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ABSTRACT 

Attaining acceptable levels of surface roughness is one of the primary goals of grinding. In 
order to achieve this goal, several approaches can be employed by varying the system 
parameters and attempting to find the conditions which ameliorate the outcome of the 
process. One way that can be rather assistive to the analysis of manufacturing processes 
is the use of soft computing methods such as artificial neural networks. In the current 
work, artificial neural network models of various categories, namely multi-layer perceptron 
and radial basis function neural networks, with various model parameters are developed 
and compared in order to determine the best performing model for the prediction of 
surface roughness during peripheral grinding of steel components. The results indicate 
that radial basis function networks outperform classical multi-layer perceptrons and 
constitute a promising alternative for the modeling of manufacturing processes. 
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1. INTRODUCTION 
 

Grinding constitutes one of the most widely employed manufacturing processes in industrial practice. This 

process belong to the category of abrasive manufacturing processes and despite the fact that it is mostly 

utilized in finishing applications, it is often also applied for bulk material removal. Grinding process is conducted 

using a grinding machine where the workpiece is being processed by a grinding wheel, which acts as a cutting 

tool. Grinding is a very popular finishing process, as it can render surfaces with very high quality, whereas it 

can be very effective for bulk material removal, especially in the case of hard materials.  
 
A grinding wheel contains numerous abrasive grains on its surface, held by a bonding medium and functioning 

as small single-point cutting edges acting on the workpiece. It is generally believed that these microscopic 

cutting edges function similar to negative rake angle cutting tools. As in other machining processes, grinding 



 

wheel is subject to wear and regeneration of grains using a diamond indenter is often performed when tool 

performance is degrading. Some of the most often used conventional variants of grinding are surface grinding, 

cylindrical grinding, centerless grinding and internal grinding, depending on the relative position of grinding tool 

and workpiece, and also creep-feed grinding and high speed grinding, depending on cutting speed and feed.  

Thus, some of the most important parameters of grinding are process parameters such as feed rate, cutting 

speed, depth of cut, the use of cutting fluid, grinding tool properties such as hardness or abrasive grain 

geometry and workpiece material-related parameters. Finally, it is worth noting that grinding process is 

associated to production of considerable amount of heat even at wet grinding conditions. 
 
As for other manufacturing processes, it is considered necessary to conduct analysis of grinding in order to 

determine optimum set of parameters, e.g. when power or lubricant consumption minimization along with 

surface quality amelioration is desired. Several techniques are available for this analysis, such as purely 

experimental techniques, which can be applied on-line, e.g. cutting forces and temperature monitoring, or after 

the process is finished, such as residual stresses analysis, microstructure characterization, numerical and soft 

computing techniques such as the Finite Element Method (FEM) (Brinksmeier et al., 2006; Doman et al., 2009; 

Parente et al. 2012; Kundrák et al, 2016), Artificial Intelligence (Gajate et al., 2010), regression techniques and 

other statistical methods (Habrat, 2016; Markopoulos et al., 2016b). Optimization is another field of interest in 

manufacturing processes, especially in the case of multi-objective problems. The latter require some state-of-

the-art algorithms in order to obtain the desired results (Precup et al., 2012; Ramírez-Ortegón et al., 2013; Ali et 

al., 2016). A reduction of both cost and time can be achieved when using numerical or soft computing methods 

and so their popularity is increasing. More specifically, soft computing methods tend to be more versatile and 

fast methods as they can be easily customized to offer higher level of accuracy with minimum computational 

cost, given that they are supplied with carefully collected data. 
 
A considerable amount of scientific work concerning application of Artificial Neural Networks (ANN) in 

simulation of machining processes is reported in the relevant literature. Although the most often utilized 

methods are long established as generic soft computing tools, the appropriateness of such methods for 

machining processes simulation and the determination of most preferable methods is still a subject of research. 

Some demonstrative examples of ANN applications are described hereafter. Özel and Karpat (2005) used an 

ANN model to predict surface roughness and tool wear in hard turning. Ezugwu et al. (2005) employed ANN 

models for high speed machining of Inconel 718 alloy. Zuperl et al. (2006), Adesta et al. (2012) and Al Hazza 

and Adesta (2013) employed also ANN model for the analysis of end-milling. From the relevant literature on 

ANN, it can be deduced that studies using radial basis function (RBF) networks in manufacturing process 

simulations are considerably fewer than these using multi-layer perceptron (MLP) networks, according to 

Pontes et al. (2010a). Gong et al. (2012) used an RBF model with various spread factor values to predict 

cutting consumption. When compared to results produced with MLP networks, it was found that network error 

and fit values were considerably improved in cases conducted with RBF models. Parikh and Lam (2009) used 

back-propagation and RBF networks, as well as regression models in their investigation of optimal parameters 

during abrasive water jet machining. From their study, it was noted that RBF networks outperformed other ANN 

models and that this type of ANN is very promising. Furthermore, Prahdan et al. (2009) conducted comparison 

of several ANN models used to predict surface roughness in Electro-discharge machining and observed 



 

significant superiority of RBF models in terms of simulation speed. Raja Dhas et al. (2013) applied RBF neural 

networks models for the prediction of machining quality during turning and found that RBF networks were 

superior to MLP networks both in terms of computational speed and accuracy. Pontes et al. (2010b) employed 

a DOE-based approach to determine details about RBF model training in order to test a minimum number of 

different networks developed to predict surface roughness during turning of AISI 52100 hardened steel. 

