
improvements (ABT-family (Bessière, Maestre, Brito and Meseguer, 2005),ABT-Dyn (Zivan and
Meisels, 2006), Agile-ABT (Wahbi, 2013)) have been proposed to reduce the number of obso-
lete messages or the space required for storing nogoods or to support the ABT agents order
changing.

Because LiveABT is an extension of the ABT approach and use the same pseudo-code of
ABT , we choose to present and describe more formally the ABT algorithm in the LiveABT

section.



2.3 Dynamic Asynchronous Backtracking

Dynamic Asynchronous Backtracking (DynABT ) is an asynchronous algorithm forDDisCSPs
which is complete and does terminate (Omomowo et al., 2008). It is based on ABT , and the
major difference is that it is designed to treat dynamic problems by repairing existing solutions
when the problems change. The approach treats episodic constraints changes, i.e., changes
(additions and removals) occurring after each problem has been solved. DynABT use the
previous solution of the initial problem, and the knowledge that agents had e.g agentView, no-
good store, etc, and the constraint stored in the nogoods to detect and remove the obsolete
nogood when a constraint is removed.
When detecting inconsistency, the agent composes a nogood of the form xi = a ∩ xj = b

{C1, ..Cn} ⇒ xk 6= c. Thus, the justification ({C1, ..Cn}) included in the nogoods indicates
which nogoods should become obsolete when modifying some constraints.
DynABT agents maintain, like ABT , a list of higher priority agents and their values in their
agentview and a list of values which are inconsistent with their agentview in the nogood store.
Higher priority agents send, in info messages, their value assignments to lower priority agents.
When an info message is received, the agent updates its agentview and checks for consis-
tency.
In DynABT , each agent initializes its variables, starts the search and solves the problem, like
in ABT . Nevertheless, agents monitor the system to react when detecting changes. Prob-
lem changes are handled in two phases: the Propagation phase (lines 12-18) and the Solving
phase (line 9). In the propagation phase, agents are informed of constraints addition/ retrac-
tion, then, they update their constraint lists, neighbour lists, agentV iew and nogoods where
necessary. AddConstraint, RemoveConstraint and AdjustNogood messages are used dur-
ing this phase to handle agents behavior. After propagating all changes, the new problem is
defined, the canProceed flag is set to true and the agents can move on to the Solving phase,
in order to solve the new problem similarly to the ABT algorithm.

When an agent receives an addConstraint message (lines 19-21), it updates its constraint
list and neighbour list where necessary.
When receiving a removeConstraint message (lines 22-26), the agent modifies its neighbour
list by removing from its neighbour list and
its agentview neighbors that only share the excluded constraint, then, the constraint is re-
moved. When a constraint is removed, an adjustNogood message (lines 27-34) is broadcasted
to agents that are not directly involved in this constraint. The agents receiving this message
update their nogoods store: they remove the nogoods containing the rejected constraint in jus-
tification and return the values to their domains since their source of inconsistency is no longer
present in the network. Thus, the new problem starts at a consistent point before beginning
the Solving phase.



Procedure DynABT()
1. changes← 0; changeBox← empty; canProceed← true

2. ABT+(ABT with nogoods containing justifications)
3. repeat
4. changes← monitorChanges

5. if(changes) then
6. canProceed← false

7. PropagateChanges(changeBox)
8. current value← value from the last solution
9. ABT+()

10. end if
11. until termination condition met

Procedure PropagateChanges(changeBox)
12. while changeBox 6= empty ∩ canProceed← false do
13. con← getChange; changeBox← changeBox− con

14. Swich(con.msgType)
15. con.removeConstraint : removeConstraint(con);

16. con.addConstraint : includeConstraint(con);

17. con.adjustNogood : incoherentConstraint(con);

18. end while

Procedure IncludeConstraint(con)
19. newCons← con.getConstraint()
20. add new neighbours ∈ newCons to neighbourlist

21. constraintList← constraintList ∪ newCons

Procedure ExcludeConstraint(con)
22. incoherentConstraint(con)
23. constraint←con.getConstraint()
24. Remove unique neighbours ∈ constraint
from neighbour list

