
Introduction
(historical background, security objectives, attacks and adversaries)



Security is meant to compensate the lack of trust

• We can safely buy food from a super-market

• Take pills as prescribed, without knowing what they do

• Enjoy a concert along hundreds/thousands of strangers

• Fly at a few thousand meters in the sky without knowing the pilot

Images: https://en.wikipedia.org

• Trust is a wonderful thing!



But … unfortunately, there are adversaries

I) Burglars II) Terrorists

III) And even nature itself (unwillingly) can become an adversary

2004 – Tsunami in the Indian Ocean 2019 – CORONAVIRUS pandemic



• According to Bruce Schneier: 

"We need to move beyond fear and start 
making sensible security trade-offs ... Once you move 
beyond fear and start thinking sensibly about trade-
offs, you will be able to recognize bad or overpriced 

security when you see it. "

Solution?



Information Security - InfoSec

• Definition according to U.S. Code, Chapter 35
 means protecting information and information systems from unauthorized access, use, disclosure, disruption,

modification, or destruction in order to provide
 (A) integrity, which means guarding against improper information modification or destruction, and includes ensuring information

nonrepudiation and authenticity;

 (B) confidentiality, which means preserving authorized restrictions on access and disclosure, including means for protecting
personal privacy and proprietary information; and

 (C) availability, which means ensuring timely and reliable access to and use of information.

• It may be instructive to reflect upon the following statements
 Security is a process, not a product
 A system is only as secure as its weakest component (the weakest link)
 A defender must cover all points of attack, the adversary need to find only a suitable one
 Finally, security is merely a trade-off (at least between usability, costs and security level)

• You may also want to have in mind the following: Security Vulnerabilities + Adversaries => Security Risks
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Motivation

• The InfoSec field is generally “incident driven” (if nothing happens, nobody cares)

• Reactive thinking, however, comes at times with staggering costs

• Pro-active thinking may be beneficial in minimizing costs
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East Coast Blackout of 2003



What you should avoid

• Deprecated principles: security through obscurity & isolated environments

• Note that:
 Moving to open standards reduces costs (you don’t have to pay your own experts for designing security, but 

rather use what already exists)

 There are no more isolated systems, e.g., the cloud is ubiquitous and pervasive
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Adversaries (some examples)

 Depending on the target/context, there are many:

• Hackers: usually with low financial resources, trying to impress or having fun

• Clients: usually with low computational resources, interested in economic advantages

• Companies: usually with average computation resources, interested in economic advantages

• Organized crime: usually with low computational resources, interested in economic advantages

• Terrorists: may have significant financial resources, driven by political reasons

• Governments: high computational and financial resources, strategic interests

• Insiders: not much resource, but they have the know-how, motivated by financial interests
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Remember the most dangerous adversary

• Combos of the previous, e.g., hackers with insiders, etc.
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Security objectives

• In the past: the CIA triad - Confidentiality, Integrity, Availlability

• Followed by PAIN - Privacy, Availlability-Authentication, Integrity, Non-repudiation

• Today, 4 objectives acknowledged by most books in cryptography:

• Confidentiality – information can be accessed only by authorized parties
• Integrity – information was not altered
• Authentication – entity authentication (identification, prove the identity of a principal) and message 

authentication (bind a message with an entity)
• Non-repudiation – prevents an entity from denying an action

• But many other objectives exist as well:

• Freshness, Anonymity, Authorization, Availability, Third-party protection, Revocation, Traceability, etc. 
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Generic setting (the communication channel)
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• Usual components:
 Honest principals A and B
 An adversary
 A trusted third party TTP
 Time



Generic attacks
• Passive attacks: eavesdropping and traffic analysis

• Active attacks: modification, impersonation, replay, 
denial-of-service
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Cryptography and cryptanalysis

• Cryptography – the science of designing codes and protocols that block adversaries

• Cryptanalysis – the science of breaking codes and protocols

• Cryptology – the field comprising cryptography and cryptanalysis



Stage I – Classic cryptography

• Antiquity, the Caesar cipher (a mono-alphabetic substitution, i.e., a letter is changed with 
exactly another one), scythale, etc.

• Renaissance, Vigenere cipher (originally invented by Bellaso), or the era of poly-alphabetic 
substitutions, i.e., a letter will encrypt to more than a single letter

"Skytale". Licensed under CC BY-SA 3.0 via Wikimedia Commons 
-
http://commons.wikimedia.org/wiki/File:Skytale.png#mediavie
wer/File:Skytale.png

"Caesar cipher left shift of 3" by Matt_Crypto -
http://en.wikipedia.org/wiki/File:Caesar3.png. Licensed under Public 
Domain via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Caesar_cipher_left_shift_of_3.s
vg#mediaviewer/File:Caesar_cipher_left_shift_of_3.svg



• First large-scale use of cryptographic designs in the real-world: the Enigma machine (used 
by Germans), Purple (used by Japanese), Playfair (used by British forces), etc.

• Fundamental works of Shannon (i.e., information theory) and Turing (i.e., breaking the 
Enigma machine), etc. 

Stage II – Pre-modern cryptography, World War II

Why was cryptography so important during WW2?

• The most valuable weapons depend on wireless 
communications, and without secure (encrypted) 
communications they are useless



Historical figures (early cryptographers)

• Alan Turing (1912-1954)

• Fields: computer science, mathematics, 
cryptanalysis, computational biology

• Known for: major role in breaking the 
Enigma machine, first formalization of a 
general purpose computer (the Turing 
Machine), first test for machine intelligent 
behavior (the Turing test)  

• Fields: computer science, mathematics, 
cryptanalysis

• Known for: father of information theory, 
founder of the digital computer and digital 
circuit design theory

• Claude Shannon (1916-2001)

"Claude Elwood Shannon 
(1916-2001)" by Source. 
Licensed under Fair use 
via Wikipedia -
http://en.wikipedia.org/w
iki/File:Claude_Elwood_S
hannon_(1916-
2001).jpg#mediaviewer/F
ile:Claude_Elwood_Shann
on_(1916-2001).jpg

"Alan Turing photo" by 
Source. Licensed 
under Fair use via 
Wikipedia -
http://en.wikipedia.or
g/wiki/File:Alan_Turin
g_photo.jpg#mediavie
wer/File:Alan_Turing_
photo.jpg



WW2 grade cryptosystems  
(more technical details in forthcoming lectures)
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The Enigma Machine
Frequency hopping spread spectrum 

(discovered among others by Hedy Lamarr)



• Spectacular growth and indisputable relevance in the digital age

• Dozens of cryptographic designs DES, AES, RSA, DSA, and protocols SSL/TLS, SSH, IPSec, 
WEP, WPA, etc. – all to be discussed in forthcoming lectures

Stage IV – modern times, mid 1970 - today



Symmetric Primitives
(block ciphers, stream ciphers, hash functions, keyed hash functions and 

(pseudo)random number generators)



An informal, yet instructive account of 
symmetric primitives …



Begin with an informal question

• Question: What do you expect from 
cryptography?

• (Potentially correct) Answer: Protect your 
stored data & ongoing communications 
(let’s call this simply protect messages)

• Question: Assume you are given am 
encryption box (call it symmetric 
encryption) that encrypts your data with 
a key. Is your data now protected?

• (At least incomplete) Answer: Yes, as long 
as the adversary cannot find/guess the 
key … or maybe not 

 Lorem ipsum dolor sit amet

Encryption
Box

Encryption
Box

???
 jk%q+&23ljnms*df-+jfsd9



Monoalphabetical substitutions
• Main idea: replace one symbol with another

• Problem: easy to break by frequency analysis

• Extension: bigram analysis (and beyound)

https://en.wikipedia.org/wiki/Frequency_analysis https://en.wikipedia.org/wiki/Bigram



A practical example of polyalphabetical substitution
• The Enigma machine, a rotor cipher (several versions exist), elements:

 26 lamps (output, ciphertext) & keys (input, plaintext)

 3 or 5 (usually) rotors 

 at most 13 plugs that can connect each two letters on the plug-board (part of the key)

a) rotors (3)

b) lamps (26)

c) keys (26)

d) plugboard (2x13)



How Enigma works
• When one key is pressed (letter of the 

plaintext selected), circuit is closed under that 
key, current flows through the plugboard that 
follows the 3 rotors, returns from the 
reflector and lightens up the lamp (the letter 
of the ciphertext)

• Rotors move at each step, thus a character 
will not always get encrypted to the same 
character (i.e., a polyalphabetic substitution)

© image from wikipedia.org



• A closer look to the Enigma secret key (depicted in the form of a codebook) may 
give you more insights on the security of this cryptosystem

• This is a print-screen from 
a nice tool by Dirk 
Rijmenants, see 
http://rijmenants.blogspot
.ro/2005/11/enigma-
codebook-tool.html



How secure is Enigma

• Question: how hard is to break Enigma?

