Chapter 2. SYMMETRIC ENCRYPTION IN .NET

This section presents the symmetric cryptographic primitives supported by the
.NET framework. All classes related to cryptography are contained within the
System.Security.Cryptography namespace. The history of cryptography in Microsoft
development environments starts in 1996 with the Win32 Cryptography API
(Application Programming Interface) also known as Microsoft CryptoAPI. Currently in
.NET you will see classes that have names ending in CryptoServiceProvider and these
classes are in fact wrappers over existing code from the Win32 Cryptography API (using
them leads to calling code from this older API). Other class names end in Managed and
these are managed code written specifically for the .NET framework. The cryptography
support in .NET is mature in the sense that you have all the basic building blocks that
should be needed for real-world applications. However, for more dedicated
applications were you need less standard primitives or additional control over the
implementation, you may want to choose a distinct environment as .NET is quite
limited in this respect. Just for the sake of a rough overview, in .NET you get out-of-the-
box and easy to use implementations for symmetric encryption functions (DES, 3DES,
AES), hash functions (MD5, SHA1, SHA256, SHA384, SHA512, RIPEMD160), keyed hash
functions (HMAC with any of the previous hash functions), public-key encryptions or
signatures (RSA, DSA, EC-Diffie-Hellman-Merkle, ECDSA) and PRNGs.

2.1 SYMMETRIC ALGORITHMS, PROPERTIES AND METHODS

All of the symmetric cryptographic primitives derive from the
SymmetricAlgorithm class, which is an abstract class, i.e., you cannot instantiate
objects from it, rather you will work with derived concrete classes. These derived
classes are: DESCryptoServiceProvider, TripleDESCryptoServiceProvider,
RC2CryptoServiceProvider, RijndaelManaged, AESManaged and
AESCryptoServiceProvider.

20 Symmetric Encryption in .NET - 2

Abstract

SymmetricAlgorithm

A

‘ DES ‘ ‘ TripleDES RC2 ‘ ‘ Riindael ‘ ‘ AES ‘
TripleDESCrypto DESCryptoService RC2CryptoService AESManaged AESCryptoService

ServiceProvider

Provider

Provider

RijndaelManaged Provider

Concrete

Figure 1. Symmetric encryption algorithms in .NET

Table 1 shows the properties for symmetric cryptographic algorithms in .NET.
With this property list, as well as with the methods list that follows, we do not want to
be exhaustive, we only try to outline what is relevant for this line of work. You must
refer to MSDN for more details.

BlockSize

FeedbackSize

v

Key

KeySize

LegalBlockSizes

LegalKeySizes

Mode

Padding

Get/Set

g/s

a/s

g/s

a/s

g/s

a/s

a/s

Type
Int

Int

Byte[]

Byte[]
Int
KeySizes[]

KeySizes[]

CipherMode

PaddingMode

Brief Description
Block size in bits

Feedback size in bits (when needed,
e.g., CBC, this cannot be greater than
BlockSize)

Initialization vector (IV) non-secret
(must be random)

Secret key (must be random)

Key size in bits

Block sizes in bits supported by the
algorithm

Key sizes in bits supported by the
algorithm

Mode of operation (CBC is the
default, the following may be
supported CFB, CTS, ECB, OFB)
Padding mode to fill the last block
(e.g., usually none, OxFF or zeros)

Table 1. Properties related to symmetric cryptographic algorithms in .NET

Table 2 now shows how you can assign an object that instantiates a particular
symmetric implementation (DES, 3DES or Rijndael in this example) to a variable of the

2.1 — Symmetric Algorithms, Properties and Methods 21

abstract type SymmetricAlgorithm. The instantiation is done by switching over a string
that contains the name of the algorithm.