25. Delete unique neighbours from agentV iew

26. Remove constraint from constraintList

Procedure AdjustNogoods()
27. IncoherentConstraint(con)
28. constraint←con.getConstraint()
29. for each nogood ∈ nogoodStore do
30. if contains(nogood, constraint) then
31. return eliminated value ∈ nogood to domain
32. remove nogood from nogoodStore

33. end if
34. end for

Figure 1: Pseudocode of DynABT algorithm (Omomowo et al., 2008)

3 LiveABT

3.1 LiveABT description

LiveABT is a new behavior of ABT , which supports three more messages types, to treat
dynamism of DisCSPs. The three new messages, AddConstraint,



RemoveConstraint and AdjustNogood, are the same of those used in DynABT . However,
they are applied in a different way, with the aim of considering the perturbations in real time.
As known, ABT is a distributed algorithm, i.e., variables are distributed among multiple self-
acting agents: each agent runs by himself, while managing only the context where it is involved.
Therefore, to make ABT supporting changes, it is not necessary when injecting a perturbation
to stop the whole multi-agent system for updating the network, as DynABT does, since the
perturbation does not impact all agents directly.
Thus, as all network communications are insured by messages, such as each agent, when
receiving a message, reacts appropriately (e.g., receiving an Ok message is followed by an
update Agent V iew for the receiver agent, and receiving a nogood message is systematically
treated by change value), handling perturbations in ABT can be simply integrated into this
communication protocol.
Then, to incorporate the AddConstraint or RemoveConstraint messages, the treatment can
be done in the solving phase exactly as for any other message.
Therefore, in LiveABT , a propagation phase is not required. A perturbation injection is re-
flected by the immediate treatment of a message sent from the system, which is generally the
master. This treatment consists of two parts: supporting the perturbation locally and propagat-
ing it in the network.

3.2 LiveABT vs DynABT

As shown in Fig. 2, DynABT is executed in two major phases, the solving phase to solve
the problem and the propagation phase to update it. Although injecting a perturbation at a
time t, DynABT continues solving the initial problem as before, but stores the perturbation for
a future treatment. After solving the initial problem (or detecting the unsolvability), DynABT
propagates the perturbations in the propagation phase. Then, it restarts the solving phase to
repair the last found solution (or last assignment).
LiveABT , differently to DynABT , is executed in one phase: the solving phase. Contrary to
DynABT , whose solving phase treats a problem which is entirely initially defined, LiveABT
has the advantage of supporting perturbations in its native behavior. Thus, when detecting
a perturbation, this one is considered and propagated immediately, and the resolution of the
whole problem (the problem after perturbation) is kept on. The propagation is done in the
solving phase which is continuously running.

3.3 Simulation example

Let us consider the example of a binary DDisCSP containing 4 agents: A1, A2, A3 and A4.
Each agent has only one variable, respectively X1, X2, X3 and X4. The problem constraints
are as shown in Fig. 3 :



Figure 2: behavior of LiveABT vs DynABT

Figure 3: Example of a DisCSP

Figure 4: diagram of a constraint addition

3.3.1 Perturbation 1 : A constraint addition

When a perturbation affects the problem, such as a new constraint must be added into the
network (C23 between the agents A2 and A3 as shown in Fig. 4).



The perturbation system manager sends an add constraint message (AC(A2, C23, stage) at
the initial stage (stage=0) to the higher priority agent concerned by the constraint (the agent
A2). This message contains the address of the second part of the constraint (the agent A3)
since A2 ignores A3, which is not yet its neighbour, and the status of injecting the constraint
which is incremented in each step. When A2 receives the AC(A2, C23, stage), it adds A3 in its
neighbours list, puts C23 in its constraints list and sends the AC(A3, C23, stage++) message
to A3. When A3 receives the add constraint message, it adds A2 to its neighbours, updates its
agentV iew, puts the new constraint C23 in its constraints list and informs A2 that the constraint
addition is finished by sending to it the AC(A2, C23, stage++) message. A2 reacts by sending
an OK message to A3, to evaluate the new constraint and change its value if necessary. At
the end of the add constraint process, the network becomes like Fig.5.
Thus, to add one constraint into the network, 4 messages are needed.