• Answer (not necessarily correct): as hard as to find the key

• Question: how big is Enigma’s key?

• Answer: consider just (the way to place 3 rotors) x (the way to connect 13 plugs)

3

13

26!
26 138953282533065000

13! 2
 



when compared to the number of DES keys 256 = 72057594037927936 will 
quickly lead to the conclusion that Enigma (deprecated by the end of WW2) is 
stronger than DES (deprecated only by the end of the ‘90s)



How secure is Enigma
• Question: imagine you have captured a ciphertext that begins with:

zeyt sadb eiwf dsak sadk jnujj

Could you tell which is the corresponding plaintext from the following:

a) attackatdawnonthewestfront

b) attackatnightonthewestfront

c) attackatduskonthewestfront

• Answer: wrong design decision in Enigma, a letter cannot map to itself! Correct answer 
is c)



Partial conclusion

• For protecting data by symmetric primitives we need: clear design principles (how to 
build the ciphers) and a formal treatment of security properties (what is the exact 
security they should offer)



A more formal and constructive account of 
symmetric primitives … 

you should learn: 
i. where is the primitive used, 

ii. what are the standards, 
iii. how is it built, 

iv. what are its properties



Type of functions (I) Symmetric encryption schemes
• Description (informal): an algorithm that takes as input a key k and message m 

called plaintext and returns the encrypted message c called ciphertext (similarly, 
algorithms for decryption and generating keys are needed)

• Example of use: encrypted tunnels SSL/TLS, IPSEC; encrypted passwords (lmhash
in Win XP); encrypted hard drives (TrueCrypt), etc.

• Standards:
Not to use: DES, RC4

To use: AES (128, 194, 256), 3DES (with 168 bit key, not recommended)

i.e., 𝑐 = 𝑒𝑘(𝑚)Symmetric 
Encryptionplaintext

key
ciphertext



Symmetric encryption: formal definition

• A symmetric encryption scheme is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a 

security parameter (l) and outputs the key

Enc is the encryption algorithm that takes as input the key and 
some message, then outputs the ciphertext

Dec is the decryption algorithm that takes as input the 
ciphertext and the key and outputs the message

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑐 ← 𝐸𝑛𝑐 𝑘,𝑚

𝑚 ← 𝐷𝑒𝑐 𝑘, 𝑐

• A correctness condition enforces that 𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚

• In some cases, the encryption and decryption algorithms are allowed to return 
\null on particular inputs (i.e., they refuse to encrypt/decrypt)



Classification: block ciphers vs. stream ciphers
• Stream ciphers – the message is combined via a simple transformation (e.g. XOR) with a 

keystream (which is a pseudorandom stream generated by a more complex mechanism), 
operation is done one character (bit) at a time. Examples include RC4 used in SSL/TLS or A5 
used in GSM.

• Block ciphers – the message is transformed block by block (e.g., 128 bits) via a transformation 
that is depended on the key. Examples include DES, 3DES, AES.

• Remarks:
• Block ciphers can be turned into stream ciphers in certain mode of operations, e.g., counter mode (this means that 

distinction between the two is not always clear)

• Typically stream ciphers have low hardware complexity, are fast, but practical instantiations such as RC4 are not always 
secure

Block Cipher
Stream Cipher

XOR

plaintext block

key
ciphertext block

key stream

ciphertext

key

plaintext

Block Cipherplaintext block

key
ciphertext block

...



Example: the one-time pad (a stream cipher)

• Answer: believe it or not, yes. The one-time pad is information-theoretically secure, i.e., cannot be 
broken regardless of computational power & ciphertext available.

• Description: generate a random key the same length as the plaintext, then simply XOR it with the 
plaintext

• Problems: 
• requires a random key stream the same length as the plaintext, but in practice you want a key as small as possible
• Since it’s symmetric the key needs to be exchanged a-priori on a secure channel, but then why not simply exchange 

the plaintext?

• Current status: there are still some practical applications where it’s useful, e.g., quantum cryptography, 
otherwise it is not an efficient solution

RNG

XOR

key stream k=k0k1...kl

ciphertext

plain text m=m0m1...ml

c=(k0 XOR k0)(k1 XOR m1)…(kl XOR ml)

• Question: could you build a cipher that cannot be broken regardless of the 
computational power of the adversary?



Design principle: product ciphers

• Substitutions and transpositions (suggested in the work of Shannon, also used 
before)
Substitution (S-Box) replaces a symbol (or group of symbols) by another symbol – creates 

confusion

Permutations (P-Box) also known as transpositions mixes the symbols inside a block –
creates diffusion

• Ciphers that use both substitutions and permutations (S-Boxes and P-boxes) are 
also called product ciphers (sometimes product ciphers denote any cipher that 
uses more than one transformation, while product ciphers with only S&P are 
called SP-networks)

• Remarks:
DES and AES, the two well known standards are product ciphers

Feistel ciphers are also product ciphers



Design: Feistel networks
• Designed by Horst Feistel in the ’70s at IBM

• SP-networks

• How they work:
Variable number of rounds
Each block is split into right and left part (if 

equal in size, then the network is called 
balanced)

Right block is passed through a round function 
that depends on the round key

Round key is derived from the master key (via 
the key scheduling algorithm)

Security/performance trade-off: increasing the 
number of rounds and the size of the key 
results in increasing security level

Decryption is performed by walking through 
the circuit in reverse order

F

F

F

etc.

message ciphertext

ciphertext

K0

K1

Kl-1

F

F

F

etc.

Kl-1

Kl-2

K0

message



Relevant property of the Feistel round

• Note that the Feistel round is invertible regardless of the properties of the round 
function, so inverting the network is straight forward as follows
 By definition, deriving the output from the input:

𝐿𝑖 = 𝑅𝑖−1, 𝑅𝑖 = 𝐿𝑖−1 ⊕𝑓𝑖 𝑅𝑖−1

 Which implies, deriving the input from the output

𝑅𝑖−1 = 𝐿𝑖 , 𝐿𝑖−1 = 𝑅𝑖 ⊕𝑓𝑖 𝐿𝑖



Design insights: DES

• Some DES facts:
Developed in the 70s at IBM based on Feistel’s design
Standardized with the input from NSA
Symmetric encryption standard between 1977-2001
Considered insecure since the end of the 90s
Replaced by AES (Rijndael) in 2001
DES is a 16 round Feistel network
DES operates on 64 bit blocks
Surprisingly, DES key is only 56 bits

• Some DES oddities:
DES has four weak keys: encryption and decryption have the same 

effect with these keys
DES has six pairs of semi-weak keys: encryption with one key from 

the pair behaves as decryption with the other

INITIAL PERMUTATION

F

F

F

etc.

message

ciphertext

K1

K2

K16

L0 R0

R16 L16

REVERSE INIT. PERMUTATION

L1 R1

L2 R2



DES round function

• How it works: the right half (32 bit) 
of the message block (64 bit) is 
expanded (48 bit) then XOR-ed with 
the round key (48 bit) and each 6 
bits are provided as input to 8 x S-
Boxes that output only 4 bits 
resulting in 32 bits that are passed 
through another permutation P

• This round transformation is applied 
16 times, each time with a distinct 
round key

RX (32 BIT)

E

48 BIT KX (48 BIT)

S1 S2 S3 S4 S5 S6 S7 S8

32 BIT

P



Examples: E, P and some S-boxes (from the standard)

32    1     2    3     4     5

4    5     6    7     8     9

8    9    10   11    12    13

12   13    14   15    16    17

16   17    18   19    20    21

20   21    22   23    24    25

24   25    26   27  

E 

  28    29

28   29    30   31    32     1

 
 
 
 
 
 
 
 
 
 
 
 
 

1

14   4 13   1  2  15 11   8  3  10  6  12  5   9  0   7

0  15  7   4 14   2 13   1 10   6 12  11  9   5  3   8

4   1 14   8 13   6  2  11 15  12  9   7  3  10  5   0

15  12  8   2  4   9  1   7  5  11

S 

  3  14 10   0  6  13

 
 
 
 
 
 

2

15   1  8  14  6  11  3   4  9   7  2  13 12   0  5  10

3  13  4   7 15   2  8  14 12   0  1  10  6   9 11   5

0  14  7  11 10   4 13   1  5   8 12   6  9   3  2  15

13   8 10   1  3  15  4   2 11   6

S 

  7  12  0   5 14   9

 
 
 
 
 
 

16   7  20  21

29  12  28  17

1  15  23  26

5  18  31  10

2   8  24  14

32  27   3   9

19  13  30   6

22  11   4  25

P

 
 
 
 
 
 
 
 
 
 
 
 
 



DES key scheduling

• Derives each of the round 
keys from the master key

PERMUTATION 1

KEY

C0 D0

LEFT SHIFT LEFT SHIFT

C1 D1

LEFT SHIFT LEFT SHIFT

C16 D16

etc.

