

ONE TIME PASSWORDS FOR UNCERTAIN NUMBER OF AUTHENTICATIONS

Bogdan Groza, Dorina Petrica

“Politehnica” University of Timisoara Department of Automation and Applied Informatics
Bd. Vasile Parvan nr. 2, 302223 Timisoara, Romania
E-mail: bgroza@aut.utt.ro, dpetrica@aut.utt.ro

Abstract: Authentication based on cryptographic techniques is a subject of great interest
in many fields. Authentication protocols presented in this paper are based on one-time
passwords which offer stronger security than commonly used fixed passwords. Leslie
Lamport in his paper Password Authentication with Insecure Communication proposed
the use of one-way functions in order to obtain one time passwords. Because of their
simplicity cryptographic hash functions are commonly used for such purpose. Some
disadvantages of using hash-functions will be stated and then functions on groups of
composite integers will be used in order to obtain a more flexible one-time password
scheme.

Keywords: entity authentication, one-time password, uncertain number of authentications,
bounded number of authentications, upper bound.

1. INTRODUCTION

Entity authentication is a process in which an entity
proves his identity and his presence to another entity.
Authentication requires both an identity guarantee,
which is usually connected to the presence of a secret
(for example a password), and a time guarantee
which will be made by some time variant parameters
- to ensure that this authentication did not happened
before. Authentications are usually challenge-
response protocols in which an entity sends a random
challenge to another entity who wishes to prove his
identity. In this paper we will use the term user to
denote the entity which needs to authenticate and the
term system to denote the entity to which identity is
be proven.

Password authentication is the most commonly
authentication. We use password to log on an
operating system or to get money from our credit
card etc. Using conventional time-invariant
passwords has a major disadvantage: passwords can
be stolen from the system where they are stored or by
intercepting user’s communication over insecure

channels. A better solution is to use one-time
passwords.

One-time passwords are passwords which are valid
only once for an authentication. The main advantage
in using them is that by disclosing an already used
password the user may not be impersonated, since a
one-time password may not be used twice.
Lamport (1981) has proposed a functional one-time
password scheme in which secrets are stored only on
the user side and intercepting a password sent from
user to the system would not lead to an
impersonation. Lamport’s authentication is based on
computing the sequence

)}(),...,(),(),(,{ 21 xFxFxFxFx AN on the user side,
where x is an arbitrary value chosen by the user and
kept secret, AN is the number of authentications to
be performed and may be also chose by the user, F
is a known one way function (this means that by
giving x it is easy to compute)(xF but by giving

)(xF it is infeasible to compute x).

At the beginning the system must know)(xF AN and
then when the user needs to authenticate for the first
time to the system (1=i) he will present)(1 xF AN − as

the first one-time password. At the thi authentication
the user will prove it’s identity by sending)(xF iN A −
and the system will simply verify this by computing

))((xFF iN A − and also checking that
)())((1 xFxFF iNiN AA +−− = , where)(1 xF iN A +− is the

previous authentic one time password. This scheme
may also be viewed as a challenge-response protocol
where the challenge is defined by the position of the
password in the password sequence (Menezes et al.,
1996, page 396). The authentication process is
suggested in Figure 1.

Cryptographic hash functions are commonly used to
ensure data integrity (Rivest, 1992a, 1992b; FIPS
180-1, 1995). Since hash-functions are one-way
functions several papers propose the use of hash
function in Lamport’s scheme (Haller, 1995; Haller
et. al., 1998). It should be also mentioned that block
ciphers may also be used to generate a hash function
if they behave like random functions (Menezes et al.,
1996, page 328).

Fig. 1. Entity authentication with Lamport’s one-time

password scheme

It is obvious that the advantage of using one-time
passwords is that they offer stronger security than
fixed passwords. One-time password schemes are an
important step to challenge-response entity
authentication protocols. Nevertheless Lamport’s
scheme has some computational disadvantages.
Other one-time password schemes were proposed, to

remove those disadvantages, and some of them
proved to be breakable (SAS, OSPA), others like
ROSI are considered to be secure (Chien et al.,
2003).

The most important disadvantage in Lamport’s
scheme with hash functions is the necessity to
compute i composition of F in order to obtain

A
i NixF <∀),(because this will require time to

compute these compositions or space if the user
decide to store all the passwords. This kind of
disadvantage can be removed by using functions over

*
nZ which are more flexible, however these function

have different disadvantages: they are harder to
compute than simpler hash functions. The purpose of
this paper is to propose some functions over *

nZ
which can generate one time passwords and to
analyze some of their advantages and disadvantages.

