This article can be cited as R.-E. Precup and S. Preitl, Popov-type stability analysis method for fuzzy control systems, Proceedings of Fifth European Congress on Intelligent Technologies and Soft Computing (EUFIT'97), Aachen, Germany, vol. 2, pp. 1306-1310, 1997. Copyright©1997 by ELITE Foundation

POPOV-TYPE STABILITY ANALYSIS METHOD FOR FUZZY CONTROL SYSTEMS

Radu-Emil Precup +), Stefan Preitl ++)
+) Lecturer dr.ing., ++) Professor dr.ing.

"Politehnica" University of Timisoara, Department of Automation
Bd. V. Parvan 2, RO-1900 Timisoara, Romania
Phone: +40-56204333 ext. 173, 355, Fax: +40-56192049
Email: {rprecup, spreitl}aut.utt.ro

Abstract: The paper presents a stability analysis method meant for fuzzy control systems containing fuzzy controllers with dynamics. The proposed method is based on the theory of hyperstability after Popov and on a discrete time state space single input-single output linear time invariant mathematical model of the controlled plant.

1. Introduction

The stability analysis of a fuzzy control system (briefly, FCS) is necessary because only a stable FCS can: ensure disturbance rejection, guarantee desired steady states, and reduce the risk of implementing the fuzzy controller (FC).

The FC without dynamics represents a nonlinear element [1], [2] ensuring a nonlinear input-output (generalized) static map due to the nonlinearities in: the shapes of membership functions, the rule base, and the defuzzification method.

The introduction of dynamics (i.e., of integral and/or derivative actions) in the structure of a FC can be done on either the inputs or the outputs of the FC [3]. The paper deals with introducing the integral action resulting in PI-type fuzzy controllers.

Several methods for the stability analysis of a FCS are well-known [4], [5]. The paper presents a stability analysis method based on the theory of hyperstability [6] based on considering a discrete time state space mathematical model of a single input-single output linear time invariant (SISO-LTI) controlled plant (CP). An example is presented as part of the paper concerning the application of the proposed method to the design of a PI-fuzzy controller for regulation and tracking of a class of nonminimum-phased systems.

2. Mathematical models of controlled plant extended with the linear part of fuzzy controller [7]

The CP is supposed to have the following n-th order discrete time SISO-LTI state space mathematical model including the zero-order hold:

$$\underline{\mathbf{x}}_{k+1} = \underline{\mathbf{A}} \ \underline{\mathbf{x}}_k + \underline{\mathbf{b}} \ \mathbf{u}_k, \\
\mathbf{y}_k = \underline{\mathbf{c}}^{\mathsf{T}} \ \underline{\mathbf{x}}_k, \\
(2)$$

where: u_k - the control signal; y_k - the controlled output; \underline{x}_k - the state vector; \underline{A} , \underline{b} , \underline{c}^T - matrices with the dimensions: dim $\underline{A} = (n, n)$, dim $\underline{b} = (n, 1)$, dim $\underline{c}^T = (1, n)$; T - upper index used to express transposition; k - lower integer index expressing the number of the current sampling period.

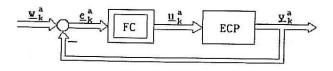


Fig.1. Block diagram of a FCS.

The block diagram of a FCS containing a FC with its dynamic transferred to the CP can be transformed as in Fig.1 for a relatively simple stability analysis.

The elements from Fig.1 have the following significance: $a \in \{i, o\}$ - upper index corresponding to the type of integration: a = i for integration on the input of FC, a = o for integration on the output of FC; a = o for integration of a

$$\underline{\mathbf{w}}_{k}^{i} = \begin{bmatrix} \mathbf{w}_{k} \\ \mathbf{w}_{ik} \end{bmatrix}, \quad \underline{\mathbf{w}}_{k}^{o} = \begin{bmatrix} \mathbf{w}_{k} \\ \Delta \mathbf{w}_{k} \end{bmatrix}, \quad (3)$$

with: w_k - the reference input, w_{ik} - the integral of

reference input, Δw_k - the increment of reference input; $\underline{e_k}^a$ - the control error vector:

$$\underline{e_k}^i = \begin{bmatrix} e_k & \\ e_{ik} & \end{bmatrix}, \quad \underline{e_k}^o = \begin{bmatrix} e_k & \\ \Delta e_{ik} \end{bmatrix}, \tag{4}$$