PERMUTATION 2

PERMUTATION 2

K1

K16



Designs: 3DES

• 3 DES keys K1, K2, K3 in the following transformation:

• Considered to be secure so far (given that all three keys are random and 
independent) but it is slower than AES (thus no serious reasons for use in 
practice)

• Has 3 keying options: i. independent keys, ii. K1 and K2 independent but K3=K1, 
iii. all keys are equal K1=K2=K3 (this is DES)

• Main reason for practical persistence may be the electronic payment industry

       3 2 1 1 2 3,K K K K K Kc E D E m m D E D c 



Designs: AES

AES_Encrypt_Round(State, Key)

{

SubBytes(State) ;

ShiftRows(State); 

MixColumns(State); 

AddRoundKey(State, Key);

}

AES_Decrypt_Round(State, Key)

{

AddRoundKey-1(State, Key); 

MixColumns-1 (State);

ShiftRows-1 (State);

SubBytes-1 (State) ;

}

• AES facts:
Designed by Vincent Rijmen and Joan Daemen
Selected by public competition from the 5 finalists:  MARS, RC6, Rijndael, Serpent, and Twofish
The new standard as of 2001
Not a Feistel network
Available with 3 key lengths: 128, 192, 256 bits

• How AES works
Operates on a 4x4 matrix of bytes (128 bit blocks) called state
Has 10, 12 or 14 rounds according to the key size
Each round has 4 transformations: SubBytes (a substitution) is non-linear substitution where each byte is 

replaced via a look-up table, ShiftRows (a permutation) the last three rows are shifted,  MixColumns the four 
bytes of each column are combined via a linear transformation, AddRoundKey each byte of the state is 
combined with the round key via a XOR operation



Electronic Code Book (ECB)
• The message is parsed into blocks and each block is encrypted with the secret key

• Decryption is done by reversing this operation

• Question: assuming that the block cipher is secure, is this construction secure?

• Question: block ciphers work on single blocks of message, how do you extend 
them to multiple blocks?

Block Ciphers use in practice

Block Cipher 
Encryptionk Block Cipher 

Encryptionk Block Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 



• Answer: No. Do not use ECB.

© image from wikipedia.org



Cipher Block Chaining (CBC)
• Initialization Vector (IV) is a non-secret 

random value used for randomization of 
the first output block

• Last message chunk is padded to the block 
length

• Pros: encryption is fully randomized and secure

• Pros: decryption can be parallelized!

• Cons: if one of the blocks is lost, 
decryption cannot be performed on 
the next

• Question: if one cipher text block has 
a 1 bit error and all other blocks are 
fine, how much do you lose when 
decrypting?

Block Cipher 
Encryptionk Block Cipher 

Encryptionk

IV

Block Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 

Block Cipher 
Decryptionk Block Cipher 

Decryptionk Block Cipher 
Decryptionk

IV

0m 1m
1m 

0c 1c
1c 



Some variations: Output-feedback (OFB) and Cipher Feedback (CFB)
• Pros: OFB allows 

decryption even when 
message blocks are 
lost, it also allows pre-
computation of the 
key stream

• Pros: CFB and OFB are 
stream modes and 
don’t require padding

Bloc Cipher 
Encryptionk Bloc Cipher 

Encryptionk

IV

Bloc Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 

Bloc Cipher 
Encryptionk Bloc Cipher 

Encryptionk

IV

Bloc Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 

• Pros: CFB allows 
decryption to be 
parallelized



Another variation: Propagating Cipher Block Chaining (PCBC)

Block Cipher 
Encryptionk Block Cipher 

Encryptionk

IV

Block Cipher 
Encryptionk

0m 1m
1m 

0c
1c 1c 

IV

Bloc Cipher 
Decryptionk Bloc Cipher 

Decryptionk Bloc Cipher 
Decryptionk

0m 1m
1m 

0c
1c 1c 



Counter Mode

• A counter is incremented and encrypted for each block, then XORed with the message

• Pros: decryption can still be performed if bocks are lost, key-stream can be pre-
computed

• This mainly converts the block cipher into a stream cipher

Block Cipher 
Encryptionk Block Cipher 

Encryptionk Block Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 

salt counter salt 1counter  salt counter 



Additional notes on padding

• To make the encryption plaintext an integer multiple of the block size some 
padding is needed

• According to PKCS#7, the most commonly used padding for symmetric 
encryptions, padding is in whole bytes and the value of each added byte is the 
number of bytes that are added, e.g.
• 01 – for a message of 15 bytes (assuming 128 bit blocks)

• 02 02 – for a message of 14 bytes (assuming 128 bit blocks)

• 03 03 03 – for a message of 13 bytes (assuming 128 bit blocks)

• etc.

• Question: what is the padding value when the plaintext is already a multiple 
of the block size?



Adversary capabilities (informal) – what the 
adversary can do?

• CPA – chosen plaintext adversary, an adversary that has access to a black-box that 
encrypts plaintexts at the adversary choice

• CCA – chosen ciphertext adversary, an adversary that has access to a black-box that 
decrypts cyphertexts at the adversary choice

• Adaptive vs. non-adaptive – is an additional flavour that can be added to both CPA and 
CCA meaning that the adversary can continue (adaptive) or not (non-adaptive) to query 
the encryption/decryption box after he received the target ciphertext that he is 
required to break (obviously the adversary is not allowed to query the target ciphertext
to the decryption box)



Security notions (informal)

• semantic security (SS) (Goldwasser & Micali 1982) 

Any information that can be efficiently computed with the ciphertext, can be also 
computed without the ciphertext

• indistinguishability of ciphertexts (IND)

Given two messages selected by the adversary and the encryption of one of them 
chosen at random (without adversary’s knowledge) the adversary cannot decide 

which is the encrypted message

• real or random indistinguishability (RoR)

Given a message selected by the adversary and the encryption of either this 
message or some complete random message (not known to the adversary) the 

adversary cannot decide if the ciphertext corresponds or not to its chosen plaintext



How to prove equivalences?

• Security reductions, proving that a cryptosystem that has one property has the 
other (or the reverse, if it doesn’t have one property it doesn’t have the other)

• Question: which of the previous properties is the strongest?

• Answer: under proper formalization they are all equivalent, see Goldreich –
Foundations of Cryptography, vol II, p.383 

• Question: which is easier to prove?

• Answer: generally IND or RoR are easier to prove and are the standard tool in 
proving security



Example, security reductions: IND → RoR & IND ←RoR

• Proof to be done as exercise during laboratory hours



Type of functions (II) Hash functions

• Description: an algorithm that takes as input a message of any length and turns 
it into a constant size output (usually referred as tag or simply hash)

• Example of use: assure integrity of software downloads/updates, protect stored 
passwords, etc.

• Standards:
Not to use MD5, SHA1 (not resistant to collisions)
To use SHA2 (mostly 256, 384 and 512 are somewhat slow)
Future use: SHA3 (Keccak the winner of the competition)
Alternatives: BLAKE is a lightweight design, one of the SHA3 finalists 

e.g., downloading images from ubuntu.com

Hash Function
message tag

i.e., 𝑡𝑎𝑔 = 𝐻(𝑚)



Security properties for hash functions

• The following properties are mandatory for hash functions:  
 Pre-image resistance – given the hash of some message it is infeasible to find the message

 Secondary pre-image resistance – given the hash of a message and the message it is 
infeasible to find a second message that has the same hash value

 Collision resistance – it is infeasible to find two messages that have the same hash

i.e., ℎ 𝑚
?
m

i.e., 𝑚1, ℎ 𝑚1

?
𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)

i.e., 
?
𝑚1, 𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)



Design principle

• The Merkle-Damgard construction provides a method for turning a collision-
resistant one-way functions into a collision-resistant hash functions

• This design stands behind MD5, SHA1 and SHA2

• The IV is fixed (not random like in block ciphers modes of operation)

Compression 
Function

IV
Compression 

Function
Compression 

Function

Message block 1 Message block 2 Message block n

H(m)



Design insights: MD5

• 4 IV’s defined as follows

• Message is processed in blocks of 512 bits 
that are further split in 128 bit chuncks
and propagated as IVs for the next block 
to be hashed (i.e., Merkle-Damgard
construction)

A= 0x67452301,

B= 0xefcdab89,

C= 0x98badcfe,

D= 0x10325476.  

