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Abstract

We study in this paper the consistency of a subclass of the Allen’s Interval Algebra namely
the ORD-Horn networks. More precisely, we consider the Region Connection Calculus
RCC5 and RCC8 networks and we prove that these networks have a realization in polyno-
mial time if they satisfy certain conditions. We also prove that subclasses of minimal RCC5
and RCC8 ORD-Horn networks satisfying a specific hypothesis are consistent as well.
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1 Introduction

Qualitative reasoning is an important subfield of Artificial Intelligence and has many practical
applications in a wide variety of fields, such as Geographic Information Systems, robot naviga-
tion, high level vision and natural languages (Amaneddine and Condotta, 2013), (Amaneddine
and Condotta, 2012), (Khmelev and Kochetov, 2015), (Amaneddine, Condotta and Sioutis,
2013), (Wechler, 1992), (Wolter and Zakharyaschev, 2000), (Precup, David, Stı̂nean, Radac
and Petriu, 2014), (Precup, David, Petriu, Preitl and Radac, 2013) and (Dong, 2005). Many
researchers in the field (e.g. (Ligozat, 1998), (Renz and Nebel, 1997) and (Wolter and Za-
kharyaschev, 2000)) were inspired by Allen’s work on qualitative temporal reasoning (Allen,
1983) and defined other formalisms to reason about objects with respect to space and time.
One important qualitative spatial reasoning, namely the Region Connection Calculus was intro-
duced by Randell et al. (Randell, Cui and Cohn, 1992). In this qualitative spatial model relation-
ships between spatial regions are defined in terms of the connectivity relation C(a, b). Several



subsets of RCC have been studied, amongst them RCC5 and RCC8 (Bennett, 1994). Jonsson
and Drakengren (Jonsson and Drakengren, 1997), followed by Renz and Nebel (Renz, 1999)
and (Renz and Nebel, 1997), enumerated all the tractable classes of RCC5 and RCC8. One
important subclass of Allen’s Interval Algebra was introduced by Nebel et al. (Nebel and Bürck-
ert, 1995): the ORD-Horn subclass. They showed that any finite ORD-Horn network can
be instantiated in polynomial time. Moreover, they proved that the ORD-Horn subclass is a
maximal tractable subclass of the full algebra (assuming P ̸= NP ). Later on, we proved
in (Challita, 2011) that any atomic network R = (N,C) (finite or infinite) of RCC5 (or RCC8)
constraints that is path-consistent is consistent.
One important problem that was never addressed is the consistency of an infinite ORD-Horn
network. In other words, a network that contains an infinite number of variables. We show in
this paper that under some specific conditions, such networks have a polynomial-time realiza-
tion. Moreover, we address the minimality problem of RCC5 and RCC8 networks and show
that they are consistent. Before concluding, we apply our knowledge to solving a problem us-
ing a logical agent.
This paper is organized as follows: we describe in Section 2 three important subclasses of
RCC, namely RCC5, RCC8, and the ORD-Horn one. We show in Section 3 that, theoretically
speaking, there exists a consistent instantiation of infinite ORD-Horn networks. This result is
based on König’s infinite lemma. In Section 4 we show that any infinite and path-consistent
ORD-Horn network that satisfies two hypotheses has a realization in polynomial time. In Sec-
tion 5, we show that a minimal ORD-Horn network that is path-consistent and infinite has a
realization in polynomial time, provided that any strict sub-network of this network contains a
finite number of variables which constraints are non-atomic. Before concluding, we give an
example in Section 6 of a logical agent that uses Horn clauses for solving a problem in a
particular RCC8 ORD-Horn network.

2 RCC and ORD-Horn networks

Two important subsets of RCC are RCC5 and RCC8. In the former one we can reason about
spatial objects using the five basic relations {DC,EQ,PP, PPI, PO} without capturing any of
their topological properties, whereas in the latter one (i.e. RCC8), which can be viewed as
a superset of RCC5, we have other type of constraints such that tangential proper part, and
externally connected.
A graphical representation of the relations of these two formalisms is given in Figures 1 and 2.
Given two regions x and y, the intuitive meaning of the relations of Figure 1 is the following:

• DC(x, y): x and y have an empty intersection.

• EQ(x, y): x and y are equal.

• PP (x, y): x is a subset (i.e. proper part) of y.

• PPI(x, y): y is a subset (i.e. proper part) of x.

• PO(x, y): x and y have a non-empty intersection.
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Figure 1: RCC5 basic relations

The intuitive meaning of the relations of Figure 2 is the following:

• DC(x, y): x and y have an empty intersection.

• EQ(x, y): x and y are equal.

• TPP (x, y): x is a subset of y and their boundary is not empty.