 $\underline{e}_k^i = [e_k], \quad \underline{e}_k^o = [e_k],$ with: e_k - the control error, e_{ik} - the integral of control error, Δe_k - the increment of control error; \underline{u}_k^a , \underline{y}_k^a - the control error, \underline{e}_{ik} - the extended controlled signal vector and the controlled output vector, respectively, to be presented in the sequel; ECP - the extended controlled plant (with integral action). The absence of disturbance input from the block diagram is fully justified for the sake of Popov-type stability analysis [8].

Note that the extension of controlled plant appears in terms of the state space mathematical model (1), (2), and it is caused by the existing zero-order hold.

According to Fig.1, the FC is characterized by the following nonlinear input-output static map described by the following function:

$$\frac{\underline{F} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2,}{\underline{F}(\underline{e}_k^a)} = \begin{bmatrix} f(\underline{e}_k^a) \\ 0 \end{bmatrix}. \tag{5}$$
The mathematical model of ECP can be derived as follows by taking into account [9] for the introduction of all state variables.

additional state variables.

A) The case of integration on fuzzy controller input.

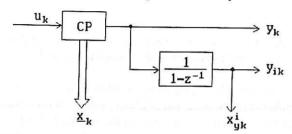


Fig. 2. Block diagram of ECP in the case of integration on FC input.

The block diagram of ECP is presented in Fig. 2, and it points out the additional state variable x_{yk}^{i}. The controlled output vector \mathbf{y}_{k}^{i} can be expressed as:

$$y_k^{-1} = \begin{bmatrix} y_k \\ y_{ik} \end{bmatrix}, \qquad (7)$$
where: y_k - the controlled output; y_{ik} - the integral of controlled output

controlled output.

By the introduction of a fictituous control signal unk for having an equal number of inputs and outputs as required by the hyperstability theory in the multivariable case [8], the control signal vector becomes:

$$\underline{u}_k^i = \begin{bmatrix} u_k \\ u_{fk} \end{bmatrix}. \tag{8}$$

So, the (n+1)-th order discrete time state space mathematical model of ECP can be arranged as:

$$\underline{\mathbf{x}}_{k+1}^{i} = \underline{\mathbf{A}}^{i} \, \underline{\mathbf{x}}_{k}^{i} + \underline{\mathbf{B}}^{i} \, \underline{\mathbf{u}}_{k}^{i}, \\
\underline{\mathbf{y}}_{k}^{i} = \underline{\mathbf{C}}^{i} \, \underline{\mathbf{x}}_{k}^{i}, \\
(10)$$

where \underline{x}_k^i represents the extended state vector:

$$\frac{\mathbf{x}_{k}^{i}}{\mathbf{x}_{yk}^{i}} = \begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{x}_{yk}^{i} \end{bmatrix}, \tag{11}$$

and the matrices are:

$$\underline{\underline{A}}^{i} = \begin{bmatrix} \underline{\underline{A}} & \underline{0} \\ \underline{\underline{C}}^{T} \underline{\underline{A}} & \underline{1} \\ \underline{\underline{b}} & \underline{1} \end{bmatrix}, \quad \dim \underline{\underline{A}}^{i} = (n+1, n+1), \tag{12}$$

$$\underline{\underline{B}}^{i} = \begin{bmatrix} \underline{\underline{b}} & \underline{1} \\ \underline{\underline{C}}^{T} \underline{\underline{b}} & \underline{1} \end{bmatrix}, \quad \dim \underline{\underline{B}}^{i} = (n+1, 2), \tag{13}$$

$$\underline{\underline{C}}^{i} = \begin{bmatrix} \underline{\underline{C}}^{T} \underline{\underline{0}} & \underline{1} \\ \underline{\underline{C}}^{T} \underline{\underline{0}} & \underline{1} \end{bmatrix}, \quad \dim \underline{\underline{C}}^{i} = (2, n+1).$$

$$\underline{C}^{i} = \begin{bmatrix} \underline{C}^{T} & 0 \\ \underline{0}^{T} & 1 \end{bmatrix}, \quad \dim \underline{C}^{i} = (2, n+1). \tag{14}$$

B) The case of integration on fuzzy controller output.