Round 1 (16 x)

A

Message block (512 bit, 
processed as 32 bit words)

B C D

Round 2 (16 x)

Round 3 (16 x)

Round 4 (16 x)

0 15i 

16 31i 

32 47i 

48 63i 

[ ],0 63b i i 



MD5 round function
• Each round proceeds with the following transformation (A, B, C, and D are the 

IV’s, K and S are fixed constants and M is the message):

,

,

(( ( , , ) ) ),

.

D C

C B

B B A FR B C D M K S

A D





     



( , , ) ( ) ( ),

( , , ) ( ) ( ),

( , , ) ,

( , , ) ( ).

F X Y Z X Y X Z

G X Y Z X Z Y Z

H X Y Z X Y Z

I X Y Z Y X Z

    

   

  

  

• Round function is distinct for each round (still, all round functions consist in 
simple logic operations AND, OR, XOR and NOT):



Padding

• According to RFC 6234 one byte \x80 followed by as many 0s as needed, 
followed by the length in bits of the message as a 64 bit integer

• Example: “Hello world\x80\x00\x00\x00\x00 ….. \x00\x00\x00\x00\x0B”



Test vectors as per RFC 1321

• Examples of what you get after you hash

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661

MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72

MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0

MD5 ("abcdefghijklmnopqrstuvwxyz")=c3fcd3d76192e4007dfb496cca67e13b

MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")

= d174ab98d277d9f5a5611c2c9f419d9f

MD5("12345678901234567890123456789012345678901234567890123456...2345678

90") = 57edf4a22be3c955ac49da2e2107b67a



Type of functions (I) Keyed Hash Functions (or MACs)
• Description (informal):  an algorithm that takes a message of arbitrary length and 

and a key then outputs a tag 

• Example of use: assuring message authentication, i.e., binding a message with 
the identity of a principal that knows a key

• Standards:
Not to use: simple concatenation of key to a message is in general insecure

To use: HMAC or NMAC with one of the previous hash functions

Future use: N/A

i.e., 𝑡𝑎𝑔 = 𝑀𝐴𝐶𝑘(𝑚)
Message 

Authentication 
Code

plaintext

key
tag



Message Authentication Codes formal definition

• A message authentication code is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a 

security parameter l and outputs the key

Mac is the tag-generation algorithm that takes as input the key 
and some message, then outputs the tag

Ver is the verification algorithm that takes as input the key, the 
tag and the message and outputs 1 if the tag is valid or 0 
otherwise

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑡𝑎𝑔 ← 𝑀𝐴𝐶 𝑘,𝑚

{0,1} ← 𝑉𝑒𝑟 𝑘, 𝑡𝑎𝑔,𝑚

• A correctness condition enforces that 𝑉𝑒𝑟 𝑘,𝑀𝐴𝐶 𝑘,𝑚 ,𝑚 =1



Desired Properties for MACs

• Fortunately, there is only one strong definition of security (of course, this can be 
refined in several ways)

• MACs must have (existential) unforgeability under chosen message attacks, that 
is, an adversary that receives any number of valid message-tag pairs (i.e., pairs 
that are computed with the MAC algorithm) is unable to output a new message-
tag pair that will successfully pass through the verification algorithm



What not to use

• Question: based on the previous security definition for MAC code, is the simple 
concatenation of message to key, i.e., H(k||m), secure?

• Answer: No. Concatenation attacks are possible due to the construction of some 
hash functions (revisit MD5 and the Merkle-Damgard construction)

Compression 
Function

IV
Compression 

Function
Compression 

Function

Message block 1 Message block 2 Message block n

H(m)



HMAC

• Simple and secure
• The application of a hash function twice with an inner-padding (ipad) and outer-

padding (opad)
• ipad is B blocks of 0x36 and opad is B blocks of 0x5C, where B is the byte size of the 

block to be processed (e.g., B=64 in case of MD5 that uses blocks of 512bits)

( , ) (( opad) || (( ipad) || ))HMAC K m H K H K m  

• Can be paired with any hash function, e.g., HMAC-MD5, HMAC-SHA256, etc.

• NMAC (Nested MAC) is as simple as HMAC, however it requires changing the IV which is less 
handy when implementing 



Various paradigms of combining MACs with encryptions

• A frequent application of MAC functions is in authenticated encryption, i.e., 
assuring that an encrypted ciphertext indeed originates from the source (note 
that block ciphers are not designed for this)

• There are three paradigms employed in practice:
 Encrypt-and-MAC, i.e.,  𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝑚 , used in SSH

 MAC-then-encrypt , i.e.,  𝐸𝑘 𝑚||𝑀𝐴𝐶𝑘 𝑚 , used in SSL/TLS

 Encrypt-then-MAC, i.e.,  𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝐸𝑘 𝑚 , used in IPSec

• Encrypt-then-MAC has better security than the previous two and should be the 
desired alternative in practice

• For details, see Bellare & Namprempre, “Authenticated Encryption: Relations 
among notions and analysis of the generic composition paradigm”, 2000



Widely-adopted: Galois Counter Mode (GCM)

• Key points:
• Auth Data 1 represents additional 

authenticated data (not encrypted), e.g., 
headers, etc.

• Requires multiplication in a Galois Field 
GF(2128) using field polynomial f = 1 + α + 
α2 + α7 + α128

• See NIST specification for additional info

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf


Type of functions (IV) RNGs and PRNGs

• Random numbers stay at the core of any cryptosystem since you need randomness for 
the secret keys

• Description (informal):  
• TRNG – True random-number generators output random sequences based on physical processes that 

are hard/infeasible to model, i.e., white noise from a Zenner diode, oscillator drift, SRAM state at 
power-up, etc.

• PRNGs – deterministic algorithms that generate a random sequence based on a value called seed 
(they all have cycles but this does not mean they are insecure, computationally secure PRNGs exist)

• Example of use: used in any handshake SSL/TLS, IPSec, etc. that needs to generate a 
fresh session key



PRNG examples
• The linear congruential generator, an insecure and yet common solution

1 modi iX aX c n  

• Galois or Fibonacci LFSR (Linear Feedback Shift Register) are another common, insecure 
alternative

2

1 modi iX X n

• Bloom-Bloom-Shub is cryptographically secure but requires a large modulus n and is 
computationally expensive, thus almost absent in practice (𝑋0 is the seed)

• Block ciphers in counter mode or stream ciphers provide secure instantation of PRNGs (as long 
as the cipher is secure)

(𝑋0 is the seed)

(𝑋0 is the seed)



Testing for randomness

• Various statistical tests are usually employed, none is perfect but may provide 
some degree of confidence, for example:
• Entropy, e.g., ideally a random string will have 8 bits/byte 

𝐻 𝑋 = −

𝑥∈𝑋

𝑝 𝑥 log(𝑝(𝑥))

• Compression rate, e.g., a random string will have 0% compression rate
• Chi square distribution – the difference between the expected and observed frequency of 

occurrence

𝜒2 =
(𝑜𝑖 − 𝑒𝑖)

2

𝑒𝑖

• Arithmetic mean, e.g., random bytes will have the arithmetic mean at 127.5
• Monte Carlo Pi – estimates the value of π by considering a quadrant inscribed in a unit 

square (the number of points inside the circle divided by all the number of attempts 
converges to π/4)

• Serial correlation coefficient – totally uncorrelated data will lead to a value of 0



Test suites for randomness

• Dieharder is a battery of tests used by many enthusiasts or professionals 
http://www.phy.duke.edu/~rgb/General/rand_rate.php



Questions?



Asymmetric Primitives
(public key encryptions and digital signatures)



Real World RSA Keys
• 2048 bit RSA key from RSA factoring challenge (offered 200.000$ for its factors)

251959084756578934940271832400483985714292821262040320277771378360436620207075955562640185258807844069182906412495
150821892985591491761845028084891200728449926873928072877767359714183472702618963750149718246911650776133798590957
000973304597488084284017974291006424586918171951187461215151726546322822168699875491824224336372590851418654620435
767984233871847744479207399342365848238242811981638150106748104516603773060562016196762561338441436038339044149526
344321901146575444541784240209246165157233507787077498171257724679629263863563732899121548314381678998850404453640
23527381951378636564391212010397122822120720357 

• Question: Consider to factor by exhaustive search? What is the expected number of steps?