In section 2 some disadvantages of Lamport’s
scheme with hash functions will be stated and in
section 3 a more practical point of view will be set.
Functions over *

nZ will be used to generate one-time
passwords in section 4 while section 5 will outline
some advantages and disadvantages of these
functions and section 6 will be the conclusion of this
paper. Frequently used notations are presented in
Appendix A.

2. SOME DISADVANTAGES IN LAMPORT’S
SCHEME WITH HASH FUNCTIONS

The following issues may be viewed as
disadvantages of using hash functions on Lamport’s
scheme:
- The number of authentications AN allowed by the
algorithm is a fixed number. If we need more
authentications than we previously expected this will
not be possible, because the algorithm does not
allow, and a new array of one time passwords should
be generated.
- The number of authentications AN should be small
enough to be reasonable to perform the computation
of ANF . If we need AN one-time passwords we will
need to compute AN compositions of F and this
may be a time consuming operation and also may
require space if the user decide to store the
passwords. For example if 202=AN we will need to

compute
202FF AN = which will require more than

one million compositions and time or space can
became a problem if computational resources are
limited.
- If the number of authentication is uncertain we
may in fact not need AN one-time passwords. For
example we may consider that a user want to
authenticate 202=AN times to a system during a

year and compute 202 one-time passwords, but then
if the user will authenticate only 10 times much of
the computation was useless.

3. SOME PRACTICAL ASPECTS REGARDING
THE NUMBER OF AUTHENTICATIONS

There are processes which may happen for an
uncertain number of times. In real life there are many
things which we could not know how many times
will repeat. For example we may not know how
many rainy days will be in an year, or how many
times a user will log on to a computer in a month etc.
In particular when we are referring to authentications
we usually have to do with an uncertain number of
authentications.

Even if we could not know how many times a
process will happen this number is usually bounded.
For example we might not know how many rainy
days will be in a year but the number of rainy days is
certainly bounded by 365 because there are at most
365 days in a year. Even if still uncertain we usually
have to do with a bounded number of
authentications. We will define the upper bound

ANUB , of the number of authentications as an integer
which is certainly bigger then the number of
authentications AN . We will not insist on how close
is AN to

ANUB , , it is obvious that it is better to have

ANUB , as close as possible to AN but this is not of
great relevance for this paper. We may also notice
the following relation concerning

ANUB , :

A
NU T

TB
A

<, where T – is the length of the time

interval that we are referring to, and AT is the time
required for the authentication process to complete
(we will suppose that two process cannot run at the
same time, however it is easy to extend the paper to
this case). The number of times an entity
authenticates in a year is also bounded, for example
if an entity needs to authenticate for one year, that is
365 days, and an authentication will require 30
seconds this means that

1.051.200
30

606024365
, =

⋅⋅⋅
=<

A
NU T

TB
A

.

We will now remark that knowing the exact number
of authentications AN is usually not possible while
knowing an upper bound

ANUB , for this number is
likely to be possible.

4. USING EXPONENTIATION OVER
COMPOSITE MODULES

Functions defined over sets of integers, with inverses
that are usually intractable, are frequently used for

public-key authentications. We will use the
composition of some of functions over *

nZ to
generate one-time passwords for a bounded number
of authentications where bound

ANUB , is very high.

The function Ζ∈= εε ,mod)(nxxF defined over *

nZ
is the one-way trapdoor function used in the RSA
public key encryption scheme. The function inverse
could be computed only if the factorization of n is
known and 1))(,gcd(=nφε . We will therefore choose
two random primes p and q , compute qpn ⋅= , a
random exponent ε , a secret a and the one-time
password array will be

)}(),...,(),(),(,{ 32 aFaFaFaFaA η= for a number of
η authentications. The following remarks are
relevant from some points of view:

1. From the security point of view:
1.1. Since the function inverse is intractable it should
be impossible for an attacker who intercepts a one-
time password to compute the next one-time
password. This means that it should be infeasible to
compute)(xF i from)(xF j with any ji < for an
adversary who does not know the factorization of n
because the function inverse is intractable.
1.2. Functions over *

nZ are cyclic and there exists
i and j such that jixFxF ji ≠=),()(. This means
that the sequence)}(),...,(),(),(,{ 32 aFaFaFaFa η is
cyclic for big values of η . However such cycles are
unlikely to appear because it would lead to the
factorization of the integer n and this integer will be
chose large enough to make factorization infeasible
(Menezes et al., 1996, page 289).