The block diagram of ECP pointing out the additional state variables $\{x_{uk}, x_{yk}^{o}\}$ is presented in Fig.3. The extended state vector can be expressed as:

$$\underline{\mathbf{x}_{k}}^{\circ} = \begin{bmatrix} \underline{\mathbf{x}_{k}} \\ \mathbf{x}_{uk} \\ \mathbf{x}_{yk}^{\circ} \end{bmatrix}. \tag{15}$$

The controlled output vector and the control input vector are:

$$y_{k}^{\circ} = \begin{bmatrix} y_{k} \\ \Delta y_{k} \end{bmatrix}, \quad \underline{u}_{k}^{\circ} = \begin{bmatrix} \Delta u_{k} \\ \Delta u_{fk} \end{bmatrix}, \tag{16}$$

EUFIT'97, September 8 - 11, 1997

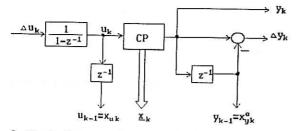


Fig.3. Block diagram of ECP in the case of integration on FC output.

where: $\Delta y_k = y_k - y_{k-1}$ - the increment of controlled output; Δu_k - the increment of control signal; Δu_{rk} - the fictituous increment of control signal introduced for the same reason as in the previous case.

The (n+2)-th order discrete time state space mathematical model of ECP in this case is as follows:

$$\underline{x}_{k+1}^{o} = \underline{A}^{o} \underline{x}_{k}^{o} + \underline{B}^{o} \underline{u}_{k}^{o}, \qquad (17)$$

$$\underline{y}_{k}^{o} = \underline{C}^{o} \underline{x}_{k}^{o}, \qquad (18)$$

(20)

$$\underline{y}_{k}^{o} = \underline{C}^{o} \underline{x}_{k}^{o}, \tag{18}$$

with the corresponding matrices:

$$\underline{A}^{\circ} = \begin{bmatrix} \underline{A} & \underline{b} & 0 \\ \underline{0}^{\mathsf{T}} & 1 & 0 \\ \underline{C}^{\mathsf{T}} & 0 & 0 \end{bmatrix}, \quad \dim \underline{A}^{\circ} = (n+2, n+2), \tag{19}$$

$$\underline{B}^{\circ} = \begin{bmatrix} \underline{b} & \underline{1} \\ 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \dim \underline{B}^{\circ} = (n+2, 2), \tag{20}$$

$$\underline{C}^{\circ} = \begin{bmatrix} \underline{C}^{\mathsf{T}} & 0 & 0 \\ \underline{C}^{\mathsf{T}} & 0 & -1 \end{bmatrix}, \quad \dim \underline{C}^{\circ} = (2, n+2). \tag{21}$$
The state space mathematical models from (9) (10) and (17) (18) are bounded.

$$\underline{C}^{\circ} = \begin{bmatrix} \underline{C}^{\mathsf{T}} & 0 & 0 \\ \underline{C}^{\mathsf{T}} & 0 & -1 \end{bmatrix}, \dim \underline{C}^{\circ} = (2, n+2). \tag{21}$$

The state space mathematical models from (9), (10) and (17), (18) can be written down together in the following

 $\begin{array}{l} \underline{x}_{k+1}{}^{a} = \underline{A}^{a} \, \underline{x}_{k}{}^{a} + \underline{B}^{a} \, \underline{u}_{k}{}^{a}, \\ \underline{y}_{k}{}^{a} = \underline{C}^{a} \, \underline{x}_{k}{}^{a}, \end{array}$ (22)

(23)where: $a \in \{i, o\}$; $\dim \underline{A}^a = (n^a, n^a)$, $n^i = n+1$, $n^o = n+2$; $\dim \underline{B}^a = (n^a, 2)$; $\dim \underline{C}^a = (2, n^a)$.

Note that the last column of Ba is full of ones in order to ensure that the above mentioned state space mathematical models are minimum realizations. The last column of \underline{B}^a could take any values because it is multiplied with the fictituous controls $\{u_{fk}, \Delta u_{fk}\}$ that have no influence on control system behaviour (the second component of \underline{F} is zero, relation (6)).