• Need more motivation? The following rewards were withdrawn by RSA, but still …
RSA-768  $50,000 USD (factored December 12, 2009) 

RSA-896 $75,000 USD

RSA-1024 $100,000 USD

RSA-1536  $150,000 USD

RSA-2048 $200,000 USD



Real World RSA Keys
• 2048 bit RSA key from RSA factoring challenge (offered 200.000$ for its factors)

251959084756578934940271832400483985714292821262040320277771378360436620207075955562640185258807844069182906412495
150821892985591491761845028084891200728449926873928072877767359714183472702618963750149718246911650776133798590957
000973304597488084284017974291006424586918171951187461215151726546322822168699875491824224336372590851418654620435
767984233871847744479207399342365848238242811981638150106748104516603773060562016196762561338441436038339044149526
344321901146575444541784240209246165157233507787077498171257724679629263863563732899121548314381678998850404453640
23527381951378636564391212010397122822120720357 

• Question: Consider to factor by exhaustive search? What is the expected number of steps?

• You should take a look at the following:

 electrons in universe: 
8,37*1077≈83700000000000000000000000000000000000000000000000000000000000000000000000000000

 age of solar system: 1,89*1017≈189000000000000000

• Need more motivation? The following rewards were withdrawn by RSA, but still …
RSA-768  $50,000 USD (factored December 12, 2009) 

RSA-896 $75,000 USD

RSA-1024 $100,000 USD

RSA-1536  $150,000 USD

RSA-2048 $200,000 USD



An informal, yet instructive account of 
asymmetric primitives …



Timeline of the invention of public-key cryptography

• 1970-1974 British cryptographers James Ellis and Clifford Cocks from GCHQ invent the 
possibility of non-secret key encryption and the RSA

• 1974 Ralph Merkle invented a public-key agreement that was published only in 1978

• 1976 Withfield Diffie and Martin Hellman, influenced by Ralph Merkle’s work, published
a method for public-key agreement (known as Diffie-Hellman key exchange, or Diffie-
Hellman-Merkle key exchange)

• 1977 Ron Rivest, Adi Shamir and Leonard Adleman invent the RSA, published in 1978

• 1979 Michael O. Rabin publishes the Rabin cryptosystem, a public key cryptosystem
with security equivalent to factoring

• 1985 Taher ElGamal published a method for encrypting and signing based on DHM key
exchange

• 1985 Neal Koblitz and Victor Miller independently and simultaneously introduce elliptic
curve cryptography



Why we need public-key cryptography?

• All symmetric key 
cryptosystems require a 
key to be shared 
between parties

• But in the real-world 
communication happens 
spontaneously between 
parties that did not 
interact before (i.e., 
previously shared 
secrets do not exist) and 
exchanging a secret key 
securely over a public 
channel (e.g., Internet) 
is not possible

• Answer: Exchanging information securely over an insecure channel in the absence of a 
secretly shared key



How public-key encryption works (informal)
• Use separate key for encryption and decryption (note that the decryption key must not be 

recoverable from the encryption key)



Where is public-key encryption used?

• Used everywhere, examples: 
 In your browser: HTTPS, or HTTP over SSL/TLS, whenever 

you are using the Hypertext Transfer Protocol Secure 
(HTTPS) to privately read your e-mail, browse, chat or 
whatever …

Behind your routers: IPSEC

Etc.



A more formal and constructive account of 
asymmetric primitives … 

you should learn: 
i. where is the primitive is used, 

ii. what are the standards, 
iii. how is it built, 

iv. what are its properties



Type of functions (I) Asymmetric encryption schemes
• Description (informal): an algorithm that takes as input a public key (Pb) and message 

(m, called plaintext) and returns the encrypted message (c, called ciphertext), and a 
decryption algorithm that takes as input a private key (Pv) and ciphertext (c) and 
returns the message (m) (a key generation algorithm is also needed)

• Example of use: key-exchange for encrypted tunnels SSL/TLS, IPSEC, etc.

• Standards:
To use: RSA (2048 bit or above), Diffie-Hellman (with or without ECC)
Not to use: small key versions or unpadded (textbook) versions of the above
Future use: ECC to completely replace RSA (?)

i.e., 𝑐 = 𝑒𝑃𝑏(𝑚)
Asymmetric 
EncryptionPlaintext: m

Public key: Pb
Ciphertext: c

Asymmetric 
DecryptionCiphertext: c

Private key: Pv
Plaintext: m

i.e., 𝑚 = 𝑑𝑃𝑣(𝑐)



Asymmetric encryption: formal definition

• A symmetric encryption scheme is a triple of algorithms:
Gen is the key generation algorithm that takes the security 

parameter l, random coins and outputs the public and private 
key

Enc is the encryption algorithm that takes as input the public 
key and the message, then outputs the ciphertext

Dec is the decryption algorithm that takes as input the 
ciphertext and the private key and outputs the message

(𝑃𝑏, 𝑃𝑣) ← 𝐺𝑒𝑛 1𝑙

𝑐 ← 𝐸𝑛𝑐 𝑃𝑏,𝑚

𝑚 ← 𝐷𝑒𝑐 𝑃𝑣, 𝑐

• A correctness condition enforces that 𝐷𝑒𝑐 𝑃𝑣, 𝐸𝑛𝑐 𝑃𝑏,𝑚 = 𝑚

• A security condition enforces that given the public key Pb it is infeasible to compute 
the private key Pv, but this is not enough (remember SS/IND/NM security properties)



What are the desired security properties for PKC?
• Similar to what we defined in case of symmetric encryptions: active adversaries 

(CPA/CCA) and IND/NM:
 IND – indistinguishability of ciphertexts – what you already know from symmetric 

cryptosystems
 NM – non-malleability of ciphertexts – the adversary cannot modify a given challenge 

ciphertext such that it decrypts to a valid plaintext

• Pictured below are relations among security notions for PKC as proved by 
Bellare, Desai, Pointcheval & Rogaway ‘1998

NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2



Fundamentals - Number Theory (in 1 slide)
• Definition: A set A together with some operation × forms an abelian group if the 

operation × is: 
i. associative, i.e., (a × b) × c = a × (b × c), 
ii. comutative, i.e., a × b = b × a, 
iii. there exists an identity element e such that e × a = a × e = a,
iv. each element a has an inverse b such that a × b = b × a = e.

• 𝑍𝑛 = 0,1,2, … , 𝑛 − 1 is called the set of integers modulo n, i.e., remainders mod n, 
then 𝑍𝑛, + forms an abelian group

• 𝑍𝑛
∗ = 𝑥 ∈ 𝑍𝑛| gcd 𝑥, 𝑛 = 1 is the set of integers modulo n that are relatively primes 

to n, then 𝑍𝑛,∗ forms an abelian group

• The Euler’s totient function function is defined as 𝜑 𝑛 = |𝑍𝑛
∗ |, that is 𝜑 𝑛 =

𝑛 1 −
1

𝑝1
… 1 −

1

𝑝𝑟
where 𝑝1, … , 𝑝𝑟 are the prime factors of n

• Euler’s Theorem – strong result that builds the RSA trapdoor

∀𝑥 ∈ 𝑍𝑛
∗ , 𝑥𝜑 𝑛 ≡ 1mod 𝑛



Tools: Computational Number Theory (in 1 slide)

Efficiently Computable Requires (If)

Elementary operations in 𝑍𝑛
∗ : -, +, *,

/, 𝑎𝑥
-

Greatest common divisor (GCD) and

multiplicative inverse, i.e., 𝑥−1
-

Primality testing -

Square root in 𝑍𝑛
∗ , i.e., 2 𝑥𝑚𝑜𝑑n

If and only if 

factorization known

e-th root in 𝑍𝑛
∗ , i.e., 𝑒 𝑥𝑚𝑜𝑑n If factorization known

Systems of simultaneous

congruences over co-primes

(Chinese Remaindering Theorem)

-

Not Efficiently Computable Requires (If)

Logarithms, i.e., 𝑙𝑜𝑔𝑎(𝑎
𝑥)mod p

Order of the group 

sufficiently large

Factorization of an integer
Large integers with 

non-trivial factors

Square root in 𝑍𝑛
∗ , i.e., 2 𝑥𝑚𝑜𝑑n

If factorization is not 

known

e-th root in 𝑍𝑛
∗ , i.e., 𝑒 𝑥𝑚𝑜𝑑n

If factorization is not 

known

• The following computational problems make public key trapdoors possible, to build public key
trapdoors we need both problems that can be efficiently solved (encryption and decryption,
i.e., the cryptosystem is efficient) and problems that cannot be efficiently solved (finding the
private key from the public key, i.e., breaking the cryptosystem is hard)