Moreover, Pontes et al. (2012) employed a DOE-based approach using Taguchi orthogonal arrays in the case 

of hard turning investigating the effect of several parameters of the RBF model. While most studies indicate that 

RBF networks are more capable than MLP networks, Dashtbayazi and Ghanbarian (2015) conducted 

comparison between RBF networks and MLP networks with a single hidden layer and found that MLP networks 

outperformed RBF ones. He et al. (2015) used RBF networks to model surface roughness in diamond turning 

using both certain and uncertain input parameters and concluded that the developed networks exhibited high 

level of accuracy.  
 
The use of numerical modelling for the simulation of abrasive processes can be found in the relevant literature. 

The authors have employed in the past the FEM approach for the thermal modelling (Mamalis et al., 2003) and 

thermo-mechanical modelling (Kundrák et al., 2016) of surface grinding. Furthermore, the Molecular Dynamics 

method was used for the simulation of grinding at grain scale (Markopoulos et al., 2015). Although these 

methods can produce useful results, computationally, they are very intensive. The same conclusion can be 

drawn in the case of hybrid FEM and ANN models (Markopoulos and Kundrák, 2016). The authors have 

employed MLP networks for the prediction of grinding performance with quite good results (Karkalos et al., 

2015); these models are very flexible and fast. A comparison between MLP and RBF networks was introduced 

in the modelling of milling (Markopoulos et al., 2016a), indicating good results for both methods. 
 
In this study, ANN models with various training algorithms, architectures and types are developed to predict 

surface roughness in cases of grinding of various steel components. A multiple step approach is developed, 

comprising the creation of MLP networks, determination of their basic characteristics and in case that their 

performance is not adequate, several types of RBF networks are developed and their performance is compared 

to that of MLP models in order to find out the optimal one. The performance of developed models is evaluated 

in terms of prediction error values and coefficient of correlation and conclusions are extracted, regarding the 

efficiency and applicability of these ANN models. More specifically, this approach is employed in order to 

evaluate the efficiency of MLP networks to that of RBF networks and determine the applicability of RBF 

networks as an advantageous alternative to the well-established MLP networks in the field of abrasive 

processes simulation. Furthermore, a useful comparison of the performance of RBF network with different 

activation networks is conducted, to determine if Gaussian type radial basis function, which is employed in the 

vast majority of similar studies, is indeed the best performing method for manufacturing processes simulation 

cases. 
 
 

2. ARTIFICIAL NEURAL NETWORKS 
 

Artificial neural networks are long considered as an efficient soft computing technique, capable of providing 

results to a wide range of engineering problems spanning from weather prediction, robot manipulation and 



 

speech recognition to process simulation. ANN development was primarily based on observations on the 

biological neural networks function, which are extremely complex systems that transfer and process large 

amounts of data in extremely fast speed using a network of nodes and connections.  
 
Likewise, ANN employ a structure similar to that of a biological neural network in order to process and analyze 

experimental data with a view to determine the relationship between inputs and outputs without the need of 

using theoretic models. In this study, feed-forward MLP models with back-propagation of error, along with RBF 

neural networks are employed. Thus, before presenting the methodology of soft computing experiments, it is 

considered worthwhile to conduct a brief description of these models. 
 
 

2.1. Multi-layer perceptron models 
 

MLP neural networks consist of neurons ordered in vertical rows called layers, which are interconnected with 

linking elements resembling the synapses of biological neural networks. As it becomes obvious from the 

schematic shown in Figure 1, a feed-forward neural network consists of several types of layers, namely the 

input layer, the output layer and internal layers called hidden layers.  
 
The hidden layers are the most important for the processing of data and determination of correlation between 

input and output data. The number of neurons in these layers, as well as the number of these layers, are not 

fixed in advance and vary according to each case. The architecture of a neural network is defined as the 

number of neurons in each layer, starting from the number of neurons in the input layer. As the number of 

neurons is directly connected to an increase in the computational cost of the network, it is necessary to 

determine the minimum number of hidden layers and neurons that can fit the input-output data pairs with 

sufficient accuracy. 
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Figure 1. Architecture of an MLP network. 

 
Each neuron in all but the input layer receives data from neurons of previous layers via the synapses. A weight 

coefficient is assigned to each neuron and each one of the incoming data is multiplied by the weight coefficient 

and then summed with all other data. Then, after a bias parameter is added to the sum, an activation function is 

acting on this value in order to produce the output of the neuron. Activation functions can be step functions, 

linear functions or sigmoid functions which give results in the range 0-1. Sigmoid functions are often preferred 

as they allow for a smooth transition for the range of input values employed. 