2. From the computational point of view:
2.1. It is not necessary to compute η compositions

of)(xF in order to obtain)(xFη because in *
nZ

exponents can be reduced modulo)(nφ and the
following relation can be used:

nxxF n mod)()(modφεη η
= (1)

Therefore only about ())(modlog
2
3

2 nφε η

multiplications over *
nZ will be required to compute

)(xFη (this is the expected running time of an

exponentiation in *
nZ (Menezes et al., 1996, page

614). Relation (1) is a consequence of the fact that
*)(,mod1 n

n Zxnx ∈∀=φ and since nxxF mod)(
ηεη =

then if we take)(ni φλε η ⋅+= it comes that
nxnxxnxnx nini modmod)(modmod)()(λφλφλε η

=⋅== ⋅+ ⇔
nxnx n modmod)(modφεε ηη

= .

2.2. As shown previously, knowledge of the
factorization of n will be required in order to
compute)(xFη as fast as possible, taking the
advantage of)(nφ to reduce exponents. However
generating the one-time password array could be
done even without knowledge of the factorization of
n , if the secret a is known, by using the
composition of)(xF and without taking advantage
of the reduction of the exponents – this will result in
a complete waste of time.
2.3. If 1))(,gcd(=nφε it is possible to compute the

multiplicative inverse εδ of ε in *
)(nZφ . This means

that it is possible to compute a εδ such
that ()ni φεδε ⋅+≡1 . Then εδηη))(()(1 xFxF =−
because

ε
η

ε δεδη)())((xxF = ε
η δε ⋅= x ε

η δεε ⋅⋅−

=
1

x nx mod
1−

=
ηε .

In other words the function inverse is
nxxF mod)(1 εδ=− . This means that in this case

computing the next password from the one just sent
is possible if the factorization of n is known and

1))(,gcd(=nφε .

In the general case when Ζ∈= εε ,mod)(nxxF and
the value of ()() 1,gcd =nφε is not used, the
authentication process between a user and a system
will run through the following stages also illustrated
in Figure 2:

1. Initialization stage:
1.1. User→System: The user will generate: two
random primes p and q , a random integer exponent
ε , a random integer a , upper bound

ANUB , (see
section 2), then he computes:

() () ()11, −⋅−=⋅= qpnqpn φ , ()ne ANUB φε mod,= ,

naaF eB
ANU mod)(, = . After setting 1=i he will send

secure to the system:)),(,(, εaFn ANUB
1.2. System: The system will receive and store:

)),(,(, εaFn ANUB ,)(, aFP ANUB
LAST =

2. Protocol actions. For the authentication of the
user to the system in the thi session:
2.1. User→System: The user will set: 1+= ii and
compute the exponent and password:

()ne iB
i

ANU φε mod, −= , naaF iANU eiB mod)(, =− . Then

he will send to the system:)(, aF iB ANU − as his new
one-time password.
2.2. System: The system will receive and store:

)(, aFP iB
NEW

ANU −= and will check if

LASTNEW PPF =)(. If this true then user is authentic
and the system will set NEWLAST PP = otherwise the
user is not authentic.

It is easy to observe that indeed

LASTNEW PnanaPF
iANUBiANUB

===
+−−

modmod)()(
1,, εεε .

Fig. 2. One-time password authentication scheme

with exponentiation over *
nZ

As stated before if ()() 1,gcd =nφε there exists

εδ such that ()nφεδε mod1≡ . In this particular case
previous knowledge of the upper bound

ANUB , is not
needed and the authentication process between a user
and a system will run through the following stages
also illustrated in Figure 3:

1. Initialization stage:
1.1. User→System: The user generates: two random
primes p and q , a random integer exponent ε such
that 1))(,gcd(=nφε , a random integer a , then he
computes: () () ()11, −⋅−=⋅= qpnqpn φ , εδ such
that ()nφεδε mod1≡ . After setting 0=i he will send
secure to the system:),,(εan
1.2. System: Receive and store:),,(εan , aPLAST =
2. Protocol actions. For the authentication of the user
to the system in the thi session
2.1. User→System: The user wil set: 1+= ii then
compute and send to the system his new one-time
password: naa ii mod1

εδ
−= (where 1−ia is the

previously sent password)
2.2. System: The system will receive and store:

iNEW aP = and will check if LASTNEW PPF =)(. If this
is true then user is authentic and the system will set

NEWLAST PP = , otherwise the user is not authentic.
It is easy to observe that indeed:

() ()
LASTi

nk
iiiiNEW PaaanaaPF ====≡= −
+
−−− 1

1
111 mod)(φεδεδε εε .