Figure 5: the problem after the constraint addition

3.3.2 Perturbation 2 : A constraint suppression

a- Removing a constraint:

If the coming perturbation is a constraint suppression, LiveABT removes the constraint. Then,
differently, to the previous case, it broadcasts the AdjustNogood message to clean the agent’s
nogood stores by removing any nogood with the constraint as justification.
When A1 receives a remove constraint message (RC(A1, C13, 0)) as Fig. 6 indicates, it re-
movesA3 from its neighbors list, removesC13 from its constraints list and sends theRC(A3, C13, stage+

+) message toA3. The agentA3 also removesA1 from its neighbors list, updates itsAgentV iew,
removes C13 from its constraints list and sends the RC(A1, C13, stage++) message to A1, in-
forming to it that the propagation of removing the constraint is finished. Then, A1 forwards this
information to the system, generally the master, by the RC(system,C13, stage++) message.
Therefore, to remove one constraint from the network, 4 messages are needed.

b- Updating the nogood stores:

Each agent, when receiving the AdjustNogood message (AdjNg C13 as shown in Fig. 7),
checks his nogood store, tries to clean it and updates his domain. Thus, in this example, A2
removes the C13 justification from its nogood. However, it keeps the nogood, as C13 is not the
sole justification. A3 restores 1 in his domain and cleans his nogood store (deletes the first
nogood). Moreover, A4 keeps his nogood store after the check.



Figure 6: sequence diagram of a constraint removal 1/2

Figure 7: Constraint removal 2/2

To clean all the nogood stores, n messages, such as n is the number of agents in the network,
are needed.

3.4 Execution

The description of LiveABT is shown in Fig.8 and Fig.9. The LiveABT kernel is the main
procedure (lines 1-11). It is implemented in each agent.
Each agent detects its parents (AgentView) and its children (line 1) and listens to the network.



Procedure LiveABT kernel()

1. compute Γ + (self) and Γ− (self);
2. CheckAgentV iew(null);

3. end← false;

4. while (¬end) do
5. msg ← getMsg();
6. switch (msg.type)
7. Stop : end← true;

8. AddConstraint : AC(con.getUpper, con, 0);
9. RemoveConstraint : RC(con.getUpper, con, 0);
10 Adjustngood : IncoherentConstraint(con);
11. else : CheckAgentV iew(msg);

Procedure CheckAgentView(msg)
12. if msg is relevant then
13. update local context ;
14. if Consistent(myValue, myContext) then Return;
15. myValue← ChooseValue();
16. if myValue then
17. for each child ∈ Γ + (self) do
18. sendMsg : Info(child, myValue);
19. else Backtrack;

Procedure Backtrack()
20. newNogood← Solve(myNogoods) ;
21. if newNogood = empty then
22. end← true ;
23. sendMsg : Stop(system);
24. else
25. sendMsg : Back(newNogood);
26. update local context;
27. CheckAgentView(null);

Function ChooseValue()
28. for each v ∈ D(self) not eliminated by myNogoods do
29. if Consistent(v, myContext) then Return (v) ;
30. else
31. Add(X = valX ⇒ ¬ v;C{ci} , myNogoods);
32. Return (null) ;

Figure 8: Execution of algorithm LiveABT 1/2

If the agent receives a CheckAgentV iew message, it launches the CheckAgentV iew function
(lines 12-19). If the message comes from a higher priority agent, the receiver agent updates
its agentV iew (lines 12-13). If its value is not consistent (lines 14-15), it calls the ChooseV alue
function (lines 28-32) to instantiate its variable. If the agent’s variable is instantiated, the agent
sends an Info message to its lower priority agents, informing them to update their agentviews
(lines 16-18). Else, the Backtrack is launched, to inform the value− sending agent to change
its value, due to a domain wipe out (lines 20-27).
Throughout, each agent can receive an AddConstraint or RemoveConstraint perturbation



Procedure AddConstraint(con)
33. switch (stage)
34. 0 : Add con.neighbour to my Neighbours List;
35. Add con to Constraints List;
36. sendMsg : AC(con.getlower,con,stage++);
37. 1 : Add con.neighbour to Neighbours List;
38. Add con to Constraints List;
39. sendMsg : AC(con.getupper, con, stage++);
40. 2 : sendMsg : Info(con.getlower(), myvalue);