3. Stability analysis method

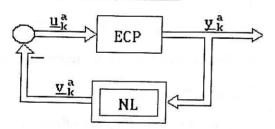


Fig.4. Block diagram of a nonlinear control system.

Generally speaking, the block diagram envolved in the stability analysis of a nonlinear control system is shown in Fig.4. The block NL from Fig.4 represents a static nonlinearity due to the nonlinear (static) part of the FC.

The relations between the block diagrams from Fig. 1 and Fig. 4 are [10]:

$$\underline{y}_k^a$$
 from Fig.4 = $-\underline{e}_k^a$ from Fig.1; (24)
 $\underline{u}_k^a = -\underline{y}_k^a$ from Fig.4 = $\underline{F}(\underline{e}_k^a)$ from Fig.1. (25)

$$\underline{\mathbf{u}}_{k}^{a} = -\underline{\mathbf{v}}_{k}^{a} \text{ from Fig.4} = \underline{F}(\underline{e}_{k}^{a}) \text{ from Fig.1.}$$
 (25)

The second component of \underline{F} is always zero (see the relation (6)) for neglecting the effect of fictituous

control signals (u_{fk} and Δu_{fk}).

By taking into account the relation (24), the relation (23) becomes (26):

$$\underline{e}_{k} = -\underline{C}^{a} \underline{x}_{k}, \tag{26}$$

and it can be written down as:

$$\underline{\mathbf{x}}_{k} = \underline{\mathbf{C}}^{c} \, \underline{\mathbf{e}}_{k}, \tag{27}$$

with the matrix \underline{C}^b (dim $\underline{C}^b = (n^a, 2)$) that can be easily obtained as function of \underline{C}^a .

The proposed stability analysis method can be stated in terms of the following theorem:

Theorem. The nonlinear system from Fig.4 with the mathematical model of the linear part (22), (23) is globally assymptotically stable if the three matrices \underline{P} (positive definite, dim $\underline{P} = (n^a, n^a)$), \underline{L} (regular, dim $\underline{L} = (n^a, n^a)$), \underline{V} (any, dim $\underline{V} = (n^a, 2)$) fulfil the following requirements:

I.
$$\underline{A}^{aT} \underline{P} \underline{A}^{a} - \underline{P} = -\underline{L} \underline{L}^{T},$$

$$\underline{C}^{a} - \underline{B}^{aT} \underline{P} \underline{A}^{a} = \underline{V}^{T} \underline{L}^{T},$$
(28)

1308

form:

$$-\underline{B}^{aT} \underline{P} \underline{B}^{a} = \underline{V}^{T} \underline{V}; \tag{30}$$

II. by introducing the following matrices:

$$\underline{\mathbf{M}} = \underline{\mathbf{C}}^{bT} (\underline{\mathbf{L}} \underline{\mathbf{L}}^{T} - \underline{\mathbf{P}}) \underline{\mathbf{C}}^{b}, \dim \underline{\mathbf{M}} = (2, 2),
\underline{\mathbf{N}} = \underline{\mathbf{C}}^{bT} (\underline{\mathbf{L}} \underline{\mathbf{V}} - \underline{\mathbf{A}}^{aT} \underline{\mathbf{P}} \underline{\mathbf{B}}^{a} - 2 \underline{\mathbf{C}}^{aT}), \dim \underline{\mathbf{N}} = (2, 2),$$
(31)

$$\frac{\mathbf{N}}{\mathbf{R}} = \underline{\mathbf{C}}^{\mathbf{A}} \cdot (\underline{\mathbf{L}} \, \underline{\mathbf{V}} - \underline{\mathbf{A}}^{\mathbf{a}} \, \underline{\mathbf{P}} \, \underline{\mathbf{B}}^{\mathbf{a}} - 2 \, \underline{\mathbf{C}}^{\mathbf{a}}), \, \dim \, \underline{\mathbf{N}} = (2, \, 2),$$

$$\mathbf{R} = \mathbf{V}^{\mathsf{T}} \, \mathbf{V} \, \dim \, \mathbf{R} - (2, \, 2), \tag{32}$$

$$\underline{R} = \underline{V}^{T} \underline{V}, \dim \underline{R} = (2, 2), \tag{32}$$

there exists the positive definite matrix \underline{S} (dim $\underline{S} = (2, 2)$) that makes the inequality (34) hold for any value of e_k : $f(\underline{e_k}) \ \underline{n}^T \underline{e_k}^a \ge \underline{e_k}^{aT} (\underline{S} - \underline{M}) \ \underline{e_k}^a,$ where \underline{n} represents the first column of \underline{N} . (34)