RSA public key cryptosystem
• Key generation

1. Generate two random primesp,q

2. Compute n=pq, φ(n)=(p-1)(q-1)

3. Choose e relatively prime to φ(n)

4. Compute d such that ed≡1mod φ(n)

5. Public key is Pb=(n,e) and private key 
Pv=(n,d)

• Encryption

1. Obtain the public key Pb=(e,n)

2. Compute c=me mod n, (note that the message 
must be represented as integer mod n)

• Decryption

1. Receive the encrypted message c

2. Compute m=cd mod n by using the private key Pv

 Example (with artificially small numbers) 

     

   143,103,143,7

,103,  7

12011, 143

,  13,  11









PvPb

de

qpnqpn

qp

 47143mod5mod

5

7 



nmc

m

e

5143mod47mod

47
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ncm

c

d

• Encryption

• Decryption

• Key generation



Real World RSA Example, e.g., 2048 bit
p=877179051803345383301772533278715977755413225463880597099773793580012554868118745898925192075275744291359953896729013442220425

44649875002097947549962283533550433428891700146500091827064074824228282220649533618300604182762534874587197130742810668322972
641036801070096428526988411279367560818649799455463660957

q=358545460039771745655107400652683200646521494130638596256418317301272727114650831134610638284952838824649226099118794252798572
10780829161482812728546396118096771447737562161014412999014651809527526115364454639300101116444258051893130616890759713361315
636239668678324095023104457779566373583973773185341848137

n=314508566666081242137121283025262820123145474547001002866645173321664468021072306469761058196402528602538116882167850510650287
74751259737759826169682062167785671848892843602241411755156098209751432834437611555733395953279333743893345384516416463019316
28708789331972800805576939076262518928316668528736277298123601348376805406893557725503439946830084802329864534893977812775991
80017141189731650135812018494958524742623175431789229957125657238269209406228737945946448575338095229156899668534958950370630
9590173800607443930375509595894933377633658450815877191855015707320956169677690099046904961042512131905014350087109

phi=3145085666660812421371212830252628201231454745470010028666451733216644680210723064697610581964025286025381168821678505106502
87747512597377598261696820621677856718488928436022414117551560982097514328344376115557333959532793337438933453845164164630193
16287087893319728008055769390762625189283166685287362772980000288971924936939978697321103000289898913303704126155583586016878
63271973134939613147775084162091273646508232169537122797671501141678528513302008870779812838548504323029261482180523510777072
553781837786619186329670210389102006897305910817245495507566738430851207749154140006177846027108109508332373544578016

e=65537

d=804639384971876068009385927412695378946973491574158996454680504308153887927326451100673461217187420400499962733007057007808318
15044077700080718584472761396960855683108215005078314677007232354685486722769646604968468185701907149222534150508377685192315
20905789207499267758229479147915475970991284499034310611649371274124012659606372247477516606813480619546318617737613664723805
40475968590757795577228682206759315058722992914368035591468325411964044471592882438395438667359994876659402653780882634224567
942689994480124161764810986070057366787131035487666862617628259915501172315904992349114917321843723792802649220129

m=100

c=254897684545244939587959763656581804042924921691177655434078680826986960724858257810948238693793073802953985383527144183530096
49292992524928014279677630669350117584802605716652831970316940552364435687683730017058261493365729508812819643147885869576592
72876801920455855808566073459620866409255904768797598183549291311221205768157523067139811766553103059906211473702387598423211
44862169047975586564528186191293421996909006303234681609646822352463247055992521706873396409876289358326679660973486808559052
9178186029803475510680587805155014963979543880268829325102999518057911194673397595580615913766442151206798081405953



Algorithms (I) Extended GCD (Greatest Common 
Divisor)
• Based on the Euclidean Algorithm for GCD

• For 2 integers a and b, computes 2 integers x and y such that ax + by = gcd(a, b)

• Scope: it essentially computes the modular inverse, e.g., replace a with e and b 
with phi(n) in RSA

• Input: a, b (two integers)

• Output: oldx, oldy (two integers such that 
oldx × a + oldy × b = gcd(a, b) )

• Complexity: O((lg n)2)

1. oldr ← a; r ← b;

2. oldx ← 1; x ← 0;

3. oldy ← 0; y ← 1;

4. While r != 0 do
4.1. q ← Floor[oldr/ r];

4.2.  aux ← r; r ← oldr - q × r; oldr ← aux;

4.3.  aux ← x;  x ← oldx - q × x; oldx ← aux;

4.4.  aux ← y; y ← oldy - q × y; oldy ← aux;

5. Return (oldx, oldy)



Algorithms (II) Modular Exponentiation (RSM)

• Input: m, n and e (as binary representation on k bits, i.e., e=ekek-1…e1e0)

• Output: me mod n

• Complexity: O(log2e)

1. Res ← 1

2. Acu ← m

3. If e0 = 1 Res ← Acu

4. For i=1 to k do:
3.1. Acu ← Acu2mod n

3.2. If ei = 1 then Res ← Res x Acu mod n

4. Return Res



Algorithms (III) Random Prime Generation

• To generate a k-bit random prime, generate an odd random k-bit integer p
and apply a primality test to p

• Probabilistic primality testing: provides partial information whether an 
integer is prime or not

• Example: Fermat testing, if a prime candidate fails the test, then the integer 
is composite, otherwise, it can be a prime:
• How to do it: for any candidate prime p, pick a random x ϵ (1,p-1) and check that xp-1 = 

1 mod p (if not, the number is not prime, if yes, repeat several times)

• More efficient tests exist: see HAC, Chapter 4, https://cacr.uwaterloo.ca/hac/

https://cacr.uwaterloo.ca/hac/


RSA Computational requirements in brief

• Generating keys is the most intensive computational step as generation of two random 
primes requires: generating a random integer + testing for primality (there are ~x/ln(x) 
prime numbers up to x, so probability of success is ~1/ln(x))

• Encryption is usually the most efficient step since one can choose special form 
exponents: 3, 5, 65537 (note that primes of the form 1000…0001 are preferred)

• Decryption is always more computationally intensive than encryption because the 
decryption exponent is in the order of the modulus n

• Questions: why are exponents of the form 100…001 preferred? Why is the decryption 
exponent in the order of n?



RSA CRT speed-up

• For faster computations, RSA decryption is usually performed with Chinese-
Remaindering-Theorem

• This allows performing decryptions modulo p and q then combines them to get the 
result

• where 𝑑1 = 𝑑 𝑚𝑜𝑝 (𝑝 − 1) and 𝑑2 = 𝑑 𝑚𝑜𝑝 (𝑞 − 1)

• Questions: why is the decryption exponent reduced mod p-1 and q-1? Why this works 
faster than standard decryption?

• Note: there are alternative ways for doing the same, e.g., see in .NET implementation

൝
𝑚1 = 𝑐𝑑1𝑚𝑜𝑑 𝑝

𝑚2 = 𝑐𝑑2𝑚𝑜𝑑 𝑞
⟹ 𝑚 = 𝑚1𝑞(𝑞

−1𝑚𝑜𝑑 𝑝) + 𝑚2𝑝(𝑝
−1𝑚𝑜𝑑 𝑞)



Mathematical security & properties (or vulnerabilities?)

• Relation between RSA and Factoring: no proof of equivalence between breaking 
RSA and factoring exists so far, some facts:
Factoring obviously leads to breaking the RSA
Computing a private-public RSA key pair also leads to factoring (discussed in laboratory 

exercises)
Proving that RSA decryption leads to factoring seems to be hard (or maybe this equivalence 

is not true after all)

• Many interesting properties behind the text-book RSA trapdoor, some of them 
opening door for attacks (all these will be discussed in laboratory exercises): 
Small messages

Small encryption exponents

Small decryption exponents

Messages that do not encrypt



Why text-book RSA fails in front of active adversaries?
• Question: Consider IND (indistinguishability) as security property, is textbook RSA secure under 

this property?

• Answer: No, in fact no deterministic public key cryptosystem is.

• Question: Consider an CCA adversary, can the adversary recover the full plaintext in case of 
textbook RSA?