SymmetricAlgorithm mySymmetricAlg;
public void Generate(string cipher)
{
switch (cipher)
{
case "DES":
mySymmetricAlg = DES.Create();
break;
case "3DES":
mySymmetricAlg = TripleDES.Create();
break;
case "Rijndael":
mySymmetricAlg = Rijndael.Create();
break;
}
mySymmetricAlg.GenerateIV();
mySymmetricAlg.GenerateKey();
}

Table 2. Example for instantiating an abstract object with a concrete implementation

Cryptographic streams in .NET. Before using these primitives, we have to take
a brief look to another concept that is core to .NET crypto implementations:
cryptographic streams. The .NET framework has a stream-oriented design for
cryptographic primitives, an engineering idea which is beneficial because you can
stream the output from one object to another and in this way the output of a crypto-
stream can be directed into a file stream, memory stream, network stream, etc. Vice-
versa, you can direct the output from any of the previous into a cryptographic stream.
Concretely, whenever writing into a crypto-stream you will encrypt the data that is
written, and vice-versa, whenever reading from the crypto stream, you will decrypt the
data.

Table 3 now gives a brief overview of the methods related to symmetric
cryptographic algorithms that are relevant for our scope here. Table 4 gives an example
on how to encrypt an array of bytes and return the encrypted output, and similarly for
decryption. The CreateEncryptor and CreateDecryptor methods return an object of type
ICryptoTransform which can be then passed to the stream reader/writer. In Table 5 we
give a more educated example that comes from the AES managed example in MSDN

22 Symmetric Encryption in .NET - 2

library

(https://msdn.microsoft.com/en-

us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx). Note how each

parameter is checked and then the using statement ensures that resources are
disposed if an exception occurs (you can do the same with a try block). The using is
typical for .NET style programming, so if you are keen to become an industry
professional make sure to use it. Finally, the ciphertext is turned to a byte array in the
following line of code: encrypted = msEncrypt.ToArray().

Return type

Clear void
Create() SymmetricAlgorithm
Create(String) SymmetricAlgorithm
CreateDecryptor() ICryptoTransform
CreateDecryptor(Byte[],

ICryptoTransform
Byte[]) P /i
CreateEncryptor() ICryptoTransform
CreateEncryptor(Byte[],

ICryptoTransform
Byte[]) P /i
Dispose() void
Dispose(Boolean) void
GeneratelV void
GenerateKey void

ValidKeySize bool

Brief Description
Zeros out all data before the object
is released (relevant for security
when you finished the work with
the cryptographic object)
Creates the object
Creates the object with the string
specifying the name of the
particular implementation

Creates a decryptor object

Creates a decryptor object with
given Key and IV

Creates an encryptor object

Creates an encryptor object with
given Key and IV

Releases all resources used by the
object

Releases unmanaged and
optionally managed resources
used by the object

Generates a random IV (note that
this is already generated by
CreateEncryptor and should be
used only if you need a new 1V)
Generates a random Key (note that
this is already generated by
CreateEncryptor and should be
used only if you need a new Key)

Checks if a given key size is valid

2.1 — Symmetric Algorithms, Properties and Methods

23

Table 3. Some relevant methods for symmetric cryptographic algorithms in .NET

{

}

{

public byte[] Encrypt(byte[] mess, byte[] key, byte[] iv)

mySymmetricAlg.Key = key;

mySymmetricAlg.IV = iv;

MemoryStream ms = new MemoryStream();

CryptoStream cs = new CryptoStream(ms,
mySymmetricAlg.CreateEncryptor(),
CryptoStreamMode.Write);

cs.Write(mess, @, mess.Length);

cs.Close();

return ms.ToArray();

public byte[] Decrypt(byte[] mess, byte[] key, byte[] iv)

byte[] plaintext = new byte[mess.Length];

mySymmetricAlg.Key = key;

mySymmetricAlg.IV = iv;

MemoryStream ms = new MemoryStream(mess);

CryptoStream cs = new CryptoStream(ms,
mySymmetricAlg.CreateDecryptor(),
CryptoStreamMode.Read);

cs.Read(plaintext, ©, mess.Length);

cs.Close();

return plaintext;

Table 4. A rather quick way for building encryption and decryption functions

Note: example reproduced from MSDN library (https://msdn.microsoft.com/en-

us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx)

// Check arguments.
if (plainText == null || plainText.Length <= @)

throw new ArgumentNullException("plainText");

if (Key == null || Key.Length <= Q)

throw new ArgumentNullException("Key");

if (IV == null || IV.Length <= @)

