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ABSTRACT 

Foraging behaviour of stingless bee has specific characteristics and it is of interest to be 
adapted as an optimisation algorithm. Foraging behaviour of stingless bee either as an 
individual worker or as a colony is different from the foraging behaviour of other group of 
bees. This paper considers an optimisation algorithm based on specific characters of 
stingless bee. The developed stingless bee algorithm is then tested for solving an 
optimisation problem of a wireless network routing with residual energy cognizance.  
Elapsed time of the computation of the stingless bee algorithm is examined by varying 
node number using 5 nodes, 10 nodes, 15 nodes, 20 nodes, and 25 nodes.  The larger 
number of nodes means there are more candidate of solutions. The reduction mechanism 
and the early termination mechanism used in the stingless bee algorithm are the important 
parts of the developed stingless bee algorithm. The two mechanisms distinguish the 
algorithm from other bee colony based algorithms. 
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1. INTRODUCTION 
 

Stingless bees (Meliponini) belong to a tribe of Apidae family among others different tribes i.e. honey 
bees (Apini), bumble bees (Bombini) and orchid bees (Euglossini), the taxonomi is shown in figure 1. 
Stingless bees have an interesting pattern of foraging behaviour to be adopted into an optimisation 
algorithm as part of the swarm intelligence, in which, the foraging behaviour  of honey bees (Apini) 
has received considerable attention and has been adopted into Artificial Bee Colony algorithm 
(Karaboga, 2005) and some other algorithms (Nakrani and Tovey, 2003), (Teodorovic and Dell’Orco, 
2005), (Yang, 2005). Foraging behaviour of honey bees has inspired a population based search 
algorithm to find the optimal solution which was firstly proposed by D. Karaboga in 2005 (Karaboga, 
2005). The algorithm exploits the food foraging behaviour of honey bee swarms. Karaboga and his 
team have investigated the artificial bee colony (ABC) algorithm and its applications to real  problems.



 

Karaboga and Basturk have studied the performance of the ABC algorithm on either unconstrained 
(Basturk and Karaboga, 2006), (Karaboga and Basturk, 2007a), (Karaboga and Basturk, 2008) or 
constrained numerical optimisation problems (Karaboga and Basturk, 2007b). 

 

Figure 1. The taxonomi tree of meliponini in Apidae family. 
 

The ABC algorithm has also been implemented in neural network training in (Karaboga and Akay, 
2007), (Karaboga et al., 2007). In (Hadidi et al., 2010), it was considered an Artificial Bee Colony 
(ABC) algorithm based approach for structural optimisation. In 2011, Zhang et al. implemented the 
ABC algorithm for various applications, such that optimal multi-level thresholding (Zhang and Wu, 
2011a), MR brain image classification (Zhang et al., 2011a), cluster analysis (Zhang et al., 2011b), 
face pose estimation (Zhang and Wu, 2011b), and 2D protein folding (Zhang and Wu, 2012). The 
application of honey bee algorithm in smart lights by using feedback control  has been considered in 
(Alfonso et al., 2016). The honey bee algorithm proposed in (Karaboga, 2005) is an algorithm which 
has received considerable  attention since the first publication. Another honey bee algorithm has been 
developed by (Nakrani and Tovey, 2003). More inspired algorithms by the behaviour of honey bee 
have been studied in (Ozturk et al., 2010), (Chitra and Subbaraj, 2010).  .  

An Australian research (Heard, 1994) described comparison between honey bee species and a 
specie of stingless bees. The research showed that stingless bees visit less flower for exploitation 
than honey bees in the same interval time. Variation communications made by stingless bees are 
more diverse with more types of information transmitted (Nieh, 2004). The stingless bee does not only 
performing the waggle dance in the nest but also using chemical communication by spreading special 
odour in the feeder, around the feeder or some places on the path to the feeder. The uniqueness of 
stingless bee colony is its fastidious selection in feeder exploration. It inspires to develop an algorithm 
which fastidious in candidates selection. Moreover, it can reduce the candidates before further 
execution and eliminates some candidates before the final calculation in selection process. 

Stingless bees use and communicate with more information than honey bees. Research on three 
Sumatran stingless bees (in Sumatra Island, Indonesia) has shown that an individual of stingless bees 
which flies to exploite floral resources will also perform exploration eventhough the floral resources 



 

have not been fully consumed (Inoue et al., 1985). In contrast, honey bees will perform continuous 
exploitation until the floral resources is emptied (Von Frisch, 1967). Information of floral resources 
given by stingless bees includes direction, height and amount of nectar compared to honey bees that 
only give direction and amount (Nieh, 2004).  