 
 
The training process is essential in order for the ANN to gain predictive ability and model a specific case. The 

weight coefficients associated with weight coefficients are adjusted until the error is minimized. The error can 

be determined with various performance functions but usually the mean squared error (MSE) between 

predicted and actual outputs is preferred. An iterative process, during which the error is propagated from the 

output layer to the input layer, named error-backpropagation, is performed during training stage and at every 

step the weight coefficient values are updated. Two types of training can usually be employed, for different 

types of problems: i) supervised learning, in which each input vector is associated to an output vector and ii) 

unsupervised learning, where only input vectors are used in the training process. The goal of the process is to 

repeat the procedure until MSE becomes zero. Each time that the program passes through all pairs of training 

vectors an epoch is completed and training usually ends after reaching a great number of epochs. 
 
Some of the most important types of learning algorithms for MLP neural networks are, among others, steepest 

descent, Newton and quasi- Newton methods, e.g. Broyden-Fletcher-Goldfarb-Shanno, Conjugate Gradient 

methods and Levenberg-Marquardt method. In particular, for the present work, three variants of conjugate 

gradient methods and Levenberg-Marquardt algorithms are employed and it is considered rather essential to 

discuss these four learning algorithms with more detail. 

 

Conjugate Gradient method evolved initially as a method for solving systems of linear equations such as the 

systems which are employed in FEM, especially in cases with large sparse systems. Moreover, this method 

can be employed for optimization purposes and so it is often employed for the minimization of learning error in 

MLP models.    
 
In the steepest descent methods, at the first iteration, the search starts in the direction (p0) of the negative of 

the gradient (where g0 represents the initial gradient value): 

                                                                       00 gp −=                                                                                       (1) 

After the first step, the optimal distance of movement along the search direction is computed by: 

                                                                      kkkk pxx α=+1                                                                                 (2) 

 
where pk is related to the search direction at iteration k, ak is the step length and xk, xk+1 represent the current 

and the next optimal location, respectively. 

Then, the next direction of search is determined in such a way that it is conjugate to the previous search 

direction 

                                                                   1−+−= kkkk pgp β                                                                            (3) 

where gk represents gradient at iteration k and βk is a coefficient used to ensure that new direction will be 

conjugate to all previous directions. 

Conjugate gradient methods often employ reset methods when a certain condition exists, e.g. when the number 

of iterations performed is equal to the number of weights and biases of the system. Powell-Beale restarts 

method is one of the reset methods and it is activated when there is almost no orthogonality between the 

gradient at the current iteration and the gradient at the previous iteration, as defined by the following inequality: 
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A reset occurs when this inequality is satisfied, resulting in a potential improvement of training efficiency. 

Compared to Polak-Ribiére updates variant, Powell-Beale algorithm has somewhat larger computational cost. 

In Fletcher-Reeves updates variant of conjugate gradient algorithm, the coefficient βk is derived from the 

following formula: 
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In Polak-Ribiére updates variant of conjugate gradient algorithm, the coefficient βk is derived from the following 

formula: 
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where ∆gk-1 term refers to the change in the gradient of the previous iteration (gk - gk-1) . 

In comparison to Fletcher-Reeves algorithm, Polak-Ribiére algorithm is slightly more demanding in terms of 

computational cost. 
 
The Levenberg-Marquardt (LM) method is used generally for the solution of non-linear least squares problems. 

This method was intended to be employed as an “intermediate method” between Gauss-Newton method and 

gradient descend algorithm, by unifying the strength of each method while trying to confront the drawbacks of 

each of them (Kermani et al., 2005). More specifically, the gradient descent algorithm is shown to be able to 

perform more independently regarding the choice of initial values but its convergence is rather slow. On the 

contrary, the Gauss-Newton algorithm has significantly faster convergence but depends on initial values to a 

greater extent than gradient-descent methods.  
 
In general, the LM method is used to approximate the Hessian matrix, thus retaining the second-order 

convergence speed but without having to compute the exact Hessian matrix (H). In the case of performance 

function with the form of sum of squares, the approximation is conducted as follows: 

                                                                               JJH T=                                                                               (7) 

and then, the gradient is derived from the following formula: 

                                                                              eJg T=                                                                                  (8) 

where J represents a Jacobian matrix, containing the first derivatives of errors with respect to weights (denoted 

often as w) and biases and e represents a vector of network errors, calculated as the difference between the 

vector of desired outputs and the vector of actual network outputs. Jacobian matrix is defined as Jij = dei / dwj in 

component-wise form. 

 
As it was already mentioned, LM method lies between Gradient Descent and Gauss-Newton methods. Thus it 

is anticipated that the Hessian matrix approximation conducted using LM algorithm uses terms related to both 

of these methods, as it can be seen in the following update formula: 
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where μ is a coefficient which will be discussed afterwards and I is the identity or unit matrix. 
 



