
 

 





 

Solution 1. The mathematical relation between the private and public RSA exponents 
is the following: 
 

 

 
This implies that there exists a number k such that  
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Since  
 

 

 
It follows that  

 

 
Rearranging the terms we get  
 

. 

 



We know all values from the left side, except for . However, by closely examining 
the previous relation 1 1d e k p q p q  since on the right side  is 

much larger than  we are not far by approximating k as:  

 

 

 
 
In our case, starting from the already known key we get: 
 

 

 
It follows that: 
 

 

 
This implies that p and q can be extracted as roots of the equation  
where  and . By elementary calculations, we get:  
 

 
 
The roots follow as: 
 

   and 

 

 
These are the factors of the modulus. Finding the second private exponent is now 
trivial as: 
 
 

 

 
 
Solution 2. The private exponent always decrypts a message encrypted with the public 
one, since: 



 

 

 
Given the values from the first key we always have: 
 

 

 

By multiplying with  and rearranging we get: 
 

478341751 17 1mod837210799x  
 
Dividing by 2 we get: 
 

 

 
This means that the right quantity is a square root of 1. To eliminate the two trivial 
roots of 1, i.e., +1 and -1, we continuously divide the exponent until we get a non-
trivial root. For example, let us fix  and compute: 
 
 

 
 
It is easy to note that when dividing the exponent with 16 the result is no longer 1. For 
this final result we have:  
 

 

 
In this way we have successfully extracted the factors of . The mathematical 
explanation is that we have: 
 

 

 



and since   it means that the two factors contain the prime numbers 
that divide .  



Solution. The mistake comes from the fact that the small encryption exponent allows 
one to recover the message by squaring the output composed via the Chinese 
Remaindering Theorem (CRT). We show how this can be done in what follows. CRT 
implies that the following result holds: 
 

Iff  then there exists a unique m modulo .  

 



But message  was encrypted with the first modululs, this means it cannot exceed 
1536 de bits. Therefore the square of the message has at most 2x1536 = 3072 bits. 
CRT allows one to retrieve a solution modulo , n.b., moreover, this solution is 
unique. Since the two modules have 1536 and 2058 bits respectively it means that this 
solution is unique for up to 1536+2048 = 3584 bits and thus message m  can be fully 
recovered as square root of the value retrieved via CRT. We show how this can be 
done by using the CRT solution offered by Gauss. First, we compute the modular 
inverses: 
 

 
14310987589421656595052001273606996601993205437791295923061219355358
48932621722047996479172395205182484709925981345086823592361098676116
71392972306371407115917893215317798609151299752650828413641260143703
29155407443919355323334425193123995577457586594368899226059650898095
20834325441902847281013633185468633945939268807563205737631762188641
52671120930328170757381015429724281519672245536989347042821946707579
75832865425047290849934241209824297863258898100147349976522660848513
21478225880606620937765676470289712411515994875794907540854600946369
53345877613019417560448506378779860461784570861030428654699658479137
76536 
 

 
79822742293307335384489483161431538390245026454391226276909057792674
23380579666935238128274202459805360169170453399966923117770181725592
75601482046960296591379092565607100459489204412824908723342592405951
83320111854009654964710771311177195733351955713468728607066480923161
79828221492242083990594584260123165469731743876993400374593233583932
30935565486090366472938842936241337967316093017879168325168806666801
810050461909194360757373556305588374910163613774723450 
 
Then we u  
 

40248409279371781562594703314715910034847869225366381022540697914175
85602944732917136098048248669251363580202404678911735557994243268711
30957480186462490633501794023786817125556940132457090093447788623246
76312015640007845168955339378322270670911475586002444628901333977782
21666551093553199704408884732857724216266011039547799164354879332317
67021086547098554239862430087393177761620546493093153699808344190034
56501265688124968112372793434959057461901805742130368652426798835499
11146730234579613576919248080423603916547270288585014116973253480963
65792194781034259041465702725888150371192734835039659581519708126428
20437659327488904506012157371352696825838199381494305046066162771892



l

75083123873943549970558612016817243280483663927948950510612617417357
297285884203981954351050666622817897351291284744036 
 
Now we can extract the encrypted message as the square root of the previous message, 
i.e.,: 
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Solution. The CCA2 attack assume that the adversary has unlimited access to the 
decryption machine, i.e., the machine accepts to decrypt messages at his choice. The 
adversary can cheat and encrypt a message that is larger than the bound , e.g., 

 
 

 
The decryption machine performs decryption according to the rules and answers with: 

 
 

 
Now the adversary can use this response to factor the modulus as: 

 
  

 
Thus, the adversary can factor the modulus and completely break the cryptosystem. 

The mathematical fact behind this attack is trivial. Since  but 

mod p (note that  ) it follows  and thus 

which implies  and thus the modulus can be factored. 

 

 



 

 



 

 

 