<u>Proof.</u> The condition I is immediately fulfilled because it represents the first equation from the Kalman-Szegö lemma [11].

The Popov inequality - that ensures the global asymptotic stability of the nonlinear control system with the block diagram from Fig.4 - is reminded for the fulfilment of condition II:

$$S(k_1) = \sum_{k=0}^{k_1} \underline{y_k}^{aT} \underline{y_k}^{a} \ge -R_0^2, \ \forall \ k_1 \in \mathbb{N}^*,$$
(35)

for any positive constant Bo.

By taking into account the correspondences (24) and (25) the Popov sum S(k₁) from (35) becomes:

$$S(k_1) = -\sum_{k=0}^{k_1} \underline{u}_k^{aT} \underline{y}_k^a, \ \forall \ k_1 \in \mathbb{N}.$$

$$(36)$$

The substitution of \underline{y}_k^f from (23) in (36) followed by adding and subtracting the term $\underline{x}_{k+1}^{aT}\underline{P}\underline{x}_{k+1}^a$ yields:

$$S(\mathbf{k}_1) = -\sum_{k=0}^{k} (\underline{\mathbf{x}}_k^{aT} \underline{\mathbf{C}}^{aT} \underline{\mathbf{x}}_k^a + \underline{\mathbf{x}}_{k+1}^{aT} \underline{\mathbf{P}} \underline{\mathbf{x}}_{k+1}^a - \underline{\mathbf{x}}_{k+1}^{aT} \underline{\mathbf{P}} \underline{\mathbf{x}}_{k+1}^a), \ \forall \ \mathbf{k}_1 \in \mathbb{N}^*.$$

$$(37)$$

Then, \underline{x}_{k+1}^a is substituted from (22) in (37) resulting in:

$$S(k_1) = \sum_{k=0}^{k_1} \left[-\underline{x_k}^{aT} \underline{A}^{aT} \underline{P} \underline{A}^f \underline{x_k}^a - \underline{x_k}^{aT} (\underline{B}^{aT} \underline{P} \underline{A}^a + \underline{B}^{aT} \underline{P}^T \underline{A}^a + \underline{C}^{aT}) \underline{u_k}^a - \underline{u_k}^{aT} \underline{P}^{aT} \underline{P}^$$

 $-\underline{u}_{k}^{aT}\underline{B}^{aT}\underline{B}^{a}\underline{u}_{k}^{a} + \underline{x}_{k+1}^{aT}\underline{P}\underline{x}_{k+1}^{a}, \forall k_{1} \in \mathbb{N}^{*}. \tag{38}$ By replacing the expressions $\underline{A}^{aT}\underline{P}\underline{A}^{a}$, $\underline{B}^{aT}\underline{P}\underline{A}^{a}$ and $\underline{B}^{aT}\underline{P}\underline{B}^{a}$ from the equations (26), (29) and (30), respectively, in (38), and using the relations (25), (31) ... (33), another form of the Popov sum is obtained:

$$S(k_1) = \sum_{k=0}^{k_1} \underline{x_{k+1}}^{aT} \underline{P} \underline{x_{k+1}}^{aT} + \sum_{k=0}^{k_1} [\underline{e_k}^{aT} \underline{M} \underline{e_k}^{a} + \underline{e_k}^{aT} \underline{N} \underline{F}(\underline{e_k}^{a}) + \underline{F}^{T}(\underline{e_k}^{a}) \underline{R} \underline{F}(\underline{e_k}^{a})], \forall k_1 \in \mathbb{N}.$$

$$(39)$$

Finally, by pointing out the positive element r_{11} of \underline{R} and the elements of \underline{F} from (6), the relation (39) becomes:

$$S(k_1) = \sum_{k=0}^{k_1} [\underline{x}_{k+1}^{aT} \underline{P} \underline{x}_{k+1}^{a} + r_{11} f^2(\underline{e}_k^{a})] + \sum_{k=0}^{k_1} [\underline{e}_k^{aT} \underline{M} \underline{e}_k^{a} + f(\underline{e}_k^{a}) \underline{n}^T \underline{e}_k^{a}], \forall k_1 \in \mathbb{N}^*.$$

$$(40)$$

It is obvious that the first sum from (40) is strictly positive. Using (34) determines the second sum from (40) to be expressed as:

$$\sum_{k=0}^{k_{\perp}} \underline{x}_{k}^{aT} \underline{S} \underline{x}_{k}^{a}, \forall k_{1} \in \mathbb{N}^{\bullet}.$$
(41)

Therefore, the condition II ensures the positive value of S(k₁) fulfilling the Popov inequality (35).

Finally, note that only the matrix \underline{P} (instead of \underline{P} , \underline{L} and \underline{V}) from the relations (28) ... (30) is important for FCS stability analysis because the matrices \underline{M} , \underline{N} and \underline{R} from (31) ... (33) can be expressed as:

$$\underline{\mathbf{M}} = -\underline{\mathbf{C}}^{\text{bT}} \underline{\mathbf{A}}^{\text{aT}} \underline{\mathbf{P}} \underline{\mathbf{A}}^{\text{a}} \underline{\mathbf{C}}^{\text{b}}, \\
\underline{\mathbf{N}} = -\underline{\mathbf{C}}^{\text{bT}} (\underline{\mathbf{A}}^{\text{aT}} (\underline{\mathbf{P}} + \underline{\mathbf{P}}^{\text{T}}) \underline{\mathbf{B}}^{\text{a}} + \underline{\mathbf{C}}^{\text{aT}}), \tag{42}$$

$$\underline{R} = -\underline{C}^{a} (\underline{A}^{a} (\underline{P} + \underline{P})\underline{B}^{a} + \underline{C}^{a}), \tag{43}$$

$$\underline{R} = -\underline{B}^{aT} \underline{P} \underline{B}^{a}. \tag{44}$$

For the PI-fuzzy controller with integration on FC output meant for a class of nonminimum-phased systems and developed in [12] the matrices envloved in stability analysis have the following values:

$$\underline{\underline{A}}^{\circ} = \begin{bmatrix} 0.9927 & 0.0072 & -0.0142 & 0 \\ 0 & 0.9556 & 0.1333 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \underline{\underline{B}}^{\circ} = \begin{bmatrix} -0.0142 & 1 \\ 0.1333 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \underline{\underline{C}}^{\circ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix};$$

$$(45)$$

$$\underline{C}^{b} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, \quad \underline{P} = \underline{I}_{4}; \tag{46}$$

$$\underline{M} = \begin{bmatrix} -1.9854 & 0 \\ 0 & 0 \end{bmatrix}, \quad \underline{N} = \begin{bmatrix} 0.9719 & 5.9853 \\ 0 & 1 \end{bmatrix}, \quad \underline{R} = \begin{bmatrix} -1.0180 & -1.1192 \\ -1.1192 & -4 \end{bmatrix}, \quad \underline{S} = \underline{I}_2. \quad (47)$$
The free parameter used in FC design is B_e. For B_e \in [0.2; 0.5] the relation (34) is fulfilled, and the fuzzy control system is globally assymptotically stable.

system is globally assymptotically stable.

5. Conclusions

The paper outlines - by applying the theory of hyperstability - a stability analysis method for FCSs containing two possible types of fuzzy controllers with dynamics, i.e. with integrator introduced on both the input and the output of the FC.

The theorem presented as part of the paper gives sufficient conditions ensuring the stability of FCS when a discrete time SISO-LTI mathematical model of the controlled plant is taken into consideration. The relation (34) represents a geometrical condition because its left hand side describes a cone and its right hand side describes a cone.

The proposed stability analysis method is similar to the method from [10] for continuous time systems, and the stability conditions are stronger than the conditions from [13] for discrete time systems.