The paper proposes an optimisation algorithm based on the stingless bee foraging behaviour by 
adopting the unique characteristics studied in (Heard, 1994), (Nieh, 2004), (Inoue et al., 1985), (Von 
Frisch, 1967), (Roselino and Hencir, 2012), (Kakutani et al., 1993), (Jarau et al., 2004), (Reichle et al., 
2013), (Jacobus and Judith, 2004), (Peter et al., 2010), (Jarau, 2009), (Sanchez et al., 2008).  This 
work is motivated by the experimental result in (Kakutani et al., 1993) in which the stingless bees 
foraged well than the honey bees that foraged inefficiently. The paper considers the development of a 
stingless bee algorithm (SBA) by using less number of visited flowers in an interval time characteristic. 
The behaviours of stingless bees are used for reduction of states of solution candidates. The  main 
different with the well known honey bee algorithm and various variants of the original algorithm is in 
the alteration of the reduction part. The proposed algorithm is then tested for solving an optimisation 
problem in a wireless sensor network routing to find the best route either by setting the value of the 
residual energy at each node or without pre-defined routes by searching and calculating any possible 
routes randomly.  

 

 
2. STINGLESS BEE ALGORITHM 

 

The bee optimisation algorithms have been developed by mimicking the behaviour of colonies in 

exploring and exploiting floral resources.  In wild habitat, there are similarities between honey bees 

and stingless bees. Foraging behaviour of bees can be divided into two types, i.e. colony and 

individual behaviours (Heard, 1994), (Nieh, 2004). There are similarities and also differences on 

behavioural patterns among tribes in Apidae family. Several entomology studies have made 

comparison between the two types of bees that are stingless bees (Meliponini) and honey bees (Apini) 

(Heard, 1994), (Nieh, 2004). The foraging behaviour of stingless bees, i.e, the colony behaviour and 

individual behaviours are as follow. 
 

2.1. Colony Behaviour 
 

In foraging activity, as very social colonies, the honey bees, stingless bees and the bumble bees 

distribute tasks among the colony members (Sanchez et al., 2008). However, only some colony 

members are going out in the same time while the majority members are in the nest. The colony 

members that stay in the nest (onlookers/unemployed/un-experienced workers) are waiting the 

foragers bringing information of floral resources. In addition, several foragers who explore and find the 

floral resources then recruit colony members in order to exploit found floral resources. Some 

members fly out of the nest as the explorer to find feeder, but some members stay in the nest to 

observe any information brought by the explorers that fly back into the nest. 

 

Bees communicate each other by using visual and chemical communications. Waggle dance as a 

visual communication presents the profitability and location information of the feeder. The waggle 



 

dance of honey bees foraging behaviour is adopted by D. Karaboga (Karaboga, 2005) as an 

important part of Artificial Bee Colony (ABC) algorithm. Stingless bees also perform waggle dance as 

a visual communication to recruit observer bees. However, the waggle dance on stingless bee is more 

varied and contains more information compared to the waggle dance of honey bees. It presents 

complete information of related feeders (Jarau, 2009). 

 

In addition to waggle dance, stingless bees also communicate with the chemical signal. It provides 

odour guidance which presents profitability and direction information of floral resources to be 

recognised by other members of colony (Roselino and Hencir, 2012), (Sanchez et al., 2008). 

Stingless bees have varied odour to broadcast different information (Roselino and Hencir, 2012), 

(Kakutani et al., 1993). Beside the odour produced by the body of bees, stingless bee also observe 

the floral odour of food. Then, the observer bees can switch to be the explorer for searching the food 

source based on their recognition to the odour of the food which brought to the nest by explorer bees 

in advance (Jarau et al., 2004). It has been shown in (Roselino and Hencir, 2012)  that stingless bees 

will put repellent odour to the certain resources that are considered as not eligible or even fake 

resources. Hence, the others explorers will not explore the marked location. In this case, stingless 

bees have developed an efficient exploration mechanism. 
 