• Answer: Yes, textbook RSA is completely insecure under CCA adversaries

Adversar
RSA Decryption Machine

c2=c1m2
e
modn

m”2=c2
d
=m1m2modn

Adversary has target ciphertext c1

Restriction c!=c1

Target message recovered m1=m”2m2
-1

modn



Introducing RSA-PKCS#1

• Good news: previous CCA attacks does not work, can be (somewhat) securely used in
practice

• Bad news: there are some attacks for special cases (small exponents, special messages,
etc.), and more, there is no proof that RSA-PKCS#1 is secure

• Good news: newer versions of PKCS#1 include RSA-OAEP as improved
encryption/decryption method

 00...00 || 00...10 || || 00...00 || mod
e

random m n

• RSA encryption according to PKCS#1 (Public-Key Cryptography Standards)
• Before encryption, message is padded as: 

• Note: the random number below has k-3-|m| bytes (at least 8) where k is the byte 
length of the modulus



RSA encryption example (OpenSSL)
• Create a file

echo "Something secret ..." > secret.txt

• Generate RSA key
openssl genrsa -out privatekey.pem 2048

• Encrypt the file
openssl rsautl -encrypt -pkcs -inkey
privatekey.pem -in secret.txt -out 
ciphertext.bin

• Decrypt as raw (padding not 
removed) and print the output

openssl rsautl -decrypt -inkey
privatekey.pem -in ciphertext.bin -raw -
hexdump

• For more rsautl commands please see: 
https://www.openssl.org/docs/man1.0.2/man1/rsautl.html

https://www.openssl.org/docs/man1.0.2/man1/rsautl.html


Secure versions of RSA: RSA-OAEP
• Bellare & Rogaway 1991

• Main idea: embed a Feistel network under 
RSA:

• OAEP has provable NM/IND security under 
CCA adversaries 

• Some historical turnarounds for OAEP:
Bellare & Rogaway proved that OAEP gives 

security on any trapdoor
Shoup proved they were wrong
Fujisaki & Okamoto proved that security holds 

for RSA
All proofs are in the Random Oracle Model but 

hash functions in practice are not random 
oracles

       ||E x f x G r r H x G r   



Type of functions (II) Digital signatures
• Description (informal): the electronic “equivalent” of a handwritten signature, the 

signing algorithm takes the private key and message and returns a signature, the 
verification algorithm takes the public key, message and signature and checks if the 
input is genuine. (a key generation algorithm is also needed)

• Example of use: document signing, driver signing, public-key certificate signing, SSL/TLS, 
etc.

• Standards:
To use: RSA-PSS, RSA-FDH, RSA-PKCS
Not to use: small key versions of the above or unpadded (textbook) versions
Future use: N/A

i.e., s = 𝑆𝑖𝑔𝑃𝑣(𝑚)

Signature 
AlgorithmPlaintext: m

Private ley: Pv
Signature: s

Verification
AlgorithmMessage and signature: m,s

Pubic key: Pb
Valid/Invalid (1/0)



Digital signatures: formal definition
• A symmetric encryption scheme is a triple of algorithms:

Gen is the key generation algorithm that takes random coins, 
the security parameter l and outputs the public and private key

Sig is the signing algorithm that takes as input the private key 
and the message, then outputs the signature

Ver is the verification algorithm that takes as input the 
signature and the public key and outputs the 1 if the signature 
is valid or 0 otherwise

(𝑃𝑏, 𝑃𝑣) ← 𝐺𝑒𝑛 1𝑙

𝑠 ← 𝑆𝑖𝑔 𝑃𝑣,𝑚

{0,1} ← 𝑉𝑒𝑟 𝑃𝑏, 𝑠,𝑚

• A correctness condition enforces that 𝑉𝑒𝑟 𝑃𝑏, 𝑆𝑖𝑔 𝑃𝑣,𝑚 = 1

• A security condition enforces that given the public key Pb it is infeasible to 
compute the private key Pv, but this is not enough (see security properties)



What do we mean by breaking a signature?
• Existential forgery – find a valid message-signature without controlling the message

• Selective forgery – forge signature over messages that have a particular structure

• Universal forgery – forge signatures over any kind of messages (without knowing the private 
key)

• Total break – recover the private key (sign anything)

What are the adversary capabilities?
• Key-only – adversary knows only the public key

• Known-messages – adversary has valid messages-signature pairs but not at his choice

• Chosen message – adversary has messages-signature pairs at his choice (adaptive chosen-
message is a flavor of this notion where the adversary is allowed to chose messages after fixing 
the target to be forged)

To sum up: unforgeability under chosen-message attacks is the desired property
(adversary cannot forge signatures, even if he has full access tot the signing oracle)



The textbook RSA signature (hash then sign)
• Principle: 

To sign: hash the message then use the 
private key to sign the hash

To verify: use the public key to recover 
the hash then compare it to the hash of 
the original message

• Sign

1. Compute s=H(m)d mod n, (note that the bit-
length of the hash must be less or equal than 
that of the modulus n)

• Verify

1. Recover the hash from the signature with the 
help of the public key h’=se mod n

2. Compute the hash of the message and check 
that it is equal with the recovered hash, i.e., 
h’=H(m)

• Note: in case of RSA the signing algorithm is the reverse of encryption algorithm, this leaves the 
impression that in general signing is the reverse of encryption, but turns out not to be the case for many 
other public key cryptosystems, e.g., ElGamal

Hash Function
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RSA – PKCS v.1.5

• Standard published by RSA 
laboratories as of 1991, 
current version is from 
2012

Hash Function
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RSA signing examples (OpenSSL)
• Generate an RSA key

openssl genrsa -out privatekey.pem 2048

• Compute the digest of a txt file:
openssl dgst -sha256 -binary -out 
sha256.dgt  hello_world.txt

• Sign the file with the private key:
openssl rsautl -sign -inkey privatekey.pem
-in sha256.dgt -out sha256_signed.dgt

• Verify the signature as raw (padding 
not removed) and print the output

openssl rsautl -verify -in 
sha256_signed.dgt -inkey privatekey.pem
-raw -hexdump

• For more rsautl commands see: https://www.openssl.org/docs/man1.0.2/man1/rsautl.html

https://www.openssl.org/docs/man1.0.2/man1/rsautl.html


RSA – Probabilistic Standard Signature (PSS)
• Designed by Bellare & Rogaway, 

also included in newer versions 
of PKCS

Hash Function

m

| |m  

Hash Function

MGF

mHash salt1padding

2padding salt

maskedDB 0xbcH



RSA – Full Domain Hash (FDH)

• Principle: use a hash 
function that spans over 
the entire domain of the 
modulus

• Security: RSA-FDH is 
provable secure in the 
Random-Oracle-Model

Hash Function
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The Rabin cryptosystem
• Published in ‘79 by M.O. Rabin

• Notes:
 Rabin is not a particular case of RSA, 2 cannot be an RSA encryption exponent

 Requires padding similar to the RSA to be secure

 If the modulus is the product of two primes then there are 4 square roots (need 
redundancy/padding to decide which of them was the message)

• Question: why 2 cannot be an RSA exponent? Why are there 4 roots?

• Key generation

1. Generate two random primesp,q

2. Fix e = 2

3. Public key is Pb=(2,n) and private key 
Pv=(p,q)

• Encryption

1. Obtain the public key Pb=(2,n)

2. Compute c=m2mod n

• Decryption

1. Compute m as the square root of c



Recap: computational problems behind factoring based schemes

• All problems seem to nicely reduce one to 
another: Factoring, Rabin Decryption, RSA 
Key Generation and Euler Phi computation

• Is just RSA Decryption for which there is no 
proof that it will allow solving the others

• Note: arrow from P1 to P2 means that if 
you could solve P1, you can solve P2

FactoringFactoring

RSA 
Decryption

RSA 
Decryption

Rabin 
Decryption

Rabin 
Decryption

RSA Key RSA Key 

Euler Phi Euler Phi 

… easier problem???… easier problem???