 

From the above formula, it can be seen that when μ takes large values, this expression is similar to gradient 

descent whereas for μ values close to zero, this expression is similar to Gauss-Newton. In order to profit from 

the advantages of both methods, after steps with decrease in performance function, which follow an 

appropriate initial guess and efficient use of gradient descent method, the value of μ is decreased to achieve 

faster convergence, shifting gradually to Gauss-Newton method and it is again increased when performance 

function values are increasing. Although this method has advantages in many cases, it is more complex than 

several other training algorithms. 
 
 

2.2. Radial basis function models 
 

RBF neural networks are considered as a special category of neural networks, consisting of three layers. This 

type of neural networks was first introduced by Broomhead and Lowe (1988). One particularity of RBF neural 

networks is that a single hidden layer is employed, as it can be seen in Figure 2, and so their architecture is 

simpler and generally lower computational cost is observed. However, their predictive ability is at least 

comparable to that of other neural network types. 
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Figure 2. RBF neural network model. 
 
As RBF neural networks are also a feed-forward network, the fundamental features of MLP networks apply to 

RBF networks and the only particularity is the application of a radial basis function to the input of neurons after 

summation process is performed, which is a special type of activation function. More specifically, radial basis 

functions, such as the Gaussian function, act as the activation function of the network and the output of the 

network is calculated as follows: 
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where wi are the weights of the network, φ the radial basis function, N the number of neurons in the hidden 

layer and xi the center vector for neuron i.  
 
The fact that functions dependent on the distance from a center vector are only used for this type of networks is 

the reason of the name radial basis neural networks. The norm in the last equation is supposed to be Euclidean 

but other formulations can be also employed. The weights of this network can be adjusted with similar methods 

as in MLP neural networks. In fact, the training procedure for RBF networks usually consists of two steps. At 

first, the center vectors for the RBF functions are determined and then the given input-output data pairs are 



 

fitted to the network by adjusting network weight coefficients wi. During this first step, the determination of 

center vectors (denoted as xi in equation 10) is conducted by a k-means clustering algorithm whereas during 

the second step, backpropagation is often performed to determine the other parameters, by using a 

pseudoinverse solution method, a gradient descent method or minimum squares method (Markopoulos, 

2016a), as in the current study. Furthermore, the majority of radial basis functions contain an additional factor, 

which requires to be also optimized, the so-called spread factor, ε. Spread parameter choice is an important 

element for the performance of these networks and it is often included in numerical investigations before the 

final neural network model is created.  
 
Apart from Gaussian type radial basis function, several other - mostly non-linear - radial basis functions exist 

such as: multiquadric, inverse quadratic, inverse multiquadric and thin plate spline. In the current work, three of 

the aforementioned radial basis function will be employed, namely Gaussian, multiquadric and inverse 

quadratic. The three radial basis functions are: 

Gaussian: 

                                                                          ( ) ( )2rer εϕ −=                                                                             (11) 

Multiquadric: 

                                                                       ( ) ( )21 rr εϕ +=                                                                         (12) 

Inverse quadratic: 
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3. METHODOLOGY 
 

In the current study, MLP and RBF neural network models are created for the prediction of surface roughness 

during grinding. All ANN models have three input factors, namely workpiece material type, grinding wheel type 

and depth of cut as well as single output factor, surface roughness. Surface roughness can be considered as a 

key factor in machining. This quantity is often employed to evaluate and determine the quality of products for 

both engineering and general purposes. More specifically, surface roughness influences several attributes of a 

component, such as fatigue behavior, wear, corrosion, lubrication and surface friction.  
 
Surface roughness corresponds to deviations from the nominal surface shape of the third up to the sixth order. 

More specifically, first and second order deviations refer to form and waviness, respectively. Furthermore, third 

and fourth order deviations refer to periodic grooves, cracks and dilapidations, which are related to the shape 

and condition of the cutting edges, chip formation and process kinematics. Fifth and sixth order deviations refer 

to workpiece material structure, which is connected to physical and chemical mechanisms, acting on a grain 

and at lattice scale. In general, surface roughness can be described as the inherent irregularities of workpiece 

surface after being processed. The easiest and more usual way to describe surface roughness is the average 

surface roughness, which is often denoted as Ra.  
 



 

Surface roughness is considered to be affected by several controlled factors, such as feed rate, grinding wheel 

speed, depth of cut, as well as by some non-controlled factors, such as non-homogeneity of workpiece and tool 

material, tool wear, machine motion errors, formation of chips and other unpredictable random disturbances. 