• TPP−1(x, y): y is a subset of x and their boundary is not empty.

• NTPP (x, y): x is a strict subset of y and their boundary is not empty.

• TPP−1(x, y): y is a strict subset of x and their boundary is not empty.

• PO(x, y): x and y have a non-empty intersection.

• EC(x, y): the boundary of x and y is not empty.
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Figure 2: RCC8 basic relations

Nebel et al. (Nebel and Bürckert, 1995) introduced a subclass of Allen’s Interval Algebra they
named ORD-Horn. They proved that path-consistency is sufficient for deciding consistency in
polynomial time.



ORD-Horn clauses do not contain negations of atoms of the form a ≤ b, i.e. they only contain
literals of the form: a = b, a ≤ b, and a ̸= b.
The ORD-Horn clause of an interval formula ϕ is the clause form of ϕ containing only ORD
clauses.

3 Consistency of infinite ORD-Horn networks

Let R = (N,C) be an infinite ORD-Horn network that is path consistent, where the constraints
are defined over RCC5 (resp. RCC8). Based on Renz and Nebel’s (Renz and Nebel, 1997)
work, we know that any finite and path-consistent ORD-Horn RCC5 (resp. RCC8) network is
consistent. Without loss of generality, we assume that the variables of our network are denoted
by {1, . . . , n, . . .}.
After instantiating the first variable, we have at most five different ways to instantiate the sec-
ond one. In general, we have O(5n

2
) ways to instantiate the nth variable for the case of RCC5

(note that the same is true for RCC8, where the number of possibilities is O(8n
2
)).

Indeed, for a RCC5 network, if we denote by un the maximum number of possible instanti-
ations of the variable n, we have: u1 = 1, u2 = 5u1, u3 = 52u2,. . . , un = 5n−1un−1; hence
un = 5

n(n−1)
2 .

Such a network can be represented by a tree, where each branch corresponds to a possible
instantiation of its variables.
For example, the network N = {1, 2, 3}, where C12 = {DC,EQ,PP, PPI, PO}, C13 = PO,
C32 = {DC,PP, PO} can be represented by Figure 3, where the vectors at each level of the
tree represent possible instantiations of the network’s variables.

C13 = PO

C11 = EQ 1

2

3

PO

PP PP PP PP

PO PO PO PO

PP

POPP PPIDC

DC DC DC DC DC

EQ

Figure 3: Tree representation of an ORD-Horn network

Recall the following Lemma(Wechler, 1992):

Theorem 1. (König’s infinite lemma). Let E be an infinite set that includes one relation denoted
by ” → ”. If the sets Ei ̸= ∅, i ∈ IN form a partition of E such that for all n ≥ 0 and for all
y ∈ En+1, there exists an element x in En that satisfies x → y, then there exists and infinite
chain a0 → a1 → a2 → · · · in E.

Based on this theorem, we can assert that an ORD-Horn path-consistent network R = (N,C)

of RCC5 (resp. RCC8) constraints is consistent. Indeed, denote by i ∈ N the variables of such



a network. For any variable i let the singleton set Ei = {i}. Furthermore, denote by ” → ” the
relation in RCC5 (resp. in RCC8) such that for all n ∈ N and for all 1 ≤ i, j ≤ n, the sub-atomic
network (that contains only one variable) {1, . . . , n} where Cij = ” → ” is consistent. The
choice of the relation ” → ” abovementioned is theoretically possible because based on the
work of Renz and Nebel (Renz and Nebel, 1997), we know that any finite and path-consistent
ORD-Horn network R = (N,C) of RCC5 (resp. RCC8) constraints is consistent.
König’s lemma allows us to extend this result to infinite networks. Our next aim is to find an
actual instantiation of such networks. In the following section we add some constraints on
ORD-Horn networks in order to exhibit a method to instantiate them.

4 Special ORD-Horn networks

In this section we consider ORD-Horn networks with special properties. This is done to allow
us to exhibit a method for instantiating such networks, based on the results by Renz and
Nebel (Renz and Nebel, 1997) related to finite and path-consistent ORD-Horn network R =

(N,C) of RCC5 (resp. RCC8).

Definition 1. Let R = (N,C) be a network of constraints. We define a path in N = {1, 2, . . .}
any infinite sequence of elements (p, p+ 1, . . .) where p ∈ N .

Let R = (N,C) be an infinite and path-consistent ORD-Horn network of RCC5 (resp. RCC8)
(where (N ⊆ IN∗)). We assume that such a network satisfies the following two hypotheses:

Hypothesis 1. ∀ i ∈ N , the set {j ∈ N : Card(Cij) > 1} is finite.