The Diffie-Hellman-Merkle Key exchange 
– The Discrete Logarithm Terrain

• Method for securely exchanging a key over an insecure channel between two parties

• Key setup

1. Fix a prime p

2. Choose a generator g of 𝑍𝑝

• Exchange

1. 𝐴 → 𝐵: 𝑔𝑎𝑚𝑜𝑑 𝑝 n (a is a fresh secret random  value)

2. 𝐵 → 𝐴: 𝑔𝑏𝑚𝑜𝑑 𝑝 (b is a fresh secret random  value)

Where 

• Compute

1. A computes (𝑔𝑏)𝑎𝑚𝑜𝑑 𝑝 = 𝑔𝑏𝑎 = 𝑔𝑎𝑏

2. B computes (𝑔𝑎)𝑏𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏

• Notes:
 The protocol above is vulnerable to a man-in-the-middle attack (but it’s trivial to derive secure 

versions of it) 
 The order of the group 𝑍𝑝 must have a large prime factor, usually one works with 𝑝 = 2𝑞 + 1(this is 

usually called a safe prime)



ElGamal encryption

• Remark:
 Same remark for the order of the group as in the case of Diffie-Hellman
 When computing 𝑐2 = 𝑚(𝑔𝑎)𝑘 𝑚𝑜𝑑 𝑝 multiplication is used to conceal the message, but you can 

use other operations as well (XOR, symmetric encryption, etc., with the Diffie-Hellman key)

• Key generation

1. Generate a random prime p

2. Choose a generator g 

3. Choose a random value 𝑎 ∈ (1, 𝑝 − 2)

4. Compute 𝑔𝑎𝑚𝑜𝑑 𝑝

5. Public key is Pb = (p, g, 𝑔𝑎) and private 
key is Pv = (p, g, 𝑎)

• Encryption

1. Obtain the public key Pb = (p, g, 𝑔𝑎)

2.     Choose a random value k ∈ (1, 𝑝 − 2)

3. Compute 𝑐1 = 𝑔𝑘𝑚𝑜𝑑 𝑝, 𝑐2 = 𝑚(𝑔𝑎)𝑘 𝑚𝑜𝑑 𝑝

4.      Send 𝑐 = (𝑐1, 𝑐2)

• Decryption

1. Receive the encrypted message c

2. Recover the message as m = 𝑐1
−𝑎𝑐2



ElGamal Signature
• Published by Taher ElGamal in ‘84 (dlogs were used in crypto since the ’76 work of 

Diffie&Hellman, but a dlog signing scheme eluded for many years)

• Key generation

1. Generate a random prime 𝑝

2. Generate a random integer a ∈
(1, 𝑝 − 2)

3. Compute 𝑦 = 𝑔𝑎mod p

4. Public key is 𝑃𝑏 = (𝑔, 𝑦, 𝑝) private 

key is 𝑃𝑣 = (𝑔, 𝑎, 𝑝)

• Sign

1. Generate random k ∈ (0, 𝑝 − 1)

2.      Having h the hash of the messge, compute 
𝑟 = 𝑔𝑘 𝑚𝑜𝑑 𝑝 and s = 𝑘−1 ℎ − 𝑎𝑟 𝑚𝑜𝑑 (𝑝 − 1)

3.       Output the pair (r, s) as the signature

• Verify

1. Compute the hash of the message h

2.      Verify that 𝑟 ∈ (0, 𝑝) and s ∈ (0, 𝑝 − 1) return 0 if not 

3.      Verify that 𝑔ℎ = 𝑦𝑟𝑟𝑠 return 1 if so or 0 otherwise
• Remarks:

 Key generation is cheaper than for RSA (only one prime needed), more, the prime field can be a global parameter, 
i.e., more entities can use the same fixed p

 Signing requires more computations but these are done over a prime p that is usually smaller than the RSA 
modulus, therefore its faster

 Verification is slower than for RSA (if special public exponents are used, i.e., 65537, etc.)



ElGamal – notes on security

• So far there exist no security reductions (proofs) for ElGamal signatures, nor for DSA (next), 
Schnorr signature is the simplest dlog based signature that has a security reduction to the dlog
problem but is quite absent in practice

• Selecting a random k is mandatory for the security of the ElGamal signature, if k is not random 
then the secret key is trivial to recover:

Let the first signature be 

{𝑟1= 𝑔𝑘 𝑚𝑜𝑑 𝑝, 𝑠1 = 𝑘−1 ℎ1 − 𝒂𝑟1 𝑚𝑜𝑑 (𝑝 − 1)}

and the second

{r2 = gk mod 𝑝, 𝑠2 = 𝑘−1 ℎ2 − 𝒂𝑟2 𝑚𝑜𝑑 (𝑝 − 1)}

then

k = (𝑠1−𝑠2)/ ℎ1 − ℎ2

and now 𝒂 can be recovered from 𝑠1 or 𝑠2



Schnorr Signature
• Published by Peter Schnorr in “Efficient Signature Generation by Smart Cards”, Journal of 

Cryptology, p. 161-174, 1991.

• Key generation

1. Generate a random prime of the form  
𝑝 = 𝑘 ∗ 𝑞 + 1 where q is a smaller prime 
(usually a 160-bit prime)

2. Let g be a generator of the subgroup of 
order q from  𝑍𝑝

3. Generate a random integer x ∈ (1, 𝑞 − 1)

4. Compute 𝑦 = 𝑔𝑎mod p

5. Public key is 𝑃𝑏 = (𝑔, 𝑦, 𝑝) private key is
𝑃𝑣 = (𝑔, 𝑥, 𝑝)

• Sign

1. Generate random 𝑘 ∈ (0, 𝑞 − 1)

2.      Compute 𝑟 = 𝑔𝑘 𝑚𝑜𝑑 𝑝, 𝑒 = 𝐻(𝑟||𝑚) and s =
𝑘 − 𝑎𝑒 𝑚𝑜𝑑 𝑞

3.       Output the pair (𝑠, 𝑒) as the signature (note that 
this pair is computed modulo q and thus more compact 
than in the regular ElGamal signature)

• Verify

1. Compute 𝑟𝑣 = 𝑔𝑠𝑦𝑒 𝑚𝑜𝑑 𝑝 and 𝑒𝑣 = ℎ(𝑟𝑣||𝑚)

2.      Verify that 𝑒𝑣 = 𝑒 return true otherwise return false
• Remarks:

 Note that the pair (𝑠, 𝑒) is 2x160 bits (assuming q is 160 bits) and thus much more compact compared to the 
regular ElGamal signature



The Digital Signature Algorithm - DSA
• Also known as DSS – Digital Signature Standard, standardized by NIST 

• It is a variation of the ElGamal signature, all previous remarks apply here as well

• It differs from ElGamal mostly at key generation and verification, resulting in smaller signatures (a small but true 
practical advantage)

• Key generation

1. Generate a random prime 𝑝 such that 
another prime 𝑞 of 160 bits divides 
𝑝 − 1

2. Select  a generator g of order q

3. Generate random a ∈ (0, 𝑞 − 1)

4. Compute 𝑦 = 𝑔𝑎mod p

5. Public key is 𝑃𝑏 = (𝑔, 𝑦, 𝑝) private key is
𝑃𝑣 = (𝑔, 𝑎, 𝑝)

• Sign

1. Generate random k ∈ (0, 𝑞 − 1)

2.      Having h the hash of the messge, compute 
𝑟 = 𝑔𝑘 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 and s = 𝑘−1 ℎ + 𝑎𝑟 𝑚𝑜𝑑 𝑞

3.       Output the pair (r, s) as the signature

• Verify

1. Compute the hash of the message h

2.      Verify that 𝑟 ∈ (0, 𝑞) and s ∈ (0, 𝑞) return 0 if not 

3.      Verify that 𝑣 = 𝑟 and return 1 if so or 0 otherwise, 
where 𝑣 = 𝑔𝑢1𝑦𝑢2𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 , 𝑢1 =
𝑤ℎ 𝑚𝑜𝑑 𝑞, 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑞 , w = 𝑠−1 𝑚𝑜𝑑 𝑞

• Remark: parameter q here is fixed at 160 bits according to the output size of SHA1, it can be set to 224 and 256 for 
SHA2 (see FIPS 186-3)



Computational problems behind DLog based schemes

• All of the previous are apparently based on the 
difficulty of computing discrete logarithms, but 
there are three flavors of this problem:
• Decisional Diffie-Hellman problem (DDH) – let 
𝑦0 = 𝑔𝑎𝑏 , 𝑦1 = 𝑟, and β a random bit, given 
𝑔𝑎 , 𝑔𝑏 , 𝑦β find β (that is, distinguish between a 

complete random value and a DH key)

• Computational Diffie-Hellman problem (CDH) –
given 𝑔𝑎 , 𝑔𝑏 compute 𝑔𝑎𝑏

• Discrete Logarithms (DLog) – given 𝑔𝑎 compute 𝑎

• The security of the Diffie-Hellman key 
exchange is equivalent to CDH (and at most as 
hard as DLog)

• If DLog can be computed Factoring is easy

FactoringFactoring

DLogDLog CDHCDH DDHDDH

Diffie-Hellman 
Key Exchange

Diffie-Hellman 
Key Exchange



More on digital signatures: message recovery

• All of the previous signatures worked with the hash of the message, these are 
usually called signatures with appendix

• Signatures with message recovery also exist, for example with RSA if the message 
is smaller than the modulus one can sign directly on the message, then recover it 
from the signature

• Question: show an existential forgery on the above RSA signing scheme (to avoid 
such forgeries padding must be used). 

 Sign: compute s=md mod n, (note that the message must be smaller than the modulus n)

 Verify: recover the message from the signature with the help of the public key m=se mod n



Questions?