Procedure RemoveConstraint(con)
41. IncoherentConstraint(con);
42. switch (stage)
43. 0 : Remove con.neighbour from Neighbours List;
44. Remove unique neighbour from AgentViews;
45. Remove con from Constraint List;
46. sendMsg : RC(con.getlower, con, stage++);
47. 1 : Remove con.neighbour from Neighbours List;
48. Remove unique neighbour from AgentView ;
49. Remove con from Constraint List;
50. sendMsg : RC(con.getupper, con, stage++);
51. 2 : sendMsg : RC(system, con, stage++);

Procedure IncoherentConstraint(con)
52. for each nogood in nogoodStore do
53. if nogood.justification.Contains(con) then
54. nogood.justification.Remove(con);
55. if nogood.justification.isEmpty() then
56. restore nogood.eliminatedValue to domain;
57. nogoodStore.Remove(nogood);

Figure 9: Execution of algorithm LiveABT 2/2

message (lines 8-9).
If an agent receives the AddConstraint message (line 8), LiveABT reacts by calling the
AddConstraint process (lines 33-40), which updates all information about the two agents in-
volved in the constraint, and integrates it into the network. stage1 represents the progress
of adding (or removing) a constraint. The AC and info messages are exchanged between
agents concerned by the added constraint to update their contexts and to activate the new
constraint in the network.
If a constraint is removed (line 9), LiveABT proceeds to remove it using
RemoveConstraint (lines 41-51). As for AddConstraint, RC messages are exchanged be-
tween concerned agents to accomplish the removal. Once the constraint is deleted, anAdjustNogood
message is broadcasted to clean all the stored nogoods that contain the removed constraint
as unique justification (lines 52-57), in order to return the removed values to their domains.
IncoherentConstraint ensures that the invalidated values by removed constraints are restored
to their domains.

1stage is a counter related to each perturbation, it is used by the agent to determine what the action must be
executed because one agent can be involved in many perturbations



The Stop message (line 7) is broadcasted from the master to all the network agents, with
success, when a quiescence is detected, if a solution is found, or with a failure, if an empty
nogood is generated.

3.5 Termination and Completeness

The termination of LiveABT is assured sinceABT terminates (Yokoo, 2012). In fact, LiveABT
respects the paradigm and uses its same mechanism to communicate all the pop-up pertur-
bations in the network (Add/Remove Constraint messages become like ok or nogood mes-
sages), therefore, the approach terminates. Concerning the completeness, if the final problem
(after the perturbations) has a solution, LiveABT finds it. In fact, after integrating all the
perturbations, LiveABT protocol becomes the standard ABT algorithm, which is complete
(Yokoo, 2012).

4 Experiments

We choose to compare experimentally LiveABT to DynABT since it is the latest DDisCSP
approach. Furthermore, DynABT has already proved its large outperformance compared
to DynDBA (Mailler, 2005) in terms of runtime and network load. Algorithms are evaluated
on uniform random binary DDisCSPs, on Graph Coloring Problems and also on Meeting
Scheduling Problems.
To simulate a quantity p of perturbations like in reality, we choose to divide them over a various
q randomly (standard normal distribution) moments of injections [t1, tq], which are generated
when the resolution is running, and in each moment ti ∈ [t1, tq], the problem is disturbed with
p
q perturbations.
In fact, different ways to disturb problems exist, and as problems density is fixed, we choose
the same scenario of perturbation presented in (Omomowo et al., 2008) that keeps density
intact. Thus, perturbations are divided into two parts of p

2×q% of added constraints and p
2×q%

of removed constraints. Then, the initial problem and the perturbed one have the same density.
For example, lets consider a problem with 60 constraints and we have p=10% is the rate of per-
turbation, based on the choosen scenario, 6 constraints will be changed 3 will be removed, and
3 will be added. We randomly generate q moments of time (injection moment). The distribution
can be as q = 3 (1,1,1) three-time injections was generated, for each time one constraint will
be added and one other will be removed, or q = 2=(1,2), i.e., for the first time one constraint
will be added and one other will be removed and at the second time two constraints will be
added/removed, we can have also q= 1(3), i.e., all the perturbations occur at one moment.
All experiments are performed on theDischoco platform (Wahbi, Ezzahir, Bessiere and Bouyakhf,
2011). We evaluate the performance of the algorithms by the total number of exchanged
messages among agents (#Msg) (Lynch, 1996) and non-concurrent computation. The non-
concurrent computation is measured by the number of non-concurrent constraint checks (#NCCCs)
(Meisels, 2008).