2.2. Individual Behaviour 
 

 
The individual workers of stingless bees are able to make decision during foraging activity. It has been 

observed that the foragers perform exploitation of resources and can switch to do exploration in their 

flight although the current food sources have not been exhausted (Von Frisch, 1967). In contrast to 

the behaviour of honey bees which still continue to visit the same food sources even until the next day 

after the food source have been exhausted (Heard, 1994), (Von Frisch, 1967). A single explorer of 

stingless bees can mark one or more feeder using odour as repellent signal in order to avoid other 

members visiting those locations. This shows that stingless bee foragers perform pre selection in their 

exploration. Moreover, individual explorers are also able to create full or partial trail by spreading 

odour that linking the feeder location and the nest (Roselino and Hencir, 2012). 

 
2.3. Algorithm Based on Foraging Behaviour of Stingless Bee  

 
An algorithm based on foraging behaviour of stingless bees is considered by adapting the information 

communication exchange during foraging.  Before describing the algorithm, the following definition is 

required. 

Definition: 

• Permanently ineligible candidate:  

A candidate which does not fulfil the threshold to be chosen permanently. 

• Temporary unfit candidate:  

A candidate which only unfits in a specific condition, but in principle it fulfils the threshold 

to be an acceptable solution. 

 



 

The algorithm proposed in this paper is based on foraging behavioural patterns of stingless bees. The 

structure of the algorithm is described in the flowchart shown in figure 2.  

 

 
           

Figure 2. The Stingless Bee Algorithm Flowchart with relation to common bee colony 
algorithms 
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With the stingless bee algorithm (SBA) procedure, available observed edges (or candidate solutions) 

can be reduced in a significant number. Therefore, this makes a good impact on computation. The 

key process for presenting the final best result in SBA is the reduction of unfit candidate solutions with 

repellent odour. The explorer bees can perform selective decision to the colony in order to avoid 

inefficient foraging visit to the ineligible location. The explorers mark several feeder locations with 

repellent signal. These show that the individual forager can eliminate ineligible feeders in order to 

avoid the other foragers visit the ineligible feeders. The information is not necessarily to be sent to the 

nest for the response of the colony.  

 

The algorithm described in the flowchart in figure 2 adopts the foraging behaviour of the stingless 

bees which have more information communication variaties. In principle, the algorithm is influenced by 

the honey bee algorithm developed in (Karaboga, 2005). The stingless bee algorithm is developed by 

performing the reduction of candidates by means of eliminating the permanent ineligible candidates. 

Hence, it does not need to be involved in further selection process. For real time applications, it is a 

very useful mechanism in order to reduce the computational load and to increase the searching speed. 

 

In addition to the reduction mechanism, it is also considered an early termination mechanism. In the 

early termination of stingless bee algorithm, the looping process does not need to be run until the end 

of calculation. The algorithm will terminate the current process to the next process earlier without 

finishing the process in a loop. It is useful when the candidates of solutions that have been found are 

recognised as temporary unfit. The temporary unfit candidates do not need to be calculated in further 

process. In contrast with permanent ineligible candidates which are permanently unacceptable, since 

the temporary unfit is temporary unaccepted, it may be accepted in the next loop.  

 

In the considered SBA algorithm, there are two mechanisms have been added, i.e. candidate 

reduction and early termination mechanisms compared to the ABC algorithm. The two mechanisms in 

the SBA algorithm make up two stages with the ABC algorithm. In recent years, algorithms with multi 

strategies have been developed with various combinations of heuristic and/or classical methods. The 

algorithms have been successfully implemented in solving, for example, nonlinear functions, 

combinatorial optimisation problems, high-dimensional and large-scale regression datasets, and have 

achieved the high performance of the results. To illustrate, El Sehiemy et al., 2013 has considered a 

multi-objective fuzzy-based procedure for solving reactive power management in practicable 

environment. The procedure comprises both economical and technical aspects of reactive power 

supports. Osaba et al., 2013 has proposed a parallel genetic algorithm for solving combinatorial 

optimisation problems. In the algorithm, a communication between subpopulations called migration 

has shown to increase the performance of the algorithm. Precup et al., 2013 has developed a reduced 

parametric sensitivity method using Gravitational Search Algorithms (GSAs) to minimise the objective 

functions of classified optimisation problems which increases the search accuracy. Gacto et al., 2014 

has considered a two-stage method to yield proper fuzzy modelling in high-dimensional regression 



 

problems by means of an approximate Takagi–Sugeno–Kang fuzzy system. The stages consist of an 

inductive rule based learning process with an evolutionary data base learning, and a post-processing 

process acting as a rule selection and a scatter-based tuning of the membership functions of the 

determined solutions which include an efficient Kalman filter to find out the coefficients of the 

consequent polynomial function in the rules of the fuzzy system. The mechanisms in the both stages 

produce a fast convergence in optimisation problems of high-dimensional and large-scale regression 

datasets with enhanced accuracy. 
 