24 Symmetric Encryption in .NET - 2

throw new ArgumentNullException("Key");
byte[] encrypted;
// Create an AesManaged object
// with the specified key and IV.
using (AesManaged aesAlg = new AesManaged()){

aesAlg.Key = Key;
aesAlg.IV = IV;

// Create a decrytor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key,
aesAlg.IV);

// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream cskEncrypt = new CryptoStream(msEncrypt,
encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new
StreamWriter(csEncrypt))

//Write all data to the stream.
swEncrypt.Write(plainText);

}
encrypted = msEncrypt.ToArray();

}
}

// Return the encrypted bytes from the memory stream.
return encrypted;

Table 5. A more educated example from Microsoft’s MSDN library (note how the
arguments are checked and the using directive)

2.2 EXERCISES

2.2 — Exercises 25

1. Write a C# application that allows a user to select an encryption algorithm from a
Combo Box, generate keys, encrypt and decrypt messages. Display the plain text and
cipher text both in ASCIl and HEX and similarly the Keys and IVs; also display the time
required by the encryption and decryption operations. A suggested interface is below,
but feel free to modify it at will.

i = N
ol Symmetric Encryption Test l‘:'l—EllﬁJ
Key
DES - | |
v
| |
PlainText
Encryot ASCII | |
HEX | |
CipherText
ASCH | |
HEX. | |
Time/message at encryption:
Get Decrypt Time Time/message at decryption:
|8

2. You are required to evaluate the computational costs of symmetric cryptographic primitives in
.NET. Results have to be presented in a tabular form as shown below and measured in
seconds/block then bytes/second considering both streams from memory and from the local hard-
drive.

26 Symmetric Encryption in .NET - 2

— — — — — — — =
& =% = 8% =z © gve = |ve |5 o o4 =
O @O 8|nwo 8lnwno o 8o 8|8 8|0 B =B
= = w w © T © T ®© = ~
] © c © e © € ¢ o C e © © n %
n Nl vl < NI VW =5 8| =5 © [B ©
EE&J&ESEQIESIEQEvE:
= = = = a
seconds/bl
ock
bytes/seco
nd
(from RAM)
bytes/seco
nd
(from HDD)

Table 6. Computational cost for symmetric cryptographic primitives

3. Exhaustive search for the key. You are required to adapt the code from Section 1 for
cracking passwords (feel free to write your own code if you want) in order to break the
following DES ciphertext knowing that the plaintext starts with the ‘asdf’ letters and
the key has the last 6 bytes set to O (that is, you have to perform an exhaustive search
over the first 2 bytes). By breaking the ciphertext, we understand here finding the
encryption key and the message.

IV in Hex: 01092C61619EE9S5E

Ciphertext in Hex:
CD56D268FO0D5CABE4A649A3028F4EC34BA8C23CA26ADD8A5BBAEI34C8B286DF

Remarks. For Exercise 1 you can start by recycling some of the code below.

using System.Security.Cryptography;
using System.IO;

namespace Example

{

2.2 — Exercises 27

public partial class SymEnc : Form

{

ConversionHandler myConverter = new ConversionHandler();

SymmetricAlgorithm mySymmetricAlg;

public SymEnc()

{
InitializeComponent();
¥
public void Generate(string cipher)
{
switch (cipher)
{
case "DES":
mySymmetricAlg = DES.Create();
break;
case "3DES":
mySymmetricAlg = TripleDES.Create();
break;
case "Rijndael":
mySymmetricAlg = Rijndael.Create();
break;
}
mySymmetricAlg.GenerateIV();
mySymmetricAlg.GenerateKey();
}

public byte[] Encrypt(byte[] mess, byte[] key, byte[] iv)
{
mySymmetricAlg.Key = key;
mySymmetricAlg.IV = iv;
MemoryStream ms = new MemoryStream();
CryptoStream cs = new CryptoStream(ms,
mySymmetricAlg.Cre
ateEncryptor(),
CryptoStreamMode.W
rite);
cs.Write(mess, @, mess.Length);
cs.Close();
return ms.ToArray();

}

public byte[] Decrypt(byte[] mess, byte[] key, byte[] iv)
{
byte[] plaintext = new byte[mess.Length];
mySymmetricAlg.Key = key;

28 Symmetric Encryption in .NET - 2

mySymmetricAlg.IV = iv;