4.1 Experiments on Random Problem

A uniform random binary DDisCSP P is a sequence of uniform random binary DisCSPs:
P0, P1, ..., Pα−1, Pα. The problem P0 is the original DisCSP , and for each problem Pi, new
constraints are added/removed to/from the previous one. In these experiments, we assume
that the rates of perturbations are respectively 6% that represents an environment with lower
perturbations and 30% witch represents the oscillated one.
DisCSPs are characterized by < n, d, p1, p2 >, where n is the number of agents/variables, d
the number of values in each domain, p1 the network connectivity that is defined as the ratio of
existing binary constraints to possible binary constraints, and p2 the constraints’ tightness, that
represents a proportion of the conflicts within the constraints.
Tests are performed on problems from <20, 10, 0.2, 0.1> to <20, 10, 0.2, 0.9> 2 with a p2 step of
0.1.
For each fixed tightness p2, 50 different instances are disturbed randomly and treated by each
approach. The presented results are the average of the 50 runs.

Figure 10: Random Problem: Number of sent messages and NCCCs for 6% of perturbation

Problems with constraints tightness between 0.1 and 0.6 are solvable, problems with a con-
straints’ tightness equal to 0.7 are a mixture of solvable and unsolvable problems and beyond
0.7, problems are unsolvable.
The results show that LiveABT outperforms DynABT , for both NCCCs and Msgs (Figs. 10
and 11), regardless of the problems solvability, especially when perturbations are important
(Fig. 11).

4.2 Experiments on Graph Coloring

This problem can represent easily many real problems such as timetabling and channel alloca-
tion problems in mobile communication systems, in which adjoining cells can not use the same
channels to avoid interference.

2we performed tests also on problems from <30, 12, 0.7, 0.1> to <30, 12, 0.7, 0.9>. The results showed the
same improvement



Figure 11: Random Problem: Number of sent messages and NCCCs for 30% of perturbation

A distributed graph-coloring problem is characterized by three parameters, i.e., the number of
agents/variables n, the number of colors of each agent k, and the number of links (constraints)
between agents m.
We randomly generated problems with 50 agents/variables and m arcs by the method de-
scribed in (Minton, Philips, Johnston and Laird, 1993). The problems are connected and have
a solution, the setting of k=3 and m=n*2.7 is the critical area (Cheeseman, Kanefsky and Tay-
lor, 1991) i.e., the area where problems are difficult. We study the behavior of both LiveABT
and DynABT when the perturbation rate increases.
For each rate of perturbation, 50 different instances are disturbed randomly from 2% to 40%
by a step of 2% and treated with each approach. The presented results are the averages of
these 50 runs.

Figure 12: Graph Coloring Problem: behavior of LiveABT and DynABT according to the rate
of perturbation

The results in Fig.12 show thatDynABT outperforms slightly LiveABT when the perturbations
are low. However LiveABT makes less non-concurrent constraints checks (NCCCs) and
sends less messages than DynABT in middle and high perturbations.
We also note that when the problem is enough disturbed, LiveABT deploys less effort to



find a solution, contrary to DynABT for which the effort is linearly increased according to the
perturbations rate.

4.3 Experiments on Meeting Scheduling Problems

The Meeting Scheduling Problem (MSP ) is one of most popular distributed problems, it con-
sists of searching for a time and place when and where all the meeting participants are free
and available.
Formally, a MSP is defined as following :

• P = {p1, p2, ...}, the set of participants.

• S = {s1, s2, ...}, the set of calendar for each participant.

• M = {m1,m2, ...}, the set of meetings.

• At = {at1, at2, ...}, the set of collections of participants that define which attendees must
participate in each meeting, i.e. people in ati must participate in the meeting mi such as,
1 < i < k and ati ∈ P .

• L = {l1, l2, ...}, the set of locations where meetings can be scheduled.

Distributed MSP (DisMSP ) can be translated to DisCSP as follows:

• Set of agents/participants.

• Set of n variables X: {meetings to be scheduled for each participant is at most xmp with
m ∈M and p ∈ P (i.e. number of variables is PM )}.

• Set of Domains D: {weekly time slots for each participant}.