 

3. PROBLEM FORMULATION AND IMPLEMENTATION OF ALGORITHM 
 

3.1. Problem Formulation 
 

Given an ad-hoc network which has N  nodes, where each node has the same transmission range of 

coverage denoted by λ . Nodes are scattered at the position };;;;{ 321 Nkkkkk L=  , where 1k , 2k  , 

L , Nk   represent the coordinates ),( yx  location of the node. Each node is assumed to have a 

residual energy which is expressed in the set };;;;{ 321 Neeeee L= .  

 

The optimisation goal is to minimise a cost function, C , which defines the required energy from the 

source node to the destination node. The optimisation problem is then formulated mathematically as 

follows. 
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In equation (2), te  denotes the value of residual energy at the node in t position, while the cost of 

distance from the current node to the next node in t position is denoted by tD . For the node i  to 

node j , ijd is the distance between of these nodes and ijD  will be calculated if and only if the 

distance ijd  fulfils the range transmission criteria i.e. λ≤ijd  which is marked on ijA . Hence, the 

cost of distance on a full path transmission is given by D  as shown in equation (3), α  is a multiplier 

factor to make the cost value of the distance to be much smaller than the energy cost as the main 



 

issue in this paper is based on energy cognition. A  is a matrix that shows the link availabilities refer 

to the coverage transmission of each sensor node. ijA   will be 0  (zero) if it does not meet the 

provisions.  

 

3.2. Implementation of the procedure of stingless bee algorithm 
 

The combinatorial solution is expressed by p  which contains some partial solutions tp , is a set of 

nodes that form a full path from the source node to the destination node. The tp  is defined by the 

following equation 

 

 ⎡ ⎤ 1)( ftlbublbpt ⇔−+= φ
       

(5) 

and 

 

 1=⇔= tpspt        (6) 

 
In this case ps is a source node, lb  is the node with the lowest index while ub  is the node with the 

highest index. φ  in equation (5) is a random value between 0  and 1. A source node is given with the 

lowest index, while the destination node is given with the highest index in the range, whereas the 

other nodes are indexed randomly. All indexes are integer, hence the ceiling bracket ( ⎡ ⎤• ) is used in 

order to keep the equation provides integer value, such as the integer value of node's index in its 

range. 

Explorers of stingless bees are trying to obtain information about any detected food sources and will 

decide whether it will be marked with a repellent odour or will be communicated about its cost to the 

observer in the nest. In this case, the criteria for repellent odour is the solution if the path does not 

meet the initial constraint, means represented with 0=ijA  (equation (4)) and the additional constraint 

(equation (7)) 
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Equation (7) will reduce the number of edges. As a result, a number of solution paths that has one or 

more unmarked edges by the repellent odour 1=ijR  will be eliminated. In other words, the full path 

solution contains repellent odour in one edge or more , 1≥pathR , will be ignored. 
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The next stage is to calculate the C  value with the function in equation (2). In this step, the only path 

that is free from repellent odour (in the previous stage) will be proceeded in the selection stage. 

 

The information of C  value is then shared to the observer bees that are waiting in the nest. Next, on 

the exploitation phase, the worker bees in flight are also looking for the neighbour food sources. 

Equation (10) represents the neighbour exploration: 

 

  ⎡ ⎤ pspqlbublbq ttti ≠≠⇔−+= )(φ      (10) 

 

The observer bees in the nest are comparing the cost of neighbour solutions to previous solution. The 

solution with less cost is then selected as a new solution. 

 

The early termination mechanism performs termination of the process in a loop when a temporary 

unfit feeder is found. Hence, it is not necessary to continue the process untill the final calculation, but 

it will jump to the next iteration immediately. In this case, the temporary unfit feeder is a candidate 

which has the residual energy below the average of residual energy,γ  in one neighbourhood nodes. 
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tqif

else
fit E

        (11) 

A node may unfit in one group of neighbourhood but it may be fit in other groups, so it is called a 

temporary unfit. 

 

4. SIMULATION RESULTS 
 

The simulation was performed by using MATLAB in order to test the performance of the proposed 

stingless bee algorithm in generating solutions. The results are shown in the figure 3, there are 25 

nodes with 158 edges, and one node can have up to 21 neighbour nodes (node 22). 
 