Hypothesis 2. There is no path c = (p, p+ 1, . . .) in N such that ∀ j ∈ c, Card(Cj,j+1) > 1.

We are able to find a consistent instantiation for any such network. The idea is to transform the
initial network into an atomic one (i.e. with just one constraint between any two of its variables).
Recall the following result related to RCC5 (and RCC8) networks that will be used to prove
Proposition 2.

Proposition 1. Any atomic network R = (N,C) (finite or infinite) of RCC5 (or RCC8) con-
straints that is path-consistent is consistent.

This result has been proven in (Challita, 2012).

Proposition 2. Let R = (N,C) be an ORD-Horn network of RCC5 (resp. RCC8) that is path-
consistent and infinite. If R satisfies hypotheses 1 and 2 then it is consistent.

Proof. Assume that the elements of N are arbitrarily ordered. We partition this set as follows:
for the first element of the network (i.e. for 1 in N ), let X1 = {j ∈ N : Card(C1j) > 1}. We
know that X1 is finite. If X1 = ∅, let A1 = {1}, otherwise for all j ∈ X1, we consider all the
paths cαj (α ∈ Ej where the set Ej ⊂ IN is finite) that start at j and that satisfy the condition
∀ α ∈ Ej , ∀ k ∈ cαj , Card(Ck,k+1) > 1. We know that the overall number of such paths is finite.
Let A1 = {1} ∪ {k ∈ N : ∃ j ∈ X1, ∃α ∈ Ej , k ∈ cαj }.
We consider the smallest element in the set N \A1 (i.e. N minus A1). Without loss of generality,
assume that it is n. As we just done before, let A2 = {n}∪{k ∈ N : ∃j ∈ Xn, ∃α ∈ En, k ∈ cαn}.
We proceed in the same way to define all the subsequent sets A1, . . . , Ai−1. We next choose a



representative of the set Ai (denoted by n′). For that, we consider the smallest element of the
set N \ (

∪i−1
k=1Ak). Note that such an element exists since for all k ≤ i− 1, Card(Ak) is finite.

Therefore we have Ai = {n′} ∪ {k ∈ N : ∃ j ∈ Xn′ , ∃α ∈ En′ , k ∈ cαn′}.
We can easily check that the sets {Ai, i ∈ IN∗} form a partition of N . Furthermore, they satisfy
the following property: ∀ k ∈ Aj , ∀ l ∈ Ai, (i ̸= j ⇒ Card(Ckl) = 1).
At this point, we are able to suggest a consistent instantiation of N . For all i ∈ IN∗, and based
on our work (Amaneddine and Condotta, 2013), we know that any Ai network has a consistent
instantiation. To conclude our proof, we choose the atomic constraints between the variables
of Ai that preserve its consistency.

5 Minimality problem

Given a network N of variables, the minimal network of N is a network N ′ ⊆ N where the label
between any two variables x, y of N is the minimal relation that is entailed by the network N .
In this section we consider minimal networks. We know that there are ORD-Horn networks of
RCC5 that are path-consistent but not minimal. Figure 4 represents such a network.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

43

1 2{PO}

{PO, PP}

{DC, PP}

{DC, PPI}

{DC, PO}

Figure 4: Non-minimal and path-consistent network

Notice that the relation between variables 1 and 4 cannot be reduced to {PP}. Therefore the
polynomial-time path-consistency method is not complete. In order to be able to consistently
instantiate a minimal ORD-Horn network we need to enforce some additional hypotheses, as
we already did in the previous section.

Hypothesis 3. ∀N ′  N , {(i, j) ∈ N ′ ×N ′ : Card(Cij) > 1} is finite.

The above hypothesis states that any strict sub-network of N contains a finite number of vari-
ables which constraints are non-atomic. Note that the set {(i, j) ∈ N × N : Card(Cij) > 1}
may be infinite.

Proposition 3. Let R = (N,C) be a minimal ORD-Horn network of RCC5 (resp. RCC8) that is
path-consistent and infinite. If this network satisfies hypothesis 3 then it is consistent.

Proof. Assume that the elements of N are arbitrarily ordered and let N ′ = N \ {1}. According
to hypothesis 3, we know that E = {(i, j) ∈ N ′ ×N ′ : Card(Cij) > 1} is finite. Let F = {k ∈
N ′ : ∃ (i, j) ∈ E, k = i or k = j} and let F be the complement of F in N .
Assume that Card(F ∪ {1}) = n. Without loss of generality, we re-order the elements of N in
such a way that those who belong to F be placed after the first element. In other words, for



all i ∈ F and for all j ∈ F \ {1}, Card(Cij) = 1. (Refer to Figure 5 to know the type of the
constraints of the variables of the network with respect to the first element).

2

n.a. a. a.n.a. n.a.