Average surface roughness Ra is defined as “the arithmetic value of the deviation of profile from centerline 

along a sampling length”. If l represents the sampling length and y represents the ordinate of the profile curve, 

then it is calculated as: 
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Surface roughness values are obtained for 72 cases of grinding, from a previous study (Markopoulos, 2011) 

and are used as the output variable vector for the developed of the proposed ANN models. The range of input 

variables for these cases is presented in Table 1. For two of the input variables, namely workpiece material 

type and grinding wheel type, their values are coded as 1-3 and 1-6, respectively for reasons of simplicity. That 

approach is shown not to affect ANN results (Markopoulos, 2011), as a normalization process takes place for 

each input and output variable before the ANN models are trained and their values lie in the range 0-1. All the 

other parameters of grinding process remained unchanged for the experiments. The values of these 

parameters are: workpiece feed vw of 8 m/min, cutting speed vc of 28 m/s and wet machining conditions. The 

Al2O3 grinding wheels have a diameter ds of 250mm and width bs of 20 mm, while they have different bonding 

material.  
 

Table 1: Description of input parameters employed in ANN models. 
 

Workpiece material 
100Cr6 

C45 
X210Cr12 

Grinding wheel type 6 types with variable 
bonding material 

Depth of cut 

0.01 mm 
0.02 mm 
0.03 mm 
0.05 mm 

 
 
Simulations are conducted with 4 different training algorithms, as well as several network architectures. A short 

description of the range of the models is given in Table 2. Several training algorithms pertinent to conjugate 

gradient (CG) class of methods, namely CG with Powell-Beale restarts (denoted hereafter as CG(B)), CG with 

Fletcher-Reeves updates (denoted hereafter as CG (F)), CG with Polak-Ribiére updates (denoted hereafter as 

CG (P)) are employed along with the Levenberg-Marquardt method. All these training algorithms operate in 

batch model. Hyperbolic tangent function is employed as activation function and MSE minimization is 

conducted. MSE is defined as follows: if Ŷ represents the output values of the network and Y represents the 

actual output data fed to the network, the MSE of prediction can be formulated as: 
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Table 2: MLP models parameters 
 

Training algorithms 

LM 
CG(B) 
CG(F) 
CG(P) 

Hidden layers 1 and 2 
Number of neurons 4 to 10 
Activation function Hyperbolic tangent 

Performance evaluation Mean Squared Error 
 

 
In the case of RBF simulations, three different activation functions, a variable number of neurons in the hidden 

layers and several spread factor values are employed, as it is presented in Table 3.  
 

Table 3: RBF models parameters 
 

Maximum number of 
neurons 

5-60 
60 
60 

Spread factor 0.25-2.00 

Activation function 
Gausian 

Multiquadric 
Inverse quadratic 

Performance evaluation Mean Squared Error 
 
 

In the current study a multi-step approach is used for the determination of the optimal neural network, as it is 

depicted graphically in Figure 3. The initial stages involve the determination of the optimal MLP neural 

networks. If the results of MLP networks are not satisfactory, RBF network models will be developed and the 

optimal models of each type will be compared to determine the overall best performing model. As it can be 

seen in Fig.3, the results of ANN and RBF networks will be assessed in terms of correlation coefficient R, apart 

from MSE. Correlation coefficient R is defined as follows: 
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where x  and y  represent the average of x and y vectors, respectively. 

 
Finally, as it is considered necessary to eliminate the effect that the initialization of weight coefficient may have 

on the results, each model is simulated for five times with different initialization values and the results of the 

best cases are retained. 
 



 

 
 

Figure 3. Schematic of the general approach towards the determination of optimal model 
 
 
 

4. RESULTS AND DISCUSSION 
 

4.1. Choice of training algorithm for MLP models 
 

The first stage of the methodology proposed in the current work, consists of the determination of the optimal 

training algorithm of the MLP models. This step is rather crucial as the choice of an appropriate training 

algorithm can lead to a reduction of computational cost and the development of more accurate models. For the 

better choice of the optimum training algorithm, several single and two-layer algorithms are chosen, and the 

characteristics of all cases are presented in Table 4. 
 

Table 4: Characteristics of studied cases 
 

Case 1st hidden layer 
neurons 

2nd hidden layer 
neurons 

1 4 - 
2 9 - 
3 4 7 
4 6 10 
5 9 5 

 
 
The performance of ANN models will be evaluated in terms of MSE and correlation coefficient R with specific 

emphasis put on the test stage of training process. At this step, cases using 5 different network architectures 

and the four different training algorithms, as presented in Table 4, are tested.  
 
The results are presented in Table 5 and from the findings it is clearly noted that in the majority of the cases the 

performance of the developed model is considered relatively low, especially in terms of correlation coefficient 



 

R, as these values are mainly below 0.5 (a perfect fit is indicated by values close to 1). MSE values in all 

simulations lies within an acceptable range, namely 0.02 to 0.06 during testing. 
 