 

 
 

Figure 3. Available link on the network based on coverage transmission of each node 
 

The simulation begins by setting the value of the residual energy at each node by 15 Joules. In this 

condition, the algorithm performed to get the optimal route from node 18 to node 25, as shown in 

figure 4. 

 

 
 

Figure 4. Simulation for optimal routing transmission of node 18 to node 25 



 

 

In the first simulation, the result is presented in figure 4. The optimal route from node 18 to node 25 is 

known through the node 22. To test the algorithm in obtaining the optimal route, the next case, a 

scenario is run by changing the value of residual energy at node 22 of 15 Joules to 14 Joules. In this 

scenario the route was changed, as shown in figure 5. 
 

 
 

Figure 5. Second simulation for optimal route of node 18 to node 25 
 

 

From the simulation results, it was obtained the route from node 18 to node 25.It can be seen that the 

algorithm can determine the optimal route by selecting the path through the node which has higher 

residual energy. The route 18-22-25 was originally the optimal route, when the value of the residual 

energy at node 22 is reduced then the algorithm will search for a new solution. The new solution is 

found as neighbours of the previous solution, i.e. 18-23-25 . 

 

In the next simulation scenario, the selected nodes are located quite far from the sink node so that the 

simulation can be made with the two nodes on the residual energy value decreased significantly. In 

this scenario, node 1 is chosen as a source node and node 25 as a destination node. Each node is 

given by the residual energy of 15 Joules. The simulation result of this scenario is shown in the figure 

6. 



 

 
 

Figure 6. Simulation of 1st  scenario for optimal route of node 1 to node 25 
 

In the simulation results (figure 6), it is found the optimal route from node 1 to the node 25 through the 

path 1-4-5-21-25. In this scenario the entire value of each component of the energy matrix e  is 15 

Joules. 

 

To test the algorithm, a second simulation on the route from the source node 1 to the sink node 25 is 

performed. The second scenario is run by changing the value of the residual energy at node 4 and 

node 21 of 15 Joules to 7 and 5 Joules respectively. The purpose of this simulation scenario is to 

determine whether the algorithm can find a new route solution if the old route runs into a lower 

residual energy level. Simulation result in this scenario presents the route changes, as shown in figure 

7. 



 

 
 

Figure 7. Simulation of 2nd scenario for optimal route of node 1 to node 25 
 

For these scenarios, the numbers of node is 25 nodes. It is observed the reduction of candidate 

solutions by the algorithm as shown in table 1. The reduction of candidate solutions is represented by 

the reduction of the number of observed edges. The early termination and the reduction mechanism 

of the stingless bee algorithm lead to the reduced elapse time of execution to produce the optimal 

solution. 

 

Table 1: Performance of the algorithm in simulation  
 

Value Parameters 
Initial value stingless bee 

algorithm  
(with 

reduction) 
Number of observed nodes 25 25 
Number of observed edges 158 50 
The maximum number of 
neighbour nodes 

21 6 

The minimum number of 
neighbour nodes 

8 3 

 

The algorithm is then tested by changing the number of nodes into several scenarios (5 nodes, 10 

nodes, 15 nodes, 20 nodes and 25 nodes). From this test, it is known the elapsed time of the 

algorithm which gives the required time of the searching process. The results are shown in table 2 

and figure 8. 

 



 

Table 2: Simulation results of elapsed time 
Nodes   
 
 Run 

5 nodes 10 nodes 15 nodes 20 nodes 25 nodes 

1st  0.924243 s 1.246057 s 1.930346 s 2.082516 s 2.660983 s 
2nd  0.934927 s 1.231707 s 1.811621 s 2.0712 s 2.649989 s 
3rd  0.800293 s 1.207068 s 1.803981 s 2.030206 s 2.559149 s 
4th  0.778148 s 1.192857 s 1.730544 s 2.004045 s 2.444357 s 
5th  0.768285 s 1.18623 s 1.720151 s 1.967595 s 2.330155 s 

Average 0.841179 s 1.212784 s 1.799329 s 2.031112 s 2.528927 s 
 

 
 

Figure 8. The elapsed time of computation performance of stingless bee algorithm 
 

 
 

Figure 9. The multiples of average of elapsed times to the increment of nodes 
 



 

In table 2 and figure 8, the searching process of the stingless bee algorithm becomes slower as the 

number of the nodes grows to be larger. However, the increasing of elapsed times is not linear as the 

linear increased of related numbers of node as shown in figure 9. 