MemoryStream ms = new MemoryStream(mess);

CryptoStream cs = new CryptoStream(ms,
mySymmetricAlg.CreateDecryptor(),
CryptoStreamMode.Read);

cs.Read(plaintext, @, mess.Length);

cs.Close();

return plaintext;

}

private void buttonEnc_Click(object sender, EventArgs e)
{
byte[] ciphertext =
Encrypt(myConverter.StringToByteArray(textBoxPlain.Text),
myConverter.HexStringToByteArray(textBoxKey.Text),myConvert
er.HexStringToByteArray (textBoxIV.Text));
textBoxCipher.Text =
myConverter.ByteArrayToString(ciphertext);
textBoxCipherHex.Text =
myConverter.ByteArrayToHexString(ciphertext);
textBoxPlainHex.Text =
myConverter.ByteArrayToHexString(myConverter.StringToByteAr
ray(textBoxPlain.Text));
}

private void buttonDec_Click(object sender, EventArgs e)

{
byte[] plaintext =
Decrypt(myConverter.HexStringToByteArray (textBoxCipherHex.
Text),

myConverter.HexStringToByteArray(textBoxKey.Text),myConvert
er.HexStringToByteArray (textBoxIV.Text));
textBoxPlain.Text =
myConverter.ByteArrayToString(plaintext);
textBoxPlainHex.Text =
myConverter.ByteArrayToHexString(plaintext);
}

private void buttonGen_Click(object sender, EventArgs e)
{
Generate(comboBoxCipher.Text);
textBoxKey.Text =
myConverter.ByteArrayToHexString(mySymmetricAlg.Key);
textBoxIV.Text =
myConverter.ByteArrayToHexString(mySymmetricAlg.IV);
¥

private void buttonEncTime_Click(object sender, EventArgs e)

{

2.2 — Exercises 29

mySymmetricAlg.GenerateIV(); // generates a fresh IV
mySymmetricAlg.GenerateKey(); // generates a fresh Key

MemoryStream ms = new MemoryStream();

CryptoStream cs = new CryptoStream(ms,
mySymmetricAlg.CreateEncryptor(),
CryptoStreamMode.Write);

byte[] mes_block = new byte[8];

long start_time = DateTime.Now.Ticks;

int count = 10000000;

for (int 1 = @; i < count; i++)

{
}

cs.Close();
double operation_time = (DateTime.Now.Ticks - start_time);
operation_time = operation_time / (1@*count); // 1 tick is

cs.Write(mes_block, @, mes_block.Length);

100 ns,
i.e., 1/10
of 1 us
labelEncTime.Text = "Time for encryption of a message
block: " + operation_time.ToString() +

us";

class ConversionHandler

{
public byte[] StringToByteArray(string s)
{

return CharArrayToByteArray(s.ToCharArray());

}

public byte[] CharArrayToByteArray(char[] array)

{ return Encoding.ASCII.GetBytes(array, @, array.Length);
}

public string ByteArrayToString(byte[] array)

{

return Encoding.ASCII.GetString(array);

30 Symmetric Encryption in .NET - 2

}
public string ByteArrayToHexString(byte[] array)
{
string s = "";
int i;
for (i = @; i < array.Length; i++)
{
s = s + NibbleToHexString((byte)((array[i] >> 4) &
Ox0F)) + NibbleToHexString((byte)(array[i] &
Ox0F));
}
return s;
}
public byte[] HexStringToByteArray(string s)
{
byte[] array = new byte[s.Length / 2];
char[] chararray = s.ToCharArray();
int i;
for (i = 0; i < s.Length / 2; i++)
{
array[i] = (byte)(((HexCharToNibble(chararray[2 * i])
<< 4) & oxFQ@) | ((HexCharToNibble(chararray[2
*1 + 1]) & 0x0F)));
}
return array;
}
public string NibbleToHexString(byte nib)
{
string s;
if (nib < 10)
{
s = nib.ToString();
}
else
{
char ¢ = (char)(nib + 55);
s = c.ToString();
}
return s;
}
public byte HexCharToNibble(char c)
{

byte value = (byte)c;
if (value < 65)
{

2.2 —Exercises 31