Digital simulation results confirm the validity of the proposed stability analysis method.

References

- [1] Kruse, R., Gebhardt, J., Klawonn, F. (1994): Foundations of Fuzzy Systems, John Wiley & Sons.
- [2] Kahlert, J., Frank, H. (1993): Fuzzy-Logik und Fuzzy-Control, Vieweg Verlag, Braunschweig, Wiesbaden.
- [3] Bühler, H. (1994): Réglage par logique floue, Presses Polytechniques et Universitaires Romandes, Lausanne.
- [4] Driankov, D., Hellendoorn, H., Reinfrank, M. (1993): An Introduction to Fuzzy Control, Springer Verlag, Berlin, Heidelberg, New York.
- [5] Bretthauer, G., Opitz, H.-P. (1994): Stability of Fuzzy Systems A Survey, Proceedings of The Second EUFIT'94 European Congress, Aachen, vol. 1, pp. 283 - 290.
- [6] Popov, V.M. (1973): Hyperstability of Control Systems, Springer Verlag, Berlin, Heidelberg, New York.
- [7] Precup, R.-E. (1996): On a Stability Procedure Concerning Fuzzy Control Systems Containing Fuzzy Controllers with Dynamics, Proceedings of The Second ICAFS-96 International Conference, Siegen.
- [8] Opitz, H.-P. (1986): Die Hyperstabilitätstheorie eine systematische Methode zur Analyse und Synthese nichtlinearer Systeme, Automatisierungstechnik, no. 6, pp. 221 - 230.
- [9] Isermann, R. (1977): Digitale Regelungssysteme, Springer Verlag, Berlin.
- [10] Opitz, H.-P. (1993): Fuzzy Control and Stability Criteria, Proceedings of The First EUFIT'93 European Congress, Aachen, vol. 1, pp. 130 - 136.
- [11] Landau, I.D. (1979): Adaptive Control, Marcel Dekker, New York.
- [12] Precup, R.-E. (1995): On the Parameter Adaptation of a Fuzzy Controller Meant for the Speed Control of Hydrogenerators, Proceedings of The Third EUFIT'95 European Congress, Aachen, vol. 2, pp. 1105 - 1009.
- [13] Precup, R.-E., Preitl, St. (1996): Stability Analysis of Minimum- and Nonminimum- Phased Fuzzy Control Systems, Proceedings of The Fourth EUFIT'96 European Congress, Aachen, vol. 2, pp. 1065 - 1069.

5th European Congress on Intelligent Techniques and Soft Computing Aachen, Germany, September 8 - 11, 1997 Proceedings Volume 2

ELITE-Foundation

Promenade 9

D-52076 Aachen, Germany

Phone: +49 2408 6969; Fax: +49 2408 94582

Ę-mail: eufit@mitgmbh.de

http://www.mitgmbh.de/elite/eufit.html

An Application of Genetic Algorithms for PI/PID Controllers Design of a Servo Drive Renato A. Krohling	851
Generative Policies in Ant Systems	857
Urszula Boryczka, Mariusz Boryczka	
Synthesis of PID Controller for Disturbance Rejection: A Real-Coded Genetic Algorithm Approach Renato A. Krohling	862
Walana 2	
Volume 2	
4. Fuzzy Sets in Artificial Intelligence	
Artificial Intelligence	
Approximate Reasoning Using Different Types of Knowledge Representation	871
Joachim Weisbrod, Nicolaie L. Fantana About the Representation of Negative Information	877
Daniel Pacholczyk	6//
A Possibilistic Model of a Causal Bipartite Network for the Diagnostic Problem Cristina Segal, Severin Bumbaru, Luminita Dumitriu	882
Poll Interpretation up to a Related Population via AWFO Operators	886
Christiane Dujet, Nicole Vincent	
Soft Modeling for Intelligent and Complex Systems Paul P. Wang	891
Fuzzy Rules	
Rule Extraction from Data Using "Near FD" Preprocessing	899
Shlomo Geva, M. Orlowski Assessment of Classical Search Techniques for Identification of Fuzzy Models	904
Angela Nebot, Antoni Jerez Fuzzy Rule Interpolation Using an Additive Conservative Strategy	910
Tamás D. Gedeon, L.T. Koczy ASAFES2: A Functional Reasoning Algorithm for Function Approximation and Control Athanasios V. Vasilakos, Konstantinos C. Zikidis	914
Fuzzy Linear Associative Memory Codified in a Discrete Form Waldo Fajardo, M. Delgado, A. Blanco	918
and Tajardo, M. Dorgado, T. Daniel	
Fuzzy Sets in Artificial Intelligence	
Fuzzy Rule-Based Models for Case-Based Reasoning	923
Didier Dubois, Francesc Esteva, Pere Garcia, Lluis Godo, Ramon Lopez de Mántaras, Henri Prade Modelling by Fuzzy Interpolation	928
Leila Zerrouki, Bernadette Bouchon-Meunier	07.1
Learning Based Similarity Ordering of Fuzzy Sets Athena Tocatlidou	934
Inductive Views of Generalization	939
Christophe Marsala, Maria Rifqi	
Information Engineering I: Valued Constraint Satisfaction	
	942
	947
Gerard Verfaille, Simon de Givry Hierarchical Propagation of Uncertain Constraints	052
Eyke Hüllermeier	953