 

The next test was performed to find the best route from node 1 to 6. In the first test, all possible routes 

were defined (in MATLAB program) i.e : 

 

rout1   = [1 2 3 4 5 6]; 
rout2   = [1 2 4 3 5 6]; 
rout3   = [1 2 4 5 3 6]; 
rout4   = [1 2 5 4 3 6]; 
rout5   = [1 2 5 3 4 6]; 
rout6   = [1 2 3 5 4 6]; 
rout7   = [1 3 2 4 5 6]; 
rout8   = [1 3 4 2 5 6]; 
rout9   =   [1 3 2 5 4 6]; 
rout10  =   [1 3 4 5 2 6]; 
rout11  =   [1 3 5 4 2 6]; 
rout12  =   [1 3 5 2 4 6]; 
rout13  =   [1 4 2 3 5 6]; 
rout14  =   [1 4 3 2 5 6]; 
rout15  =   [1 4 3 5 2 6]; 
rout16  =   [1 4 2 5 3 6]; 
rout17  =   [1 4 5 3 2 6]; 
rout18  =   [1 4 5 2 3 6]; 
rout19  =   [1 5 4 3 2 6]; 
rout20  =   [1 5 4 2 3 6]; 
rout21  =   [1 5 3 4 2 6]; 
rout22  =   [1 5 3 2 4 6]; 
rout23  =   [1 5 2 3 4 6]; 
rout24  =   [1 5 2 4 3 6]; 
rout25  =   [1 2 3 4 6]; 
rout26  =   [1 2 3 5 6]; 
rout27  =   [1 2 4 3 6]; 
rout28  =   [1 2 5 3 6]; 
rout29  =   [1 2 4 5 6]; 
rout30  =   [1 2 5 4 6]; 
rout31  =   [1 3 2 4 6]; 
rout32  =   [1 3 2 5 6]; 
rout33  =   [1 3 4 2 6]; 
rout34  =   [1 3 5 2 6]; 
rout35  =   [1 3 4 5 6]; 
rout36  =   [1 3 5 4 6]; 
rout37  =   [1 4 3 2 6]; 
rout38  =   [1 4 2 3 6]; 
rout39  =   [1 4 3 5 6]; 
rout40  =   [1 4 5 3 6]; 
rout41  =   [1 4 5 2 6]; 
rout42  =   [1 4 2 5 6]; 
rout43  =   [1 5 3 2 6]; 
rout44  =   [1 5 2 3 6]; 
rout45  =   [1 5 4 2 6]; 
rout46  =   [1 5 2 4 6]; 
rout47  =   [1 5 3 4 6]; 
rout48  =   [1 5 4 3 6]; 
rout49  =   [1 2 3 6]; 
rout50  =   [1 2 4 6]; 



 

rout51  =   [1 2 5 6]; 
rout52  =   [1 3 2 6]; 
rout53  =   [1 3 4 6]; 
rout54  =   [1 3 5 6]; 
rout55  =   [1 4 2 6]; 
rout56  =   [1 4 3 6]; 
rout57  =   [1 4 5 6]; 
rout58  =   [1 5 2 6]; 
rout59  =   [1 5 3 6]; 
rout60  =   [1 5 4 6]; 
rout61  =   [1 2 6]; 
rout62  =   [1 3 6]; 
rout63  =   [1 4 6]; 
rout64  =   [1 5 6]; 
rout65  =   [1 6]; 

 

The algorithm was then performed based on those fixed 65 routes. The second test was carried out 

without defined routes, it was fully random. The best route was found by searching and calculating 

any possible routes randomly. 

 

Both Fixed and Random produce same route (1-3-2-4-6) in 10 tests, but the SBA yields different 

performances between them. With fixed parameters of routes are defined, the SBA finds the best 

route faster than randomly as shown in figure 10. The average of elapsed times for the fixed 

parameters is 0.20 seconds which is three times faster than 0.69 seconds of the random. However, 

the SBA with fixed route parameters needs more efforts such as higher capacity of memory and 

manual update for pre-defined all combination route in the plant than the random routes. More nodes 

added require more efforts. The SBA with random parameters causes the algorithm more flexible 

especially in dealing with huge number of nodes. 