Table 5: Results concerning the comparison of performance of training algorithms 
 

Case Training 
algorithm 

MSE  
train/test 

R 
train/test 

Time 
(s) 

1.1 CG(B) 0.0324/0.0492 0.47425/0.16093 0.808 
1.2 CG(B) 0.0227/0.0617 0.67123/0.2273 0.833 
1.3 CG(B) 0.0369/0.0499 0.18486/0.40662 0.811 
1.4 CG(B) 0.0353/0.0236 0.46038/0.47035 0.858 
1.5 CG(B) 0.0388/0.0382 0.14644/0.39677 0.843 
2.1 CG(P) 0.0391/0.0401 0.26506/0.52955 0.764 
2.2 CG(P) 0.0321/0.0644 0.45527/0.23327 0.734 
2.3 CG(P) 0.0351/0.0545 0.36685/0.12937 0.749 
2.4 CG(P) 0.0442/0.0315 0.11048/0.46647 0.765 
2.5 CG(P) 0.0381/0.0308 0.44366/0.31982 0.766 
3.1 CG(F) 0.0338/0.0437 0.42805/0.43824 1.192 
3.2 CG(F) 0.0336/0.0415 0.47679/0.31941 0.798 
3.3 CG(F) 0.0279/0.0636 0.4875/0.21812 1.078 
3.4 CG(F) 0.0151/0.0391 0.777/0.43787 1.243 
3.5 CG(F) 0.0373/0.0458 0.38307/0.31177 1.554 
4.1 LM 0.0329/0.0222 0.57221/0.50326 0.805 
4.2 LM 0.0344/0.0561 0.38381/0.33037 0.889 
4.3 LM 0.0347/0.0312 0.55297/0.41561 1.169 
4.4 LM 0.0021/0.0523 0.97239/0.72789 0.892 
4.5 LM 0.0377/0.0610 0.50676/0.58519 0.872 

 
 
Nevertheless, the results produced from different algorithms are different both in terms of correlation coefficient 

and MSE. As it can be seen from Table 5 and Figure 4, it is obvious that results obtained with MLP networks 

trained with LM algorithm outperform the models trained with other algorithms at almost every case. Thus, 

although cases run with LM are not the fastest, they are performing better in terms of predictive ability. Based 

on the above, LM is determined as the best training algorithm and it is employed for the cases that will be used 

for the investigation of optimal network architecture. 
 

 
(a) 



 

 
(b) 

 
Figure 4. Comparison of (a) MSE test error and (b) correlation coefficient values, for each 

algorithm 
 
 
 

4.2. Determination of optimum network architecture 
 

Although empirical relationships and suggestions from literature can indicate preferable parameters for ANN 

models it is essential to investigate these values separately for each problem studied as a general methodology 

is not easily applicable to every case. 
 
A new set of MLP models were developed, after the LM algorithm was shown to be the most preferable training 

algorithm, with a view to determine the optimum architecture of the MLP model, which means the determination 

of optimum number of hidden layers and hidden neurons, within the range that was chosen. From the findings 

presented in Table 2, it can be seen that a variety of combinations of number of neurons and number of hidden 

layers are tested. The results for networks with one hidden layer are presented in Table 6 whereas the results 

for networks with two hidden layers are presented in Table 7. 
 
 

Table 6: Results of cases conducted with a single hidden layer 
 

Number of 
hidden layer 

neurons 

MSE 
train/test 

R 
train/test 

4 0.0405/0.0496 0.26/0.471 
5 0.0251/0.0764 0.62/0.379 
6 0.0143/0.0571 0.812/0.546 
7 0.0314/0.0596 0.528/0.238 
8 0.0230/0.117 0.500/0.521 
9 0.0219/0.0508 0.348/0.408 
10 0.0255/0.0471 0.653/0.207 

 
 
 
 



 

Table 7: Results of cases conducted with two hidden layers 
 

Number of 
neurons in 

1st/2nd hidden 
layer  

MSE 
train/test 

R 
train/test 

4/4 0.0394/0.0582 0.23/0.416 
4/5 0.0405/0.0570 0.369/0.201 
5/4 0.0373/0.0389 0.411/0.452 
4/6 0.0459/0.0251 0.392/0.306 
5/5 0.0156/0.0678 0.713/0.627 
6/4 0.0291/0.0670 0.481/0.437 
5/6 0.0329/0.0761 0.211/0.475 
6/5 0.0210/0.0471 0.489/0.612 
5/7 0.0270/0.0378 0.543/0.162 
6/6 0.0119/0.134 0.708/0.251 
7/5 0.0380/0.110 0.296/0.379 
6/7 0.0169/0.0288 0.143/0.367 
7/6 0.0192/0.0739 0.488/0.262 
6/8 0.0150/0.0482 0.403/0.287 
7/7 0.0300/0.0378 0.483/0.565 
8/6 0.0354/0.0530 0.126/0.643 
7/8 0.0405/0.0563 0.150/0.447 
8/7 0.000715/0.0994 0.963/0.353 
7/9 0.0223/0.0354 0.629/0.537 
8/8 0.0276/0.0752 0.530/0.385 
9/7 0.00625/0.0244 0.754/0.764 
8/9 0.0274/0.118 0.610/0.582 
9/8 0.00280/0.0584 0.623/0.340 

8/10 0.0175/0.0684 0.597/0.627 
9/9 0.0235/0.0414 0.547/0.396 

10/8 0.0213/0.0619 0.312/0.105 
9/10 0.0201/0.0422 0.580/0.684 
10/9 0.000379/0.117 0.856/0.211 

10/10 0.0102/0.0558 0.0844/0.413 
 
Initially, it is observed that the best performing single layer MLP is the network with 6 neurons in the hidden 

layer whereas the best performing two-layer network is the network with 9 neurons in the first and 7 neurons in 

the second hidden layer.  
 