. . . . . . . . .. . . . . . . .
n n+1n-13

1

Figure 5: ‘a.’ and ‘n.a.’ mean atomic and non-atomic, respectively.

Since F ∪{1} is finite, it has a consistent instantiation. We choose atomic constraints between
each couple of variables of F ∪ {1} in such a way to preserve the path-consistency of the sub-
network N ′. This is possible since we have: ∀i, j ∈ N ′\F, ∀k ∈ F , Card(Cij) = Card(Cik) = 1.
To extend this result to N , for all i ≥ n we choose C1n in such a way that the sub-network
{1, . . . , i} is consistent. This is possible since N is minimal. If the case arises, we apply the
triangulation algorithm to the triplets (1, i, k) where 2 ≤ k ≤ i − 1 in order to minimize the
number of constraints of C1i (we remove those that yield an inconsistent instantiation of the
network).

6 An application using ORD-Horn networks

In this section we introduce a basic game using a logical agent as defined in (Russell and
Norvig, 2009). Recall that a logical agent is able to reason about its surroundings using infer-
ence rules in order to update its knowledge base. We start by describing the rules and aims of
the game, then explain how to represent and solve it.
A knight’s objective is to find and save his princess by avoiding dragons. We assume that he
evolves in a two-dimensional space, where the space is discreet (i.e. consists of distinct cells
of the same size). Furthermore, the map consists of cells that are of two types: externally
connected or disconnected (to be more specific here, any two cells could be in the relation
disconnected or externally connected). The cells are numbered along the x and y axes, and
cell i, j is denoted by cij . An example of such a map is given in figure 6.
For instance, we have DC(c12, c22) and EC(c23, c24) (i.e. an empty cell is captured by the
relation DC and adjacent cells are in the relation EC).
The dragons are hidden in some cells. Therefore, for each cell we have two cases: it contains
a dragon or it is empty. We also assume that the dragons are static and do not leave their
respective cells. If a cell contains a dragon and the knight is an adjacent cell, then he can sense
a dragon’s roar. When fighting a dragon the knight has 50% of chances of winning/losing; so it
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Figure 6: Example of two-dimensional map

is better for him to avoid the cells that contain dragons. At this stage we can clearly define the
aim of the knight: find and save the princess by avoiding the dragons.
For example, consider the map in figure 7 where the Knight, the Princess, and the dragons are
represented by the letters K, P and D, respectively.
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D

D

D

D

D P

Figure 7: One possible instance of the game.

Note that some instances may not have a solution, depending on the locations of the dragons
on the map.
We next explain how to represent and play the game.
It is easy to see that the map can be represented by a an RCC8 network of ORD-Horn con-
straints where the only two types of relations are EC or DC. The knight starts in the lower
left side of the map. It is represented by a logical agent that uses inference rules (e.g. modus
ponens1) to update its knowledge base in order to make the right decision. We next see how
the Knight uses Horn clauses2 to determine if a cell contains a dragon.
To simplify the notation, we denote by Kij the fact that the Knight is in cell cij (the same applies
for Pij and Dkl, to express the fact that the Princess is in cell cij and a dragon is in cell ckl).

1If p is true, and we have p ⇒ q, then q is also true
2A Horn clause is a logical expression of the form p1 ∧ · · · ∧ pn ⇒ q



Initially, assume that the knight follows the path: c11 → c12 → c13 → c14. Each cell is safe
and when he reaches the last one he hears the roar of a dragon. He concludes that there is a
dragon in c42 or c51. He then moves back one cell and follows the path: c32 → c42 that are both
safe. At this point in time he is sure that a dragon is in cell c15. This assertion can be derived
from the following Horn clause: Roar41 ∧ Safe31 ∧ Safe42 ⇒ D51.
Notice that a logical agent can solve this instance. After analyzing the map, the Knight is able
to find the Princess by following the path with red arrows.

7 Conclusion

In this paper we considered infinite ORD-Horn networks and studied their consistency for the
RCC5 and RCC8 subclasses of the Region Connection Calculus. We already know that finite
ORD-Horn networks have a realization in polynomial time. We proved that infinite and path-
consistent ORD-Horn networks of RCC5 (and also RCC8) relations have a polynomial-time
instantiation, provided that they satisfy two conditions we stated in Section 4. Furthermore,
we showed in Section 5 that any path-consistent, infinite, and minimal ORD-Horn network of
RCC5 (or RCC8) relations is consistent and has a realization in polynomial time. In the last
section we gave an example where we used ORD-Horn RCC8 networks and Horn clauses
for solving a game. Our next step is to extend this result to general ORD-Horn networks (i.e.
networks that do not satisfy any special condition) and prove they are consistent.
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