 

 

 
 

Figure 10. The elapsed time in 10 tests 
 



 

 

 
Fixed Random 

 
 

Figure 11. Simulation results 
 

 

5. CONCLUSION 
 

An algorithm based on foraging behaviour of stingless bee was developed in this paper. The main 

idea of the proposed algorithm was the inclusion of reduction mechanism and early termination 

mechanism. The reduction mechanism mimics the stingless bee foraging behaviour by marking 

ineligible feeders and the early termination mechanism mimics the stingless bee behaviour leaving the 

feeder during exploitation process to explore new fit feeders. The proposed stingless bee algorithm 

successfully found the optimal route rapidly in any environmental changes i.e. the changes of residual 

energy value distributed in the network. Only two foraging behaviours of stingless bee were adopted 

in the proposed algorithm. In fact, there are still many foraging behaviours of stingless bee that can be 

explored for future development in order to improve the algorithm. Future work is aimed to exploit the 

other foraging behaviours in order to produce an optimal algorithm. 



 

 

ACKNOWLEDGMENT 
 

This work was supported in part by the Directorate of Higher Education, Ministry of National Education 

and Culture, Indonesia under the Decentralised Research Grant, Bandung Institute of Technology, 

Bandung, Indonesia 2012. The authors would like to thank the anonymous reviewers for their helpful 

comments and suggestions which have helped to significantly improve the presentation of the paper. 
 

 
REFERENCES 

 
Alfonso, W., Velásquez, J. J., Passino, K. M., Caicedo, E. F., 2016, A honeybee social foraging 
algorithm for feedback control of smart lights. Engineering Applications of Artificial Intelligence 48, 13-
31.  
 
Basturk, B., Karaboga, D., 2006, An Artificial Bee Colony (ABC) algorithm for numeric function 
optimization. Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA.  
 
Chitra, C., Subbaraj, P., 2010, Multiobjective Optimization Solution for Shortest Path Routing Problem. 
International Journal of Computer and Information Engineering 4(2), 77-85.  
 
El Sehiemy, R., El-Ela, A.A. and Shaheen, A., 2013. Multi-objective fuzzy-based procedure for 
enhancing reactive power management. IET Generation, Transmission & Distribution 7(12), 1453-
1460.  
 
Gacto, M.J., Galende, M., Alcalá, R. and Herrera, F., 2014. METSK-HDe: A multiobjective 
evolutionary algorithm to learn accurate tsk-fuzzy systems in high-dimensional and large-scale 
regression problems. Information Sciences 276, 63-79. 
 
Hadidi, A., Azad, S. K., Azad, S. K., 2010, Structural optimization using artificial bee colony algorithm. 
2nd International Conference on Engineering Optimization, 2010, September 6 – 9, Lisbon, Portugal.  
 
Heard, T.A., 1994, Behaviour and pollinator efficiency of stingless bees and honey bees on 
Macadamia flowers. Journal of Apicultural Research 33, 191-198.  
 
Inoue, T., Salmah, S., Abbas, I., Yusuf, E., 1985, Foraging behavior of individual workers and foraging 
dynamics of colonies of three Sumatran Stingless Bees. Res. Popul. Ecol. 27, 373-392.  
 
Jacobus C., Judith, E., 2004, Information flow and organization of stingless bee foraging. Apidologie 
35, 143-157.  
 
Jarau, S., Hrncir, M., Zucchi, R., Barth, F. G., 2004, A stingless bee uses labial gland secretions for 
scent trail communication (Trigona recursa Smith 1863). J. Comp. Physiol. A 190, 233-239.  
 
Jarau, S., 2009, Chemical communication during food exploitation in stingless bees. In: Food 
Exploitation by Social Insects: Ecological, Behavioral, and Theoretical Approaches, Boca Raton, FL 
(Ed. by S. Jarau & M. Hrncir), 223-249.  
 
Kakutani, T., Inoue, T., Tezuka, T, Maeta, Y., 1993, Pollination of Strawberry by  the Stingless Bee 
Trigona Minangkabau, and The Honey Bee, Apis Mellifera: An Experimental Study of Fertilization 
Efficiency. Res. Popul. Ecol. 35, 95-111.  
 
Karaboga, D., 2005, An Idea Based On Honey Bee Swarm for Numerical Optimization. Technical 
Report-TR06,Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey.  
 



 

Karaboga, D., Akay, B., 2007, Artificial Bee Colony Algorithm on Training Artificial Neural Networks. 
Proceedings of IEEE 15th Signal Processing and Communications Applications, Eskisehir, 1-4.  
 
Karaboga, D., Akay, B., Ozturk, C., 2007, Artificial Bee Colony (ABC) Optimization Algorithm for 
Training Feed-Forward Neural Networks. Modeling Decisions for Artificial Intelligence 4617, 318–319, 
Springer-Verlag.  
 