Fig. 3. One-time password authentication scheme

with exponentiation over *
nZ in the particular

case ()() 1,gcd =nφε

We will also notice that by setting 2=ε the one-
time passwords array

},...,,...,,,,{ 22222 32 η
aaaaaaA

i
= will be a set

defined by the relation 2
1 ii aa =+ which means that

the one time password ia is the quadratic residue of

1+ia . Then it is obviously that password ia may be
computed either as a quadratic residue of 1+ia either

as
i

a2 . The process of authentication may run just
like in the general case with the observation that the
next one-time password may also be computed from
the one just sent to the system as a quadratic residue
if the factorization of n is known.

5. ADVANTAGES AND DISADVANTAGES OF

EXPONENTIATION OVER Zn

In brief, the advantages and disadvantages of the
functions proposed will be as follows:
Advantages:
- Computing the first one-time password is easier.
For big values of η we see that computing ηF is
certainly easier since it does not require η
compositions of F with herself (we do not have to
compute al previous one-time passwords η<iF i ,).
Actually the computation of the last password is not
much influenced by η so enormous values of the
upper bound

ANUB , may be chosen as well.

- Knowing the upper bound
ANUB , is not required.

Previous knowledge of the upper bound
ANUB , is not

needed for the particular case when ()() 1,gcd =nφε .

Disadvantages:
- Message size is significantly larger. A hash
function may output results on 128-256 bits while a
module should be around 1024-2048 bits, which
results in keys that are a few times longer. Big
modules are required in order to make the function
intractable.
- Computing all the passwords requires more time
with modular exponentiation. Even if computing the
first one-time password could be done faster, the
computation of more one-time passwords would
require more time for modular functions than for
hash functions. Solutions presented in this paper
might not be very practical because modular
exponentiations are time consuming and each
password requires a modular exponentiation.
Practically speaking a modular exponentiation might
require from tens to thousands of modular
multiplications while a modular multiplication could
be one hundred times more complex then a hash
function. It should be also stated that more advanced
authentication techniques such as public-key
authentications can be performed with the same
amount of computation.

6. CONCLUSIONS

Functions over groups of integer were used instead of
hash functions in order to generate one-time
passwords. Using these functions has advantages
when the number of authentications is high and
uncertain by avoiding multiple compositions but also
has the disadvantage that they are harder to compute.
We expect that algorithms described in this paper are
secure and can be used to generate one-time
passwords.

ACKNOWLEDGEMENT

The authors thank Dragomir Toma-Leonida and
Minea Marius for helpful discussions about this
work.

REFERENCES

Chien, Hung-Yu, Jan, Jinn-Ke, (2003). Robust and
Simple Authentication Protocol. Oxford Journal,
The Computer Journal, Vol. 46, No. 2, 2003.

Haller, N., (1994). The S/KEY One-Time Password
System. RFC 1760, Bellcore.

Haller, N., Metz, C., Nesser, P., Straw, M., (1998). A
One-Time Password System. RFC 2289,
Bellcore, Kaman Sciences Corporation, Nesser
and Nesser Consulting.

Lamport, L. (1981). Password Authentication with
Insecure Communication. Communication of the
ACM, 24, 770-772.

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.,
(1996). Handbook of Applied Cryptography.

CRC Press.
FIPS 180-1, (1995). National Institute of Standards

and Technology (NIST). Announcing the Secure
Hash Standard., U.S. Department of Commerce.

Rivest, R., (1992a). The MD4 Message-Digest
Algorithm. RFC 1320, MIT and RSA Data
Security, Inc.

Rivest, R., (1992b). The MD5 Message-Digest
Algorithm. RFC 1321, MIT and RSA Data
Security, Inc.

APPENDIX A – NOTATIONS

)(nφ - Euler φ function for an integer n and
denotes the number of integers smaller than n and
relatively prime to n ; in this paper we will use the
particular case qpn ⋅= where p and q are prime
numbers, then)1()1()(−⋅−= qpnφ and for any
integer *

nZx ∈ holds 1mod)(=nx nφ

ANUB , - the upper bound of the number of
authentications

)(xF n
444 3444 21

timesn

xFFF
−

=))...))((...((- the composition of

function)(xF with herself n-times
()yx,gcd - greatest common divisor of integers x

and y

AN - the number of authentications allowed

AT - time required for the authentication
process to complete

nx 4434421
timesn

xxxx
−

⋅⋅⋅⋅= ... - the exponentiation of the

variable x to n
nZ }1,...,3,2,1,0{ −= n - the set of integers

modulo n
*
nZ }1),gcd(, { =∈= nxZxx n - the set of integers

smaller than n and relatively prime to n

