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ABSTRACT

Nowadays, parallel genetic algorithms are one of the most used meta-heuristics for
solving combinatorial optimization problems. One of the challenges that arise when
implementing these kind of algorithms is the communication between subpopulations.
This communication, called migration, is a determining factor for a good performance of
the algorithm. In this short note, a new approach for the subpopulations communication
is presented. This new strategy is called Standstill & Parade. The basis of this new
strategy is to stop non-promising subpopulations, in order to focus the search on those
that demonstrate more effectiveness. To prove the quality of this approach seven different
migration functions are compared. For the experimentation, two different routing problems
have been used.
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1 Introduction

Today, parallel genetic algorithms (Alba and Troya, 1999) are one the most used techniques for
solving combinatorial optimization problems (Christofides, Mingozzi, Toth and Sandi, 1979).
In the literature there are many studies on this type of algorithms (Cantú-Paz, 1998; Knysh
and Kureichik, 2010; Luque and Alba, 2011). There are several ways to implement parallel
genetic algorithms, but Distributed Genetic Algorithm (DGA) is the most common one. A DGA
consists of multiple populations that evolve independently, and communicate with each other
occasionally.



The communication between subpopulations is one of the most relevant factors when
implementing DGAs. This communication typically involves the sharing of individuals. For this
reason, it is called migration. Many studies that highlight the importance of migration phase
can be found in the literature (Cantú-Paz, 2001; Alba and Troya, 2000).
As a result of this, researchers have proposed diverse migration strategies, each with its
own characteristics. In this short note a new migration technique, called Standstill & Parade
(S&P), is presented. To prove the quality of this new approach, an experimental study is
done, comparing seven different migration functions of the literature. The main novelty of the
proposed strategy is its stopping mechanism. Thanks to this mechanism, the technique avoids
wasting excessive amounts of time running subpopulations with low capacity of improvement.
Additionally, the presented strategy counts with a restart procedure, which provides enough
diversity to the subpopulations to continue the search efficiently.
This short note is structured as follows. In Section 2 the proposed approach is described.
Section 3 shows the experimentation. This note finishes with the conclusions, in Section 4.

2 Standstill & Parade

The proposed communication strategy is based on two separate concepts. The first one is
called Standstill. Its purpose is to stop the evolution process of inefficient subpopulations (or
demes). The second one, Parade, performs the exchange of individuals between demes. In
this section, the working way of the S&P is detailed. Furthermore, the pseudo-code of a DGA
using S&P can be seen in Algorithm 1.
For the Standstill process, each subpopulation has a variable Ti, which measures the
progressive improvement of the subpopulation i. A high value of Ti means that the
subpopulation fitness is improving over the last generations. On the other hand, a low value
of Ti indicates that the search process of the deme is not obtaining better results. Ti is
recalculated every generation depending on the search performance. For example, if the
overall fitness of a subpopulation i does not improve over the last generation, its Ti decreases.
Otherwise, Ti increases. In addition, a new variable (called Thr) that acts as lowerbound for
Ti is defined. In this work, the value of Thr is the same for all the demes. If at any point of the
execution, the Ti of a subpopulation i reaches Thr, the search process of this subpopulation
is stopped. This detention aims to save computational resources consumed by non-promising
demes. Thus, the search process focuses on the most promising ones.
When a subpopulation is stopped, the rest of the demes continue the execution until the value
Tj of another subpopulation j reaches Thr. At this moment, the Parade is performed, and
subpopulations i and j combine their individuals. In this first version of the strategy, i and
j exchange the 50% of their population. After this combination, i and j restart their Ti and
Tj , and the process continues. The whole S&P process is represented in Figure 1. Finally,
Algorithm 2 depicts the pseudo-code of the Parade procedure.



Algorithm 1: Pseudocode of a DGA with S&P migration strategy
initialization and creation of the subpopulations
repeat

for each subpopulation i do
if subpopulation i is not stopped then

Parents selection process
Crossover phase
Mutation phase
Survivor selection process
if best solution of population i has been improved then

Ti is restarted
else

Ti is decreased
if Ti has reached Thr and the number of subpopulations stopped is 0 then

Standstill(i) (Subpulation i is stopped)
else

(In this case, it means that there is another population j stopped)
Parade(i,j) (Subpopulation i and j combine their individuals)
Ti and Tj are restarted

end
end

end
end

until termination criterion reached ;
Return the fitness of the best individual found