• Set of constraints C:

– Intra-agent constraint : Arrival Time Constraint
For every pair of variables (xmp, xnp with m 6= n ∈ M ) there is an Arrival Time
constraint tnm(|xmpxnp| > tnm), if there is a participant p which attends in both
meetings m and n.

– Inter-agent constraint : Equality Constraint
For every pair of variables (xmp, xmq with p 6= q ∈M ) there is an equality constraint
xmp = xmq, if there is two participants p and q attending a same meeting m.

The Dynamic Distributed MSP (DynDisMSP ) can introduce two different types of changes:

• Additional Arrival Time constraint (traffic jams, train rescheduling, etc.)

• New links between meetings previously unconnected (a participant of meeting mi is re-
quired to attend another meeting mj as well).



Our experimental evaluation of DynDisMSP introduces the first type of change.

We generated a set of 50 random instances of DisMSP in order to compare the performances
of LiveABT and DynABT , in terms of NCCCs and MSGs.
Distributed Meeting Scheduling Problem are characterized by
< n,m, k, d, h, a >, where n is the number of agents, m the number meetings, k the number
of meetings per agent, d the number of days and h the number of hours per day, and a is a
percentage of availability for each participant.
We present our results for the class < 20, 4, 11, 3, 10, 1, 80 > and we vary the rate of pertur-
bation constraints (i.e. Arrival Time Constraint) from 2% to 30%. We generated 50 different
instances solved by each algorithm and the results are the averages of these 50 runs.

Figure 13: Meetings Scheduling Problem: behavior of LiveABT and DynABT according to
the rate of perturbation

The results in Fig.13 show that when the perturbation rate is low, DynABT and LiveABT

have the same behavior in terms of checking constraints and sending messages, however,
when the perturbation rate increases (from = 10), LiveABT sends less messages and checks
less constraints compared to DynABT .

4.4 Discussion

Firstly, for all perturbation rates on the random problems, namely 6%, and 30%, the results
show that LiveABT makes less NCCCs and sends fewer messages than DynABT to treat
a problem. In fact, LiveABT needs 4 messages when injecting a constraint, and nA + 4

messages for a constraint removal, where nA is the number of agents in the network. However,
in addition to this quantity (nA+4+4) to support a perturbation (one addition and one removal),
DynABT needs a larger number of broadcasted messages to stop and restart the resolution
(2× nA), to propagate the perturbation in the network.
Concerning the number ofNCCCs, when theDynABT solving phase is restarted to repair the
solution, each agent launches the ABT process, i.e., evaluates its constraints, thus, DynABT
checks at least (if the perturbation have no effect on the current solution) nC constraints more
than LiveABT , such as nC is the number of constraints in the problem.



Secondly, the behavior of LiveABT and DynABT on the meetings scheduling and graph
coloring problems shows that when the problem is more disturbed, the effort of LiveABT
decreases. In fact, this is due to the impact of the constraint removal, which is much more
important than adding a constraint. More precisely, when removing a constraint, all the agents
are impacted, and they should clean their nogoods and recover the wasted values, however
adding a constraint in real time effects generally only the two involved agents.
Thus, if the problem is disturbed in real time, it is relaxed during resolution.
Furthermore, the effort of DynABT increases when the perturbation rates increase because
DynABT cumulates the efforts of the successive solving phases.
Finally, the major drawback of DynABT is the propagation phase, in which the algorithm prop-
agates the perturbations, therefore, for the small perturbations (a bit of propagation phase), in
Fig.12 and Fig.13 DynABT is a serious competitor for LiveABT .

5 Conclusion and perspectives

In this paper, we introduce a new repair protocol for DDisCSP , based on ABT approach,
to solve the problems, which are continuously disturbed in real time. Based on the results
of experiments on different rates of disturbance over different problem kinds, we show that
this protocol exceeds DynABT , regardless of problems solvability. Also, we demonstrate by
studying the LiveABT behavior that in real time, the removal of constraints has a global impact
contrary to the constraints’ addition. As perspectives, we intend to develop LiveABT agent to
detect autonomously the different agents’ perturbations (address changing, disconnection or
addition of agents) and react appropriately without waiting for the Master instructions, and we
also plan to upgrade and apply LiveABT in other realistic use especially distributed robotic
control system and the smart grid problem.
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