Between these two networks, the latter is significantly better performing both in terms of MSE and correlation 

coefficient and thus the architecture of this network is considered the optimum. Furthermore, the difference in 

training time between the two networks is not significantly large and this cannot affect the choice of optimum 

network. 
 
It becomes obvious from the findings in Table 7, that for all MLP models rather moderate values of correlation 

coefficient are obtained, with R test values being under 0.76. Given that observation, as it is intended to obtain 

a better fit for the experimental results, the next step of the proposed procedure will take place and RBF 

networks will be developed afterwards in order to investigate their potential. 

 

 
 
 



 

4.3. RBF neural networks models 
 

After the evaluation of MLP model showed that these models cannot sufficiently model the experimental data, 

various RBF models with Gaussian activation function are developed in order to determine the capabilities of 

RBF networks. As it can be seen in Table 3, the maximum number of neurons and spread parameter values 

are varied within specific ranges. From all the results that were obtained, i.e. 45 cases in total, some indicative 

results are presented in Table 8. 
  

Table 8: Results of cases conducted with RBF models (Gaussian activation function) 
 

Neurons/
spread 

MSE 
train  

MSE 
test  

R  
train 

R  
test 

50/0.250 0.0033 0.0131 0.9602 0.8802 
50/0.500 0.0036 0.0142 0.9588 0.8768 
60/0.250 0.0021 0.0084 0.9747 0.8942 
60/0.500 0.0033 0.0068 0.9735 0.8932 
60/1.00 0.0020 0.0081 0.9767 0.8960 
60/2.00 0.0047 0.0187 0.9426 0.8648 

 
As it can be observed from Table 8, the best performing RBF model is shown to be a network with 60 neurons 

in the hidden layer and spread parameter value equal to 1.00. From these findings it can be also noted that, in 

cases with over 40 neurons, better results were obtained from networks with spread parameter values lower or 

near 1.00 from networks with larger spread parameters values.  
 
After the simulations with Gaussian activation function were conducted, it was considered important to compare 

the performance of RBF models with Gaussian activation function with the results obtained from simulations 

with two other activation functions, namely multiquadric and inverse quadratic functions. In these simulations, 

the same maximum number of neurons and range of spread parameter, which were used for Gaussian 

activation function cases is employed and the results are presented in Tables 9 and 10. 
 
 As it can be seen from the results presented in Table 9, the best results with multiquadric activation function 

are obtained with spread parameter equal to 2.000, as this model exhibits acceptable MSE, both during training 

and test procedures, as well as correlation coefficient during training, while it exhibits the higher correlation 

coefficient during test procedure. Consequently, it is deduced from these results that the model with 60 neurons 

and ε = 2 can reproduce the experimental results and generalize relatively better than the other networks. 

However the value of R = 0.734 for test procedure is not high enough to be considered satisfactory. 

Furthermore, the large difference in R values between training and test procedure in the most cases indicates 

that there are severe overfitting problems with this type of RBF networks, which are compatively larger than in 

the case of networks with the other two activation functions. Finally, it is also observed that the best results 

concerning R test are obtained for a case where R train as well as MSE train and MSE test have their lower 

values, which occurs also in the case of Gaussian and inverse quadratic activation functions, indicating that the 

improvement in generalization ability of the model coincides with a slight deterioration of predictive ability of the 

network. 
 

 
 



 

Table 9: Results of cases conducted with RBF models (Multiquadric activation function)  
 

spread MSE train MSE 
test 

R  
train 

R  
test 

0.250 8.65x10-5 0.1012 0.986 0.285 
0.500 4.16x10-3 0.1808 0.975 0.378 
1.000 1.84x10-3 0.1839 0.977 0.553 
2.000 3.20x10-2 0.5856 0.935 0.734 

 
Table 10: Results of cases conducted with RBF models (Inverse quadratic activation function) 

 

spread MSE  
train 

MSE 
test 

R  
train 

R  
test 

0.250 3.05x10-3 1.0100 0.947 0.886 
0.500 3.98x10-3 0.4474 0.989 0.856 
1.000 3.88x10-4 0.1974 0.988 0.424 
2.000 2.68x10-4 0.1313 0.985 0.349 

 
In the case of inverse quadratic activation function, it can be observed that superior results regarding R test are 

obtained for spread parameter value equal to 0.25. Comparing this result with the result of multiquadric and 

Gaussian activation functions, as presented also in Table 11, it is observed that results using the inverse 

quadratic activation function outperform the results obtain with multiquadric activation function and are slightly 

inferior to the results obtained by Gaussian activation function as both R train and R test values are very close 

between the two models but MSE values are considerably lower in the case of Gaussian activation function. 