3 Experimentation

To check the quality of the proposed technique, the performance of eight different versions
of a basic DGA applied to two well-known routing problems is compared. The problems
used are the Traveling Salesman Problem (TSP) (Lawler, Lenstra, Kan and Shmoys, 1985),
and the Capacitated Vehicle Routing Problem (CVRP) (Laporte, 1992). It is important
to highlight that these problems have been used as benchmarking problems, that is, the
main objective of this study is not to find an optimal solution to these problems. In
fact, in the literature there are multiple efficient techniques with this objective (Victer Paul,

Algorithm 2: Pseudocode of Parade process with subpopulationi and subpopulationj

jointPopulations = subpopulationi + subpopulationj (individuals in jointPopulations are ordered
randomly)
Create two empty subpopulations (subpopulation′

i and subpopulation′
j)

repeat
Add to subpopulation′

i the first individual of jointPopulations

Add to subpopulation′
j the second individual of jointPopulations

Remove the first and second individuals of jointPopulations

until jointPopulations is empty ;
Return subpopulation′

i and subpopulation′
j



Figure 1: Representation of the Standstill & Parade process

Ramalingam, Baskaran, Dhavachelvan, Vivekanandan and Subramanian, 2014; Ouaarab,
Ahiod and Yang, 2014; Golden, Wasil, Kelly and Chao, 1998). Therefore, the objective of
using the TSP and CVRP is to compare the performance of the different migration techniques
applied to them, and to conclude which one obtains better results.
All the DGAs use the same parameters and functions. In this way, the only difference between
them is the migration strategy. For all the DGAs, the whole population is divided into 6
subpopulations of 15 randomly created individuals. All individuals have been encoded using
the well-known permutation representation (Toth and Vigo, 2001). As crossover function, the
famous Order Crossover has been used (Davis, 1985). Each deme has its own mutation
function. The mutation and crossover probabilities are, respectively, 0.2 and 0.8. Binary
tournament has been used as parent selection criterion. The survivor function used is the
0.5 elitist - 0.5 random, which means that the half of the survivor population is chosen in elitist
way, and the rest randomly. About the ending criteria, the execution of each DGA finishes when
there are n +

∑n
k=1 k generations without improvements in the best solution, where n is the

size of the problem. For the S&P, the Ti begins with a value of 100, and the Thr is fixed in 0.
If the overall fitness of one subpopulation i does not improve from one generation to the next
one, Ti is decreased in 1. On the other hand, if the fitness is improved, Ti is restarted to 100.
When Ti =0, subpopulation i is stopped. The 7 migration functions used for the comparison
are the following:

• Best-Replace-Worst (BRW) (Cantú-Paz, 2001): In this strategy, every subpopulation
i shares its best individual with the following i + 1 deme, in a ring topology. This
communication happens every generation and the immigrant replaces the worst
individual of deme i+ 1.

• Best-Replace-Random (BRR) (Cantú-Paz, 2001): It works in the same way as BRW. The
only difference is that the immigrant replaces one random individual of the subpopulation
i+ 1.

• Randomized Migration Rate (RMR) (Hiroyasu, Miki and Negami, 1999): In this case,
each deme i communicates with i + 1 at every generation, sharing a random number



of randomly selected individuals. These immigrants join the subpopulation and become
part of the genetic process of the next generation.

• MT-GA 2 best version (mt2B) (Cutello, De Michele and Pavone, 2014): In this strategy,
every deme i shares its 2 best individuals with a randomly selected subpopulation j.
Shared individuals joint the new population.

• MT-GA 1best - 1random version (mt1B1R) (Cutello et al., 2014): It works similarly to
the previous one. But in this case deme i shares two individuals, the best one, and a
randomly selected one.

• Immigrant Pool Strategy (IPS) (Lopes, Silva, Campelo and Guimarães, 2013): In this
approach an immigrant pool is created with the best individual of each deme. Then, at
each generation, every subpopulation chooses its immigrant using the Roulette Wheel
selection technique. This immigrant joints the deme.

• PROACT (Salto, Luna and Alba, 2013): In this communication strategy each deme has an
entropy value H(gi), in the interval [0,1]. Migration frequency depends on this parameter.
When it is close to zero, subpopulation i ask to i + 1 to send individuals with higher
frequency. On the other hand, when it is close to 1.0 the communication is decreased. In
this strategy, the selection and replacement strategies are, respectively, sending the best
individual, and replacing the worst one.