Karaboga, D., Basturk, B., 2007a, A Powerful And Efficient Algorithm For Numerical Function 
Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global Optimization 39(3), 459–471.  
 
Karaboga, D., Basturk, B., 2007b, Artificial Bee Colony (ABC) Optimization Algorithm for Solving 
Constrained Optimization Problems. Advances in Soft Computing: Foundations of Fuzzy Logic and 
Soft Computing 4529, 789–798, Springer-Verlag.  
 
Karaboga, D., Basturk, B., 2008, On the Performance of Artificial Bee Colony (ABC) Algorithm. 
Applied Soft Computing 8(1), 687–697.  
 
Nakrani S., Tovey C., 2003, On Honey Bees and Dynamic Allocation in an Internet Server Colony. 
Proceedings of 2nd International Workshop on the Mathematics and Algorithms of Social Insects, 
Atlanta, GA, USA.  
 
Nieh, J.C., 2004, Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). 
Apidologie  35, 159-182.  
 
Osaba, E., Onieva, E., Dia, F., Carballedo, R., Lopez, P. and Perallos, A., 2015. A migration strategy 
for distributed evolutionary algorithms based on stopping non-promising subpopulations: A case study 
on routing problems. International Journal of Artificial Intelligence 13(2), 46-56. 
 
Ozturk, A., Cobanli, S., Erdogmus, P., and Tosun, S., 2010, Reactive power optimization with artificial 
bee colony algorithm. Scientific Research and Essays 5, 2848-2857.  
 
Peter K., Kwame A., Rofela C., Afia K., 2010, Stingless Bees: Importance, Management and 
Utilisation. Unimax Macmillan, Accra North, Ghana.  
 
Precup, R.E., David, R.C., Petriu, E.M., Preitl, S. and Radac, M.B., 2013. Fuzzy logic-based adaptive 
gravitational search algorithm for optimal tuning of fuzzy-controlled servo systems. IET Control Theory 
& Applications 7(1), 99-107. 
 
Reichle, C., Aguilar, I., Ayasse, M., Twele, R., Francke, W., Jarau, S., 2013, Learnt information in 
species-specific ‘trail pheromone’ communication in stingless bees. Animal Behaviour 85(1), 225-232.  
 
Roselino, A. C., Hencir, M., 2012, Repeated unrewarded scent exposure influences the food choice of 
stingless bee foragers, Melipona scutellaris. Animal Behaviour 83, 755-762.  
 
Sánchez, D., Nieh, J. C., Vandame, R., 2008, Experience-based interpretation of visual and chemical 
information at food sources in the stingless bee Scaptotrigona mexicana. Animal Behaviour 76(2), 
407-414.  
 
Teodorovic, D., Dell’Orco, M., 2005, Bee Colony Optimization – A Cooperative Learning Approach to 
Complex Transportation Problems. Advanced OR and AI Methods in Transportation: Proceedings of 
16th Mini–EURO Conference and 10th Meeting of EWGT (13-16 September 2005).–Poznan: 
Publishing House of the Polish Operational and System Research, 51-60.  
 
Von Frisch, K., 1967, The dance language and orientation of bees. Harvard University Press, 
Cambridge, MA.  
 
Yang, X.S., 2005, Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In Artificial 
Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, Springer-Verlag, 
Berlin, Heidelberg, 317-323.  
 



 

Zhang, Y., Wu, L., 2011a, Optimal multi-level Thresholding based on Maximum Tsallis Entropy via an 
Artificial Bee Colony Approach. Entropy 13(4), 841-859.  
 
Zhang, Y., Wu, L., 2011b, Face Pose Estimation by Chaotic Artificial Bee Colony. International 
Journal of Digital Content Technology and its Applications 5(2), 55-63.  
 
Zhang, Y., Wu, L., Wang, S., 2011a, Magnetic Resonance Brain Image Classification by an Improved 
Artificial Bee Colony Algorithm. Progress in Electromagnetics Research 116, 65-79.  
 
Zhang, Y., Wu, L., Wang, S., Huo, Y., 2011b, Chaotic Artificial Bee Colony used for Cluster Analysis. 
Communications in Computer and Information Science 134(1), 205-211.  
 
Zhang, Y., Wu, L., 2012, Artificial Bee Colony for Two Dimensional Protein Folding. Advances in 
Electrical Engineering Systems 1(1), 19-23.  
 
 