Consequently, the case with 60 neurons, spread parameter 1.00 and Gaussian activation function is 

considered the best performing RBF neural network.  
 

Table 11: Comparison of the best cases for each activation function  
 

network Spread 
parameter

MSE  
train/test 

R  
train/test 

RBF-Gaussian 1.000 0.0020/0.0081 0.9767/0.8960 
RBF- multiquadric 2.000 0.0320/0.5856 0.935/0.734 

RBF-inverse quadratic 0.250 0.00305/1.0100 0.947/0.886 
 
 

4.4. Comparison of MLP and RBF models 
 

The final step of the approach employed in the current work consists of the comparison of best performing MLP 

and RBF models, with a view to figure out which of these models can be chosen as the overall best performing. 

In Table 12, the parameters and performance indexes of two models are presented. 
 

Table 12: Comparison between the best performing MLP and RBF models 
 

 Optimum MLP Optimum RBF 
MSE train error 0.00623 0.002 
MSE test error 0.0244 0.0081 

R train 0.754 0.977 
R test 0.764 0.896 

 



 

As it can be seen from Table 12, the best RBF model exhibits significantly better results both in terms of MSE 

and correlation coefficient values and thus, it is evaluated as the optimal network. For the sake of comparison 

in terms of computational time it was observed that the optimum RBF network was trained in 2.44 s, whereas 

the training procedure of the optimum MLP network was completed in 1.73 s. Nevertheless, as the RBF 

network is found to be able to produce results closer to experimental ones than the MLP network, this 

difference in training speed is not considered more important than the difference in the other indices, namely 

the superiority of RBF best case concerning MSE train and test error, as well as correlation coefficient values, 

so the RBF is selected as the more preferable model type.  
 

To the authors’ knowledge, there are not many results reported on the comparison of MLP and RBF networks 

for grinding. This study indicated that RBF networks can outperform MLP ones, a conclusion consistent with 

findings of other researchers. In the relevant literature (Finan et al., 1996; Xie et al., 2011), it is generally stated 

that RBF networks are more robust, especially when input data set contains noise, and their results indicate 

higher levels of accuracy and lower errors in several problems, such as an automatic fault location system, 

developed by Zayanderhroodi et al. (2010) or a classification problem studied by Mak et al. (1993). Especially, 

they are preferable for small and medium size training sets, e.g. up to 500 samples (Sug, 2009). For larger 

input sets, their performance is not always better than that of MLP networks, e.g. for a classification problem 

(Xie et al., 2011) or for a leak detection problem (Santos et al., 2013), where RBF networks exhibited higher 

absolute errors; however it is also advisable that attention should be paid in order to determine the optimum 

model parameters in each case, as only then the RBF network can be fully exploited and outperform MLP both 

with noisy and normal training sets (Finan et al., 1996).  Furthermore, sometimes storage requirements are 

reported to be larger than those of MLP networks (Mak et al., 1993). Finally, although research is still ongoing 

in this field of neural networks, the promising results observed in the current study and those reported in the 

aforementioned literature indicate that it is worth studying this type of neural networks in order to further 

enhance its capabilities.  
 
 

5. CONCLUSIONS 
 

In the current work, ANN and RBFNN models were developed for the prediction of surface roughness during 

grinding of steel components. Results obtained from several ANN and RBFNN models with various 

characteristics were compared and finally, several crucial conclusions were deduced:  
 

• Four different training algorithms and several network architectures with one and two hidden layers and 

up to 10 neurons in each layer were tested, in order to determine optimum parameters for the ANN 

models. It was found that the Levenberg-Marquardt algorithm was the best performing training 

algorithm and 3-9-7-1 was selected as the optimum network architecture.  

• In the case of MLP ANN models, it is found that they can produce rather not very high levels of 

accuracy, as R test values do not exceed 76% and MSE test values do not exceed 2.44x10-2 for the 

best performing model. 

• In the case of RBF ANN models, comparison between models with three types of activation functions, 

namely Gaussian, multiquadric and inverse quadratic, various numbers of hidden neurons and spread 



 

parameter values was performed. It was finally observed that results obtained from models using the 

Gaussian activation function are superior to results obtained with the other activation functions and the 

optimum model parameters were 60 hidden neurons and spread parameter 1.0. 

• Compared to the results obtain with ANN models, results obtained with RBF models are relatively 

better, since the optimum RBF model exhibited high levels of predictive and generalization ability. 

These results indicated that RBF networks can be considered as an advantageous soft computing 

method for manufacturing process simulation. However it is advised that further investigation of the 

applications of this method in manufacturing should be conducted in order to extend the capabilities of 

this method. 
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