These seven migration strategies have been chosen based on several factors. BRP, BRR and
RMR have been selected because they have been used in many studies along the history,
proving that they are very efficient alternatives. On the other hand, PROACT, IPS, mt2B and
mt1B1R have been chosen since they are high quality strategies, which have been presented
recently. The objective of this study is to demonstrate that S&P can compete with both classic
and recent techniques.
In the performed experimentation 37 different problem instances have been used. These
instances have been obtained from the TSPLib (Reinelt, 1991) and the VRPWeb1. TSP
instances have been extracted from different well-known benchmarks, as the Christofides/Eilon
benchmark, and Padberg/Rinaldi benchmark. On the other hand, the first 11 CVRP instances
belong to the Christofides/Eilon benchmark (Christofides and Eilon, 1969), and the remaining 4
to the Golden et al. large-scale benchmark (Golden et al., 1998). Each experiment is repeated
20 times. In Table 1 the average and standard deviation for each technique are displayed.
Besides this, in order to see if the diferences in the outcomes are significant, a Student’s t-test
has been performed. The t statistic has the following form:

t =
X1 −X2√

(n1−1)SD2
1+(n2−1)SD2

2
n1+n2−2

n1+n2
n1n2

Where Xi, SDi and ni, are the average, standard deviation and number of executions of each
technique, being subindex 1 and 2 for S&P and the compared technique, respectively. The

1http://neo.lcc.uma.es/vrp. Last update: January 2013



Figure 2: Difference in runtimes (in seconds) between S&P and the other strategies (TSP)

t value can be positive, neutral, or negative. The positive value of t indicates that S&P is
significantly better. In the opposite case, S&P obtains worse solutions. If t is neutral, the
difference is not significant. The confidence interval has been stated at 95% (t0.05 = 2.021).
Finally, Figure 2 and Figure 3 compare the runtime of each technique regarding S&P. In these
images the differences (in seconds) between the runtimes of S&P and the other strategies are
shown. For example, Figure 2 shows that the value obtained by PROACT for an instance of 300
nodes is close to 6. That means that S&P is (in average) 6 seconds faster than PROACT for
this instance. On the other hand, if the value is negative, it means that the technique is faster
than S&P. For example, RMR is 3 seconds faster than S&P for a 300-node TSP instance.

3.1 Analysis of the results

Viewing these preliminary results some conclusions can be drawn. As can be seen in Table 1,
S&P obtains better average values in the 89.18% (33 out of 37) of the instances. In addition, as
shown in Table 2, the proposed technique obtains significantly better results in 55.21% (143 out
of 259) of the cases. In the remaining 44.79%, the differences in the results are not significant.
Besides, S&P never gives significantly worse results. In Table 2, the last row summarizes these
outcomes, broken down by technique.
Regarding runtime, Figure 2 shows that, in overall, S&P requires slightly higher runtimes for
small TSP instances (less than 200 nodes). On the other hand, for larger instances, S&P
needs, generally, less runtime. Anyway, these differences are not remarkable. In fact, for small
instances they are located between [-5,+1], and between [-4.5,+7] for large instances. This
same analysis can be performed for the CVRP. In this case, for small instances the differences
are between [-2.1,+0.5], being slightly worse for S&P. Furthermore, for large instances the
differences are located between [-4,+5], although they are slightly better for S&P. Even so,
considering the 37 instances used in this study, it should be said that the S&P needs more
runtime than the other strategies.



Figure 3: Difference in runtimes (in seconds) between S&P and the other strategies (CVRP)

In conclusion, it can be stated that the objective of this study has been met. With the S&P,
communication between demes is performed less frequently than with the other alternatives.
This is so because these communications are performed only when they will be beneficial for
the search process. This fact gives to S&P a higher exploration capacity, having a greater
convergence behavior, and getting better results.

4 Conclusions

In this note some preliminary results of the S&P have been shown. Results has been compared
with the ones obtained by seven different migration functions using two well-known routing
problems. As future work, it is intended to conduct a more thorough analysis of S&P, performing
a convergence behavior study, and applying it to other problems. In addition, a study about
the influence of the random parameters is intended to perform. Besides this, the behavior of
each subpopulation will be analyzed, calculating the impact of stopping inefficient demes. All
this with the intention of improving the performance of the proposed strategy. Furthermore,
an interesting future work could be the comparison of the performance of a DGA with the
S&P with the one obtained by other different optimization techniques, such as particle swarm
optimization (El-Hefnawy, 2014), gravitational search algorithm (David, Precup, Petriu, Rădac
and Preitl, 2013), or some other hybrid techniques (Valdez, Melin and Castillo, 2011; Zăvoianu,
Bramerdorfer, Lughofer, Silber, Amrhein and Klement, 2013).
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