Intelligent Control in Robotics

Adaptive Fuzzy Navigation for Robotic Manipulators	1264
Kaspar Althoefer, Panos Zavlangas, Bart Krekelberg Fuzzy Control of Rigid Robots via a Sliding Manifold Approach	1269
Alberto Cavallo, Elisa Leccia Fuzzy Control for a Robot Gripper System to Handle Slipping Objects Henning Schmidt, Sergio Velastin	1274
Hybrid Methods in Development of Fuzzy Systems	
On the Combination of Probabilistic and Fuzzy Concepts in Signal-Based Data Analysis	1279
Olaf Wolkenhauer Fuzzy Power Control for Mobile Radio Systems	1284
Tapio Frantti Tuning of a Fuzzy System with Genetic Algorithms and Linguistic Equations Sami Lotvonen, Sauli Kivikunnas, Esko Juuso	1289
Stability Analysis of Fuzzy Control Systems	
Fuzzy Stability Analysis of Fuzzy Systems Part I: Quadratic Parametrization of Fuzzy Systems	1294
Jean-Philippe Marin, Andre Titli Fuzzy Stability Analysis of Fuzzy Systems Part II: Fuzzification of Lyapunov Theory and Application	1300
Jean-Philippe Marin, Andre Titli Popov-Type Stability Analysis Method for Fuzzy Control Systems Radu-Emil Precup, Stefan Preitl	1306
Fuzzy Modelling	
Neural and Fuzzy Modelling and Fuzzy Predictive Control of a Non-linear Coupled	1311
Multi-variable Plant Stephen E. McCormac, John V. Ringwood	1316
Fuzzy Input-Output Linearization of Nonlinear Systems Pada Poylegzaula, Sylvie Galichet, Laurent Foulloy	
Fuzzy Modelling of Non-Linear Systems by a Multimodel Approach Laurent Gross, H. Noura, D. Sauter	1321
Control Charts for Fuzzy Data	1326
Przemyslaw Grzegorzewski Translating Human and Artificial Experience into a Knowledge Based Control System. A Systematic Approach Using White Box Neural Networks Alessandro De Carli, A. Cerrini, A. Caso, L. Arcangeli	1331
Industrial Application of Neuro-Fuzzy Technologies	
Inlet and Return Sludge Fuzzy Logic Control for a Large Scale Sewage Treatment Plant	1337
Jörg Gebhardt, Thomas Loehndorf Optimization of Multi-Stage Chemical Plants Using ANN Models and Genetic Optimizers	1344
Thomas Froese Fuzzy Logic Data Analysis of Environmental Data for Traffic Control	1347
Bernhard Krause, Constantin von Altrock, Martin Pozybill Fuzzy Logic Supervisory Control for Coal Power Plant	1353
Constantin von Altrock, Dirk Pruessmann, Bernhard Krause	
Fuzzy Control Applications I	
Implementing Fuzzy Control in the Manufacturing of Washing Powders Magne Setnes, R. Fleer, P. Bruijn, H.R. van Nauta Lemke, F. Emck	1360
The state of the s	